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ON THE HOMOTOPY GROUPS OF COMPLEX
PROJECTIVE ALGEBRAIC MANIFOLDS

W. BARTH and M. E. LARSEN

0. Introduction.

In this note we study an algebraic manifold 4 embedded in some
complex-projective space P, of dimension 7, small compared with dim 4.
In [3] the first author gave a relation between the rational homology
H,(4,Q) of 4 and the dimension n. This relation provides intermediate
results between the well-known properties of hypersurfaces and the
elementary fact that A<P, is connected if dim,A4 =4n at all points
zxeA.

Here we want to generalize these intermediate results to homotopy
groups. The best generalization would be the

TreoREM. If A<P, is closed algebraic, nonsingular, of dimension a at
each of its points, and if 2a=n+s, then the relative homotopy groups
7wy(Pp, A) vanish for i=1,...,s8+1.

We do not know whether this theorem holds. Our paper contains
only the following two steps towards it:

TrrorREM 1. If AP, is as above, and if 2azn+1, then m,(A)=0.

TrrorEM I1. If ACP, is as above, and if 2a=n+s, then the relative
homotopy groups m,(P,,A) are finite for 1<¢=<s+1. In particular, the
groups my(4),. . .,m(4) are finite.

Theorem II is easily reduced to theorem I. Theorem I is proved
using Andreotti-Grauert [1] to extend sections in unramified coverings.

1. Preliminaries.

Here we are going to state our notational conventions, and to collect
the analytical tools we use.
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P, is the complex-projective space of dimension n. We put G:=
U(n+1), the unitary group, and G := SU(n+1), the special unitary
group. G and G* operate on P, by « — ox for z€P,, 0 € G. The letter
A will always denote a connected nonsingular closed algebraic subset of
P,, with dimension at least . We assume 2a =n+ 1. Later on we shall
use the maps

p: GxA—->P,, pg: GxA->0G, pu:GFxA-A4,

where pg and p, are projections and ¢ is the differentiable fiber bundle
defined by ¢(o,x)=ox.
We need some properties of tubular neighbourhoods:

(a) If B @G is an open subset containing 1 € @, then Bz is vpen for
all zeP,.

We choose B in the following way: Since G is compact, there exist
local differentiable coordinates I, for @, centered at 1, such that the
function 31?2 is invariant under all inner automorphisms of G. If c e R,
¢>0, is small enough, then the set B,={c €@ |Xl2(0)<c} has the
following properties:

i) B, is connected;

ii) oB,o =B, for all 0 € G .

These imply, just as in [2, lemmata 3, 4 and 5]: there exists some
b=0(c) such that for all x e P,

B,z = {y P, | dist(z,y) <b},

where dist denotes the usual Fubini-Study metric on P,. Thus, for
small ¢, the set B A4 is a tubular neighbourhood of 4. We fix one such
¢ once for all and put B :=B,, TA :=BA. Then obviously T¢4d=o¢TA
for o € G is a tubular neighbourhood of ¢4.

(b) For every o€ G the set p—1(4)n(Box A) is connected.

In order to prove (b) it is enough to show that ¢-1(4)n(B,o x 4) is
connected whenever Byc—<UB is an open connected subset. Now ¢=1(4)
is a closed submanifold of G'x 4, so ¢p~1(4)Nn(Byo x A) contains at most
finitely many connected components K,,...,K,. Since these K, are
compact, their images py(K;) < B,o are closed. Now we use

i) Ano’'A is never empty for ¢’ € G, since by assumption 2a=n+1;

i) An¢’A is always connected (cf. [3, prop. 4]).

Property i) shows Byo=Ul_,psK,. Since By is connected, pyK;n
DgK;+0 for some i+ if r=2. Then, for ¢’ € pgK;npgK;, the set

e A)n({o'}xA) 2 And' A
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must have more than one connected component. So =2 contradicts
ii).

(¢) Tubular neighbourhoods are pseudoconcave [2, Satz 3].
We need the following consequence [1, thm. 10] of this fact:
If F is a coherent analytic sheaf over P, , subject to the condition

dih ¥ > n—a,

then for every point g € 9(B;4), d <c, there exists an arbitrarily small
neighbourhood U cP,,, such that the restriction

HYU,F)— HYU n (B3 A),F)
is bijective.
Obviously, U,n(B;4) has to be connected if U, is the connected com-
ponent of ¢ in Un(support of F).

