ON THE HOMOTOPY GROUPS OF COMPLEX PROJECTIVE ALGEBRAIC MANIFOLDS

W. BARTH and M. E. LARSEN

0. Introduction.

In this note we study an algebraic manifold A embedded in some complex-projective space P_n of dimension n, small compared with $\dim A$. In [3] the first author gave a relation between the rational homology $H_*(A,\mathsf{Q})$ of A and the dimension n. This relation provides intermediate results between the well-known properties of hypersurfaces and the elementary fact that $A \subseteq \mathsf{P}_n$ is connected if $\dim_x A \ge \frac{1}{2}n$ at all points $x \in A$.

Here we want to generalize these intermediate results to homotopy groups. The best generalization would be the

THEOREM. If $A \subseteq P_n$ is closed algebraic, nonsingular, of dimension a at each of its points, and if $2a \ge n+s$, then the relative homotopy groups $\pi_i(P_n, A)$ vanish for $i = 1, \ldots, s+1$.

We do not know whether this theorem holds. Our paper contains only the following two steps towards it:

Theorem I. If $A \subseteq P_n$ is as above, and if $2a \ge n+1$, then $\pi_1(A) = 0$.

THEOREM II. If $A \subseteq P_n$ is as above, and if $2a \ge n+s$, then the relative homotopy groups $\pi_i(P_n, A)$ are finite for $1 \le i \le s+1$. In particular, the groups $\pi_3(A), \ldots, \pi_s(A)$ are finite.

Theorem II is easily reduced to theorem I. Theorem I is proved using Andreotti-Grauert [1] to extend sections in unramified coverings.

1. Preliminaries.

Here we are going to state our notational conventions, and to collect the analytical tools we use.

Received October 30, 1970.

 P_n is the complex-projective space of dimension n. We put G:=U(n+1), the unitary group, and $G^1:=SU(n+1)$, the special unitary group. G and G^1 operate on P_n by $x\to\sigma x$ for $x\in\mathsf{P}_n$, $\sigma\in G$. The letter A will always denote a connected nonsingular closed algebraic subset of P_n , with dimension at least a. We assume $2a\geq n+1$. Later on we shall use the maps

$$\varphi: G \times A \to P_n, \quad p_G: G \times A \to G, \quad p_A: G \times A \to A$$

where p_G and p_A are projections and φ is the differentiable fiber bundle defined by $\varphi(\sigma, x) = \sigma x$.

We need some properties of tubular neighbourhoods:

(a) If $B \subseteq G$ is an open subset containing $1 \in G$, then Bx is open for all $x \in P_n$.

We choose B in the following way: Since G is compact, there exist local differentiable coordinates l_i for G, centered at 1, such that the function $\sum l_i{}^2$ is invariant under all inner automorphisms of G. If $c \in \mathbb{R}$, c > 0, is small enough, then the set $B_c = \{\sigma \in G \mid \sum l_i{}^2(\sigma) < c\}$ has the following properties:

- i) B_c is connected;
- ii) $\sigma B_c \sigma^{-1} = B_c$ for all $\sigma \in G$.

These imply, just as in [2, lemmata 3, 4 and 5]: there exists some b=b(c) such that for all $x\in P_n$

$$B_c x = \{ y \in \mathsf{P}_n \mid \operatorname{dist}(x, y) < b \} ,$$

where dist denotes the usual Fubini-Study metric on P_n . Thus, for small c, the set B_cA is a tubular neighbourhood of A. We fix one such c once for all and put $B:=B_c$, TA:=BA. Then obviously $T\sigma A=\sigma TA$ for $\sigma\in G$ is a tubular neighbourhood of σA .

(b) For every $\sigma \in G$ the set $\varphi^{-1}(A) \cap (B\sigma \times A)$ is connected.

In order to prove (b) it is enough to show that $\varphi^{-1}(A) \cap (\overline{B}_0 \sigma \times A)$ is connected whenever $B_0 \subset\subset B$ is an open connected subset. Now $\varphi^{-1}(A)$ is a closed submanifold of $G \times A$, so $\varphi^{-1}(A) \cap (\overline{B}_0 \sigma \times A)$ contains at most finitely many connected components K_1, \ldots, K_r . Since these K_i are compact, their images $p_G(K_i) \subseteq \overline{B}_0 \sigma$ are closed. Now we use

- i) $A \cap \sigma' A$ is never empty for $\sigma' \in G$, since by assumption $2a \ge n+1$;
- ii) $A \cap \sigma' A$ is always connected (cf. [3, prop. 4]).

