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THE ¢-MODULE STRUCTURE FOR THE COHOMOLOGY
OF TWO-STAGE SPACES

LEIF KRISTENSEN and ERIK KJAR PEDERSEN

0. Introduction.

The purpose of the present paper is to give a general method for
determining the structure of the cohomology of stable two-stage spaces
(for definitions see Section 1) as a module over the Steenrod algebra 6.
For convenience we only consider cohomology with coefficients in Z,,
the integers modulo 2. The general part of our paper, however, works
equally well with arbitrary coefficients. A two-stage space with stable
k-invariant is an H-space and the cohomology consequently a Hopf
algebra. We also evaluate the diagonal in the cohomology.

The idea of the paper is to express the 4-module structure of the
cohomology of a two-stage space in terms of Massey products in &.
This is done in Section 3. A Massey product in & (definition in Section 2)

{4,B,C) < G,

is a coset defined for matrices 4, B and C with entries from 4 of type
(1,s), (s,t) and (t,1) such that AB=0 and BC=0. The indeterminacy
is given by {AX + YC} where X and Y run over all matrices of type
(s,1) and (1,¢). When dealing with Massey products in ¢ one can usually
avoid indeterminacy. This is also the case in the present paper. We
shall always be dealing with a particular element from the coset.

The calculation of Massey products in general is not done in the pres-
ent paper. It is, however, in principle possible to calculate any Massey
product in 4 as follows. Kristensen and Madsen [6] worked out the re-
duced diagonal y: & — GRG of a Massey product. It contains Massey
products of lower degrees together with some ‘“primary” terms, some of
which were left undecided in Kristensen [4]. These terms, which arise
from the primary terms in the Cartan formula for a secondary operation,
were then computed in Kristensen [5].

Since kery is spanned by Q;=8¢®--»%1, this together with evaluation
in projective space enables us to determine (4,B,C). This has been
carried out in Kristensen [5].
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As an example we give in Section 5 a complete determination of the
G-module structure of H*(%,) (for definition of E, see Section 5). This
has also been considered by J. Milgram. The theorem in Milgram [8]
describing the G-module structure of H*(%,), however, is incorrect. (He
does not give enough relations.) In Milgram [9] the correct structure of
H*(E,) and H*(H;) was found. The method used by Milgram is totally
different from ours and does not work in the general case.

1. Two stage Postnikov systems.
In the following sections we consider a fixed stable two stage Postni-
kov system
QB —— QB
P
(1.1) E —— PB
i
K(Z,,n) —2— B,
where
B = HK(Zan(J))’ (p*(zn(j)) = ‘xj(zn)’

Zn( the generator of H"K(Z,,n(j)); Z,), «; € G.
As an algebra H*(X) is isomorphic to

(1.2) H*(K(Z,,n))/[imp*®@8

where S is a polynomial algebra, isomorphic under 2* to the subalgebra
of H*(Q2B) generated by o(kerg*), ¢ the suspension (see Kristensen
[1], [2] and [3], Smith [10]).

2. Massey products in the Steenrod Algebra.

Let U and V be finite dimensional vector spaces over Z,. Further,
G4(U,V) is the graded vector space of stable natural transformations
H*(—,U) - H¥(—,V) and O(U,V) is the graded vector space of co-
chain operations, i.e., natural transformations C¥ —,U) - C¥ —,V), C*¥
the normalized chain functor.

In O(U,V) there is a differential V defined by

Vo = 66460,

é the coboundary in C¥(—,U), C¥(—, V), respectively. If we let kerV=
ZO(U,V), there is an exact sequence
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(2.1) ou,V)->ZoU,V)-»aU,V)->0
(see Kristensen [2]), i.e.
@U,V) = H(OU,V),V).

Let 0=0(Z,,Z,). For « € Z0 the exact sequence (2.1) gives the exis-
tence of a cochain operation

dlo; —,..., =) € OZ,D...DZy; Zy)
such that

V(s @y, . ., 7,) = &(Z2) + Zo(z;) .
We may assume d(«; —) normalized, i.e.
(2.2) d(«;0,...,0,2,0,...,0) = 0.