2. Reduction of theorem II to theorem I.

Here we assume m,(4)=0. There is the general Hurewicz homomor-
phism for relative groups:

ﬂi(Pn,A) ind Hz(Pn’A; Z) .

If 2a2n+s, then H¥P,,A; R)=0for 1 <i<s+1 [3, thm. IIT]. Therefore
the groups H,(P,, 4 ; Z) are finite in this range. From [4, thm. 21, p. 511]
we deduce, that the Hurewicz homomorphism is an isomorphism modulo
the class of abelian torsion groups. This implies that z;(P,,4) is finite
if 12i<s+1. Next we use the relative homotopy sequence

voo > (d) - 7y (P,) = 7(Pp, 4) > ...

which shows that the kernels of the homomorphisms m,(4) — 7,(P,),
1<i<s, are finite. It is well known that s,(P,) vanishes for 3 <7< 2n.
So theorem II is proved under the assumption x,(4)=0.

3. Reformulation of the problem.

By a covering over a complex space S we understand a map y: C - 8
of a topological space C' onto S such that for each se 8 there is a
neighbourhood U of s with y-1(U) a disjoint union of open sets on each
of which y is homeomorphic. An isomorphism between two coverings
y1:C; > 8 and y,: C;, — 8 is a bijective map A: C; - C, such that the
diagram
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ol_i_,oz

N

is commutative. We will denote this 4: (C;3C,)|S. A covering is called
trivial if it is isomorphic to some projection SxJ - 8. If f: T > Sis a
continuous map and y:C — § is a covering, then we denote by f*C
the fiber product of f and y, which is a covering over 7'.

For a connected complex space S, 7,(S)=0, if and only if every cover-
ing over § is trivial.

So to prove theorem I we have to show: every covering y,: C; - 4
is trivial. If any y, is fixed, we denote the covering idxy,: @ xC; —
GxA over GxA by y:C—>GxA. We denote by C, the covering
o~ 1*(,; over cd4. Because of

pl{o}x 4 = oop,y|{o}x 4,

(#*C, 3 O)|{o}x 4.

Let B and T'oA be as in (a) of section 1. Let tv: T'6A4 — ¢4 be a tubular
retraction. Then we have:

we have

Lemma 1. There exists a unique isomorphism (p*v*C,~ C)|Box A
extending the natural one over {o}x A.

Proor. Trivial. Existence, because tp induces the identity on the
fundamental groups. Uniqueness, because the base space is connected.

Now, let us look at C|¢~1(4)nG*x 4 and ¢*(C;). These are isomor-
phic if restricted to {1} x 4. If we can show that they are isomorphic
all over p—1(4)NG* x A, then we get theorem I. Because then, C restricted
to any fiber F=¢ (x)nG*x 4 for some x € A, and hence any z€P,,
is trivial.

From the fibering

FS @txd -5 P,
we get the exact sequence [4, thm. 10, p. 377]
ﬂl(F) ind ﬂl(Gl X A) - ﬂl(Pn) =0.

So a covering over G x 4 is trivial if the restriction to F is trivial. This

means that C is trivial, and therefore C;, with which we started, has to
be trivial.



92 W.BARTH AND M. E. LARSEN

4. An extension lemma.

Lemma 2. Let o € G be arbitrary and 8: D - AnToA a covering. Then
every continuous cross-section s: AncA — D can be uniquely extended to
a cross-section over AnTcA.

Proor. The uniqueness part is trivial, since by (b) of section 1 the
set ~1(4)n(Bo x A) and therefore also

P(p~Y(4)n (Box A)) = AngBoxA) = AnToA
is connected. We put

d := sup{c’ : there exists a cross-section s, over
A n (ByoA) extending s} ,

and have to show d=c.

i) d>0: By assumption, 6|s(4nod) is bijective. We cover s(Ano4)
by open sets U,< V, such that ¥, is path connected and

a) 8|V, is bijective;

b) if 6U;n6U;+0, then 6U,<dV;;

c) 6 AnuV,;)=s(4dncd);

d) U,ns(Anod)+9 for all 4.
Then 6 is bijective on U=UU,. Otherwise there would exist pe U,,
g € U; such that p+gq, but dp=0q. Because of a), we have i+j. Be-
cause of b), 6U;cdV;. So c) and d) show U;nV;+0, and this implies
U,cV;. Since 6|V, is bijective, we get p=gq.

ii) There is a cross-section S: An(BzoAd) - D extending s: All sets
AnByo A are connected, since ¢p~1(4)N (B0 x 4) is connected according
to (b) of section 1, and

o(¢p~(4) N (Byox A)) = Ang(Byox A) = An (Bysd).