Property i) shows $\bar{B}_0 \sigma = \bigcup_{i=1}^r p_G K_i$. Since $\bar{B}_0 \sigma$ is connected, $p_G K_i \cap p_G K_j \neq \emptyset$ for some $i \neq j$ if $r \geq 2$. Then, for $\sigma' \in p_G K_i \cap p_G K_j$, the set

$$\varphi^{-1}(A) \cap (\{\sigma'\} \times A) \cong A \cap \sigma' A$$

must have more than one connected component. So $r \ge 2$ contradicts ii).

(c) Tubular neighbourhoods are pseudoconcave [2, Satz 3]. We need the following consequence [1, thm. 10] of this fact: If F is a coherent analytic sheaf over P_n , subject to the condition

$$dih F > n - a$$

then for every point $q \in \partial(B_d A)$, d < c, there exists an arbitrarily small neighbourhood $U \subseteq P_n$, such that the restriction

$$H^0(U,F) \to H^0\big(U \cap (B_dA),F\big)$$

is bijective.

Obviously, $U_q \cap (B_d A)$ has to be connected if U_q is the connected component of q in $U \cap (\text{support of } F)$.

2. Reduction of theorem II to theorem I.

Here we assume $\pi_1(A) = 0$. There is the general Hurewicz homomorphism for relative groups:

$$\pi_i(\mathsf{P}_n,A) o H_i(\mathsf{P}_n,A\,;\,\mathsf{Z})$$
 .

If $2a \ge n+s$, then $H^i(\mathsf{P}_n,A\,;\,\mathsf{R})=0$ for $1 \le i \le s+1$ [3, thm. III]. Therefore the groups $H_i(\mathsf{P}_n,A\,;\,\mathsf{Z})$ are finite in this range. From [4, thm. 21, p. 511] we deduce, that the Hurewicz homomorphism is an isomorphism modulo the class of abelian torsion groups. This implies that $\pi_i(\mathsf{P}_n,A)$ is finite if $1 \le i \le s+1$. Next we use the relative homotopy sequence

$$\ldots \to \pi_i(A) \to \pi_i(\mathsf{P}_n) \to \pi_i(\mathsf{P}_n,A) \to \ldots$$

which shows that the kernels of the homomorphisms $\pi_i(A) \to \pi_i(P_n)$, $1 \le i \le s$, are finite. It is well known that $\pi_i(P_n)$ vanishes for $3 \le i \le 2n$. So theorem II is proved under the assumption $\pi_1(A) = 0$.

3. Reformulation of the problem.

By a covering over a complex space S we understand a map $\gamma\colon C\to S$ of a topological space C onto S such that for each $s\in S$ there is a neighbourhood U of s with $\gamma^{-1}(U)$ a disjoint union of open sets on each of which γ is homeomorphic. An isomorphism between two coverings $\gamma_1\colon C_1\to S$ and $\gamma_2\colon C_2\to S$ is a bijective map $h\colon C_1\to C_2$ such that the diagram

is commutative. We will denote this $h: (C_1 \cong C_2) \mid S$. A covering is called trivial if it is isomorphic to some projection $S \times J \to S$. If $f: T \to S$ is a continuous map and $\gamma: C \to S$ is a covering, then we denote by f^*C the fiber product of f and γ , which is a covering over T.

For a connected complex space S, $\pi_1(S) = 0$, if and only if every covering over S is trivial.

So to prove theorem I we have to show: every covering $\gamma_1\colon C_1\to A$ is trivial. If any γ_1 is fixed, we denote the covering $\mathrm{id}\times\gamma_1\colon G\times C_1\to G\times A$ over $G\times A$ by $\gamma\colon C\to G\times A$. We denote by C_σ the covering $\sigma^{-1*}C_1$ over σA . Because of

$$\varphi \,|\, \{\sigma\} \!\times\! A \,=\, \sigma \!\circ\! p_{A} \,|\, \{\sigma\} \!\times\! A \,\,,$$

we have

$$(\varphi^* C_{\sigma} \cong C) | \{\sigma\} \times A$$
.

Let B and $T \sigma A$ be as in (a) of section 1. Let $\tau: T \sigma A \to \sigma A$ be a tubular retraction. Then we have:

Lemma 1. There exists a unique isomorphism $(\varphi^*\tau^*C_{\sigma} \hookrightarrow C)|B\sigma \times A$ extending the natural one over $\{\sigma\} \times A$.