In the sequel we need the following lemma about cochain operations.
Consider a relation in & of the form

p Sqr+i+degry t ¢,

where ¢ is a sum of monomials in Sg¢f, either admissable or of excess
>n+1. Let sq%, B, @ and € be elements in Z@ representing S¢t, 8, «
and c respectively. (sg® is further required to vanish on cocycles of
dimension =7—1 and on cochains of dimension =<7—2.) Then (of
course)

Bsqn+l+dega +C

in Z@ is actually a boundary i.e., there exists 6 € 0 with

Vg —_ Bsq‘n+1+dega+a .

Lemma 2.1. 0 may be chosen such that

6(x) = 0 for dimzx<n,
0(x) = Sf a(x) "’ &(x), dimzx=mn, dx=0,
where

v(f) = SHOF"+BRE+36"SF
v the diagonal in G.

Proor. See Kristensen [2]

This is called a } Cartan formula.
There are pairings

W@V, W)Q6(U, V) - 6(U, W)

Math. Scand. 30 — 7
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and
oV, WyxoU,V)-0oU, W)

given by the composition. The latter is left distributive, but because
of the lack of additivity of cochain operations it is not right distributive.
Now we proceed to define Massey products. Assume given elements

Ae@(V;Z,), Bed(U,V), Cel(Z,U)

such that AB=0, BC=0. Choose cochain operations 4, B, C to represent
A, B, C. Then there exist # € O(U; Z,), 5 € O(Z,, V) such that

V® = AB, V= BC
and
M = 9C+An+d(d; 7,0m)

is (as one can easily check) in Z(@, thus determines an element in 6.
(Note that by (2.2) d(4; 5d,0n) vanish on cocycles.) Varying ¢ and 7%
we get a coset in 4, the Massey product (4,B,C). In what follows,
however, & and 7 will be chosen once for all, so there will be no inde-
terminacy in the computations.

Since G(U, V) may be considered dim U x dim V matrices with entries
from G, we may reformulate the concept of Massey products in terms of
second order relations.

Let ret®64®6G such that (u®1)(r)=(1Qu)(r)=0. Then r can be
written
(2.3) r=23;;%QB,;Q7;,

where 3;x;8; ;, 2;B; ;v; are relations in 4.
Choose cochain operations &, f; ;, 7; to represent «;, f; ;, 7; and also
R,, S; in O such that

VR; = 38,85 V8 = 3B -
The Massey product corresponding to (2.3) will then be represented by
2 B¥s+ 3 &S+ 3 d(84,08,,8,0) + 34 A&y 5 BiaPu Biofes - - ) -

Putting r;=3;;8; ;, 8;=3;P; ;¥; we normally will write the second
order relation as

D1y D xS

In the definition of the Massey product there is indeterminacy arising
from the choice of R;, S;. However, in this paper the Massey product
is evaluated on a class z annihilated by y;. Hence the indeterminacy
arising from the choice of R, disappears.
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We shall also consider secondary cohomology operations
Qu(si) - H* 5 g +-+des(si—1
associated with the relations s;. Let Z be a cocycle representing z in H*.
Then Qu(s;) is defined on z if y;(z) =0. For a given choice of S;, Qu(s;)(z)
is the class (actually coset) represented by
842+ 2 B 4(wy)
where dw,;=7,(z). If we alter §; by adding an element &€ Z0, S;'=S,;+¢
then we get a new secondary operation Qu(s;)’, and
Qu(s;)—Qu(s;) =¢, e=clsé=4a.

From this it follows that once we decide a choice of secondary cohomo-
logy operation Qu(s;) we have a fixed S; up to a boundary (e=0 iff
&§=VEe’'). Hence there is no indeterminacy on our Massey products at all
when we decide a choice of Qu(s;).

3. H*(E) as a module over (.

Let 8’ =h*(S)=h*H*(E) (see (1.1)). Then S’ is a left 4-module, and
we have the following

THEOREM 3.1. Let 8’ be generated as left G-module by
{2 B (zuw-1)}s

and let a generating set of relations be given by

{3542 (2 B aco-1)}s -

Then as a module over the Steenrod algebra H*(E) is generated by z, By(z),
where z=p*z,, and B; is a secondary operation associated with the relation.
(3.1) below. A generating set of relations is given by

i A2Bi(z) = M*z)+cls(Q(z)) ,

where M* is the Massey product associated with the second order relation.
(3.4) below. The element cls(Q(z)) is of the form 3 «(2)p(z), «,f € G. It is
associated with the relation q in (3.5) below and is explicitly computable
using Lemma 2.1.