So for ¢’ <d, the cross-section s, over AnNB,o A is uniquely determined
by s. Thus s,|Bgnocd=s, for ¢’ <c¢’. This means that the collection
{8s}¢<aq determines a cross-section S over An(B;oA).

iii) Denote by R the closure of S(AnByoA) in D. Then J|R is bi-
jective: Since § is a cross-section, & |I§ is bijective. If there are p,,p, € R,
P1=EDp,, With g=0(p,)=0(p,), then q e d(BzoAd). Now take an open
neighbourhood U,c A4 of ¢ as in (c) of section 1 using O, for F. This is
possible, since by assumption 4 is nonsingular and so

dihO, = dim4d =a > n—a.
We may assume

U,=0U, =6U, U;c D open,
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where p; € U, and 8| U, is bijective. We may further assume U,nU,=4.
So
S(U,nR) n8(U,nR) = 0,

since 8| R is bijective. Because of
SRNU = §(Rné—1U),

the sets B(Uinlé) are connected components of 8RN U, which cannot be
different in view of (c) of section 1. This contradicts p; = p,.

iv) In the same way as in i), we show: J is even bijective on an open
neighbourhood of R.

If d < ¢, this would contradict the choice of d. So d=c¢, and the lemma,
is proved.

5. The extension method.

Here we give a proposition, which is the heart of the proof of theorem I.

We want to extend isomorphisms between coverings. This becomes a
special case of extending sections: If y,: C;, - 8, ¢=1,2 are two coverings,
denote by Isom(C,,C,) the sheaf of germs of isomorphisms (C; % C,)| U,
where U <8 is open. Obviously, Isom(Cy,C,) is a covering of S, non-
empty if y, and y, have the same degree over 8.

ProrosiTioN. Let BS G be an open ball containing 1 as in section 1.
If we are given arbitrarily some ¢ € G and an isomorphism

ig: (C % g*Cy) lpHA) N (fo} x 4) ,
then there exists a unique isomorphism

L: (C % ¢*Cy)lp-4) n (Bo x 4)
extending ©,.

Proor. According to section 3, there exists a covering C, over T'¢4
and an isomorphism

J: (C 3 ¢*C)|Box 4.
Since ¢|{0o} x A is a homeomorphism, we obtain an isomorphism
hy: (C,30))|ANncd

with ¢*h =4,0J-1. Now h, forms a section over AncA in the covering
Isom(C,,C,) of AnTeA. According to (b) of section 1, AnT¢A is con-
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nected. Using lemma 2 we find that %, can be extended to a section H,
over all of AnToA in the covering Isom(C,,C;). This means that h,
extends to an isomorphism

H,: (C,%C)|AnToA.

We put I,=(¢p*H,)oJ|Box A. Obviously this is an isomorphism be-
tween C and ¢*C; over Box A extending i,. That I, is uniquely de-
termined by 4, follows from the connectedness of ¢=1(4)n(Box A).

6. End of proof.

Over 8 :=¢}(A4)n(G*x A) we have the two coverings C and ¢*C,.
The covering Isom (C,¢*C,) over S is a sheaf of sets, and we can form
the direct image sheaf F := (pg), Isom(C,p*C,) over GL. A germ in
E,, 0 € G, is represented by an isomorphism (C x ¢*(C,) over a neigh-
bourhood of {o}x 4.

By the proposition above, for any o € G%, the natural map

I'(Bo,E) ~ E,

is surjective. This means that the sheaf E is locally constant over G1.
Since " is simply connected # is constant.

The isomorphism (C = ¢*C,)|{1} x A represents (by the proposition)
a germ in #,. This germ can be extended to an element in I'(GY, E).
This means, the isomorphism can be extended to an isomorphism

(C3e*Cle(4)n (G x 4) .

Thus, theorem I is proved.

ADppED IN PROOF: Recently, A.Ogus proved by algebraic methods
theorem I for the profinite completion 7,(4) instead of 7,(4). (Thesis,
Harvard University, 1972).
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