Proof. Trivial. Existence, because $\tau \varphi$ induces the identity on the fundamental groups. Uniqueness, because the base space is connected.

Now, let us look at $C | \varphi^{-1}(A) \cap G^1 \times A$ and $\varphi^*(C_1)$. These are isomorphic if restricted to $\{1\} \times A$. If we can show that they are isomorphic all over $\varphi^{-1}(A) \cap G^1 \times A$, then we get theorem I. Because then, C restricted to any fiber $F = \varphi^{-1}(x) \cap G^1 \times A$ for some $x \in A$, and hence any $x \in P_n$, is trivial.

From the fibering

$$F \stackrel{\subset}{\longrightarrow} G^1 \times A \stackrel{\sigma}{\longrightarrow} \mathsf{P}_n$$

we get the exact sequence [4, thm. 10, p. 377]

$$\pi_1(F) \to \pi_1(G^1 \times A) \to \pi_1(\mathsf{P}_n) \ = \ 0 \ .$$

So a covering over $G^1 \times A$ is trivial if the restriction to F is trivial. This means that C is trivial, and therefore C_1 , with which we started, has to be trivial.

4. An extension lemma.

LEMMA 2. Let $\sigma \in G$ be arbitrary and $\delta \colon D \to A \cap T\sigma A$ a covering. Then every continuous cross-section $s \colon A \cap \sigma A \to D$ can be uniquely extended to a cross-section over $A \cap T\sigma A$.

PROOF. The uniqueness part is trivial, since by (b) of section 1 the set $\varphi^{-1}(A) \cap (B\sigma \times A)$ and therefore also

$$\varphi(\varphi^{-1}(A) \cap (B\sigma \times A)) = A \cap \varphi(B\sigma \times A) = A \cap T\sigma A$$

is connected. We put

 $d := \sup\{c' : \text{there exists a cross-section } s_{c'} \text{ over } s_{c'} \text{$

$$A \cap (B_{\sigma'}\sigma A)$$
 extending s ,

and have to show d = c.

- i) d > 0: By assumption, $\delta | s(A \cap \sigma A)$ is bijective. We cover $s(A \cap \sigma A)$ by open sets $U_i \subseteq V_i$ such that V_i is path connected and
 - a) $\delta | V_i$ is bijective;
 - b) if $\delta U_i \cap \delta U_j \neq \emptyset$, then $\delta U_i \subseteq \delta V_j$;
 - c) $\delta^{-1}A \cap (\cup V_i) = s(A \cap \sigma A)$;
 - d) $U_i \cap s(A \cap \sigma A) \neq \emptyset$ for all i.

Then δ is bijective on $U = \bigcup U_i$. Otherwise there would exist $p \in U_i$, $q \in U_j$ such that $p \neq q$, but $\delta p = \delta q$. Because of a), we have $i \neq j$. Because of b), $\delta U_i \subseteq \delta V_j$. So c) and d) show $U_i \cap V_j \neq 0$, and this implies $U_i \subseteq V_j$. Since $\delta \mid V_j$ is bijective, we get p = q.

ii) There is a cross-section $S: A \cap (B_d \sigma A) \to D$ extending s: All sets $A \cap B_{c'} \sigma A$ are connected, since $\varphi^{-1}(A) \cap (B_{c'} \sigma \times A)$ is connected according to (b) of section 1, and

$$\varphi(\varphi^{-1}(A) \cap (B_{c'}\sigma \times A)) = A \cap \varphi(B_{c'}\sigma \times A) = A \cap (B_{c'}\sigma A).$$

So for c' < d, the cross-section $s_{c'}$ over $A \cap B_{c'} \sigma A$ is uniquely determined by s. Thus $s_{c'} | B_{c''} \sigma A = s_{c''}$ for c'' < c'. This means that the collection $\{s_{c'}\}_{c' < d}$ determines a cross-section S over $A \cap (B_d \sigma A)$.