Proor. The proof will consist of a sequence of lemmas. Let

iBitun-1 € 8.
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Then since 8’ is generated on o(ker¢*), we have

X2 Biznwy) = i Bixiz, = 0.

Hence ¥ f,x; is an unstable relation in 4, that is, there exists a unique
sum ¢ of admissible monomials in 4 of excess larger than n such that

(3.1) D Bixg+c

is a relation. Let B be the corresponding unstable secondary operation.
Since «,(z)=0, the operation B is defined on z € H*(E), and we have

LemMA 3.2. h*(B(2)) = 3;B:(2nw)-1)-

Proor. Let z, be the basic cocycle of K(Z,,n), Z=p*(z,), and let
B:,3;,¢ be cochain operations representing f;,«;c. Choose cochains wu;
such that du;=a,(z) and a cochain operation R such that VR=3,8;a,+¢.
Then

R(@)+3; Biluy)
is a cocycle representing B(z). We get
K (RE)+ 3, Bilw;) = R((PR)¥(E,) + 3 Bulh¥wy) = 3 By(h¥uy) .

In the Serre spectral sequence of the fibration

QB —» E -~ K(Zy,n)
we get from diagram (1.1) by naturality the differentials

A (Znir-1) = %4(2n) -
Since du;=a,(2) and d,; is induced by the coboundary in C¥(E), we get

cls(Pfu;) = 2,1 -
With notation as in Theorem 3.1, Lemma 3.2 gives

W*(3; 2;B4(2)) = 35 (3 B (2ni-1)) = 0,

and therefore
D5 4B (Zpp-1) = 0

for all . Hence there exist e; € 4 such that e; is a sum of admissible
monomials, exce;>n(:)—1 and

(3.2) 2B +e
is a relation.



THE 6-MODULE STRUCTURE FOR THE COHOMOLOGY ... 101

We write e¢; as a sum of two terms, SqPy, (for dimensional reasons
p does not depend on 1) of excess n(i) and f; of excess >mn(¢):

(3.3) e; = SqPy;+f;,  p—deg(y;) = n(i).
From (3.2) and (3.3) we get

(E yi‘xizn)z = (2 7i<P*znm)2 = ¢* (Z quyizn(i)) = @* (Zi eizn(i))
= g* (Ej 2 (21 B zn(i))) = Ef Ap* (Ei B/ z'n(i)) =0.

zyi“i(zn) =0

and there is a unique sum g of admissible monomials of excess larger
than » such that

Consequently

D vixg+g =0.
Consider the second order relation
(3.4) i diri+ 280+ 8qPt+q
where
r; = X Bloi+c;,
(3.5) 8 = 25 MBI+ 8Py +f;

t=Divix+9g,
q = 8qPg+3; Aic;+ 3 fios s

and choose cochain operations R;, S,,T',Q such that

LemMma 3.3. Let notation be as above and let M denote the Massey product
corresponding to (3.4). Then

> 2;By(z) = M(z)+cls(Q(z)) .

Furthermore, since excg>n, Q(Z) is given by a } Cartan formula.

ProoF. 3;4;B;(z) is represented by
by, (Zj(Rj(E)‘*‘Zi B4 ’”'i))
= 25 A By(E) + 3, 35 4B us+ 3, VA, By(E) + 3 Bl ug, B, - ) -
This expression is related to the Massey product. From (3.5) we have

q i X AiBiw = X VSu+ Y sqP Foug+ X fug
an

fiu; = 0 since dimwu; < excf;—1.
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Also

2 89P 7%
= sq?(T'(2) + 2 74%;) +8qP(TZ) + Vd(sq? ; T(2) + 3; 750, 1%y, - - )
and T(2)+X7,u; is a cocycle of dimension p—1 such that
2 8P Fiu; = sqP(T2) + Vd(sq?; T () + X; 75%pP1%s,- - -) -
Furthermore
Vd(2;; Ry (Z) + 3 B ws, Briwy, . . ) ~ d(A;;¢;2), B 34%,. . .) ,
Vd(sq?; T(2)+ 2 Pyte, Prth, - - ) ~ A(sq7;G(2), 71847y, - -)
2 V8u; ~ 3 8;4,(2) .
2 M Bi@) + 3 Biu) ~ M(2)+Q() .
This ends the proof of Theorem 3.1.

Hence

4. Diagonal in H*(E).

Since F is an H-space, there is a Hopf-algebra structure on H*(E)
with diagonal y*, where y is the multiplication.

By Theorem 1 a generator of H*(X) is of the form B(z), where B is
a secondary operation corresponding to a relation of the form

Dibixs + ¢

where excc>n. To compute y*(B(z)) write c=8g% Sq’i+d, where
ji—degJ,=n+1,execd>n+1. We have

p*z) = z2x1+1xz,
and by naturality

v*¥(B(2)) = B(zx 1+1x2)

= B(zx1)+B(1x2z)+d(c;z2x1,1xz)
1x B(z)+ B(2) x 1 +3; Sq”i(z x 1) Sq”{(1 x 2)
1x B(z) +B(2) x 1+ 3, Sq”i(z) x 8¢7%(2) .

In this computation we have used Kristensen [2].
This gives a complete description of the diagonal.

5. Examples.
Let us consider the stable two-stage Postnikov system
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K(Zy,2n—1) —— K(Z,,2n—1)

En P(zzyn_l)

| |

K(Z,,n) ? K(Z,,2n),

where @*(2,,)=2,%.
Let ¢ be the dual of the squaring homomorphism 6&* — 4*. Then
£(Sq%) =S¢, £ (Sq?+1) =0, and we have for « € G,

(P*(o‘zZn) = “(P*zzn = ‘xz'nz = ((C‘x)(zn))z .

So we see that
H*(E,) = /\ [S¢%z,Tadm,excI<n] ® S,

where z=p*(z,) and S is isomorphic to the subalgebra of H*(K(Z,,2n — 1))
generated by «(2,,_;), « € ker(.

By Theorem 3.1 we need to find generators and relations of 8’ =h*(8S)
as a left 4-module.

Levmma 5.1. As a left G-module S’ is generated by t,,...,t5;11,- « «sban—1s
where ty; 1 =8q% 2y, . A generating set of relations is

4] 3 ,
e = SgPP iy + ZO (%) SqPp+2a+1-2ty,,,, p=<29<n
] =

and
Pl = Sq41’+2t2q+1+ Sq2(p+q+l)t2p+1

2p+gq+1 .
1 g
+ . Z 1 (P-;+;7)Sq2(2p+q+1 J)t2;i+1’ p < q <n.
J=q+

ReMaRk. The binomial coefficient (}) is the coefficient to ¢ in the
power series

(I+t)ne Zy[t]], mn,teZ.

Proor. In Milgram [9] it is proved that Sg'z,,_,, t=2¢—1, generate
8" as a left G-module. For convenience we take more generators, so
the first assertion is obvious. To prove we have enough relations, re-
member that 8’ is a polynomial algebra, so we will prove that Sq'ty;,,

can be written as a sum of polynomial generators by means of the rela-
tions r7.¢, gv:q,
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Using Adem relations it is easy to show that we can take
{Sqityys1 | 1249+2 or i=0 mod4}

as some of the polynomial generators, so assume ¢ <4¢+2 and 1=2p+1
or i=4p+2. If i=2p+1, then r7¢ immediately expresses Sgq‘t,,,; as
a sum of polynomial generators, and if ¢=4p+ 2, then repeated applica-
tion of s7¢ will express Sq't,,,; as a sum of polynomial generators.

Remark. Note that the relations 72 and s?2 are derived from the
Adem relation

Sq2r+1 Sqa+l z (gg:y;_zj) Sq2p+22+2- Sqi

and from the relation 7(2(p+g¢+1),2p+1; 4p+2q +3) in Kristensen [4].
By Theorem 3.1 we have that H*(E,) is generated by
z>Bl(z)’ v ,B2z'+l(z): e ’an—l(z) 4
where B,;., is a secondary operation associated with the relation
Sq2i+1Sqn +(Z (gz'--n-ll_—jzj Sqn+2i+1—qu:i) .

A generating set of relations is given by Massey products of certain
second-order relations. These Massey products will be computed now.
First consider the second order relation

2 —1—j 2p +2¢+1-2§ y
A ORI SENT e R

where
1 —
Toj+1 = sgi+1 'Sqn+2m (2711_—"2‘711) 8q2j+1+n msqm ,
—1—f —
. r»e = 8q217+1 8q2l1+1 + z p (g_l:sz) squ +2g+1-2j sqzj +1
an

g = 8¢°P* (S (Giilem) SQ2 11T 8g™) +

+3; (35,) sg?r a2t (3 (37 ) sq¥tin-mgqm) |

and denote the corresponding Massey product by M?:2.

Write M?2=q+b, where a is a sum of admissable monomials each
of excess less than or equal to n—1 and excbzn, then since 22=0 in
H*(E,),

Mra(z) = a(z) .
We can compute a by evaluating M?? in H¥*(K(Z,,n—1)). Let T,;,,, R»?
and @ be cochain operations such that VT, ;=1,,,, VR?»2=772 and
V@ =g, chosen as in Lemma 2.1. Let z,_, € C*»~Y(K(Z,,n— 1)) be the basic
cocycle. Then
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MPe(z, ) = s+t T2g41(Zn-1) + 2i (%211::.2_7') 8qPP 1Ty, () +
+ RP2sq™(Z, 1) + Q(Zn—1)
= 89" (Jicq 897102,y 802, 1) +

+2 (%111:725) sqPp+2a+1-%j (Zigj sg¥+i—iz, 8¢ 51;—1) .

Since M7:¢ is stable, this must be equal to

(5.1)

(0‘(271.—1))2 = qu+q+n(x(zn_1) ’

for some «e€d. (An alternate argument for this is that suspension
and reduced diagonal both vanish.)
Now we consider the second order relation

_1 y —_
G P2 Tog 4y + QPPN 1y, + D50 g (B ) SPREPHI D gy, sPilsqn 4 g
where

— on2i+1 n—1-k 2j+1-k
Top1 = SGTHSG™+ Xy (37310) SG™ 1K sgk

§PE = gqiP+25gPp+1 | gg2p+a+D ggp+l 1S ioq (g;i;‘j ) sq¥eP+a+1-gg2i+1 |

and
g = 87 +2 (T, (Gpition) sq+2a+1E sg¥)
+ sq2@+a+D) (3, g;i;fzk) sqn+ep+1-k sqk)
+ 2 i>a (’i;},}j ) 5q2@p+a+1-9) (zk (gﬁ;_l; ) sqn2itl-k sqk) ,
and denote the corresponding Massey product by NP2, Again we get
N»4(z, ) written as a sum of products of primary operations on z,_,,
but now dim N»9(z,_,) is odd so N?9(z,_,)=0. Hence N?9(z)=0. The

only thing missing is a determination of clsQ(z). This, however, is given
by a } Cartan formula (Lemma 2.1).

The results concerning the cohomology of E, are summarized in

THEOREM 5.2. As a module over the Steenrod algebra, H*(E,) is generated
by 2,B,(2),. . .,Byj41(2),. . ., Byyy(2), where By, is a secondary operation
associated with the relation

Sq¥+18g" + 3 (i) Sqr+ti+i-k Sgk .
The diagonal is given by
¥*(Byj41(2)) = Byjia(2) x 1+ (n—1—75) Sg¥(2) x Sg/(2) + 1 x By;11(2) -

4 generating set of relations is given by
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8q?*P+1 B, ,1(2) + 3 g;—II?Zj)qup+2q+l % Byj11(2)

= 8grratra(z) + (n—1—q) (Zrsp S¢2P 1% Sq¥(z) Sq* Sq¥(z)) +
+ Zj (;qajjz] —-1-3 (zkszwq—j Sq*?+2a+1-2i-k Sqi(z) Sq* Sqf(z)) s

Pp=2¢<n; o asin (5.1), and

804042 Bogoa(2) + SgH 40 By 11(2) + Sy (P5157) Sqer 49410 By, 1 (2)

= (n—1—q) rzep S¢*P+2* Sq%(z) Sq* Sq¥(z)) +
+ (n—1—D) (Drcp+q SEPHI* SqP(2) Sq* Sqr(2)) +
+ i (3317) (n—1=75) Cr<sprq-j SECP+E1-0-k Sqi(z) Sg* S¢¥(2)) ,

p<g<m.
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