iii) Denote by R the closure of $S(A \cap B_d \sigma A)$ in D. Then $\delta | R$ is bijective: Since S is a cross-section, $\delta | \mathring{R}$ is bijective. If there are $p_1, p_2 \in R$, $p_1 \neq p_2$, with $q = \delta(p_1) = \delta(p_2)$, then $q \in \partial(B_d \sigma A)$. Now take an open neighbourhood $U_q \subseteq A$ of q as in (c) of section 1 using O_A for F. This is possible, since by assumption A is nonsingular and so

$$\dim O_A = \dim A = a > n - a .$$

We may assume

$$U_{q} = \delta U_{1} = \delta U_{2}, \quad U_{i} \subseteq D \text{ open },$$

where $p_i \in U_i$ and $\delta \mid U_i$ is bijective. We may further assume $U_1 \cap U_2 = \emptyset$. So

$$\delta(U_1 \cap \mathring{R}) \cap \delta(U_2 \cap \mathring{R}) = \emptyset ,$$

since $\delta \mid \mathring{R}$ is bijective. Because of

$$\delta \mathring{R} \cap U = \delta (\mathring{R} \cap \delta^{-1} U) ,$$

the sets $\delta(U_i \cap \mathring{R})$ are connected components of $\delta \mathring{R} \cap U$, which cannot be different in view of (c) of section 1. This contradicts $p_1 \neq p_2$.

iv) In the same way as in i), we show: δ is even bijective on an open neighbourhood of R.

If d < c, this would contradict the choice of d. So d = c, and the lemma is proved.

5. The extension method.

Here we give a proposition, which is the heart of the proof of theorem I. We want to extend isomorphisms between coverings. This becomes a special case of extending sections: If $\gamma_i \colon C_i \to S$, i=1,2 are two coverings, denote by $\mathrm{Isom}\,(C_1,C_2)$ the sheaf of germs of isomorphisms $(C_1 \simeq C_2) \mid U$, where $U \subseteq S$ is open. Obviously, $\mathrm{Isom}\,(C_1,C_2)$ is a covering of S, non-empty if γ_1 and γ_2 have the same degree over S.

Proposition. Let $B \subseteq G$ be an open ball containing 1 as in section 1. If we are given arbitrarily some $\sigma \in G$ and an isomorphism

$$i_{\sigma} \colon (C \hookrightarrow \varphi^* C_1) | \varphi^{-1}(A) \cap (\{\sigma\} \times A)$$
 ,

then there exists a unique isomorphism

$$I_{\sigma} \colon \left(C \, \leftrightarrows \, \varphi^* \, C_1 \right) | \, \varphi^{-1}(A) \cap \left(B\sigma \times A \right)$$

extending i_{σ} .

Proof. According to section 3, there exists a covering C_{σ} over $T \sigma A$ and an isomorphism

$$J: (C \simeq \varphi^*C_\sigma) | B\sigma \times A$$
.

Since $\varphi | \{\sigma\} \times A$ is a homeomorphism, we obtain an isomorphism

$$h_{\sigma}: (C_{\sigma} \cong C_1)|A \cap \sigma A$$

with $\varphi^* h_{\sigma} = i_{\sigma} \circ J^{-1}$. Now h_{σ} forms a section over $A \cap \sigma A$ in the covering Isom (C_{σ}, C_1) of $A \cap T \sigma A$. According to (b) of section 1, $A \cap T \sigma A$ is con-

nected. Using lemma 2 we find that h_{σ} can be extended to a section H_{σ} over all of $A \cap T \sigma A$ in the covering Isom (C_{σ}, C_1) . This means that h_{σ} extends to an isomorphism

$$H_{\sigma}: (C_{\sigma} \cong C_1) | A \cap T \sigma A$$
.

We put $I_{\sigma} = (\varphi^* H_{\sigma}) \circ J \mid B\sigma \times A$. Obviously this is an isomorphism between C and $\varphi^* C_1$ over $B\sigma \times A$ extending i_{σ} . That I_{σ} is uniquely determined by i_{σ} follows from the connectedness of $\varphi^{-1}(A) \cap (B\sigma \times A)$.

6. End of proof.

Over $S:=\varphi^{-1}(A)\cap (G^1\times A)$ we have the two coverings C and φ^*C_1 . The covering $\mathrm{Isom}\,(C,\varphi^*C_1)$ over S is a sheaf of sets, and we can form the direct image sheaf $E:=(p_G)_*$ $\mathrm{Isom}\,(C,\varphi^*C_1)$ over G^1 . A germ in E_σ , $\sigma\in G^1$, is represented by an isomorphism $(C \hookrightarrow \varphi^*C_1)$ over a neighbourhood of $\{\sigma\}\times A$.

By the proposition above, for any $\sigma \in G^1$, the natural map

$$\Gamma(B\sigma, E) \to E_{\sigma}$$

is surjective. This means that the sheaf E is locally constant over G^1 . Since G^1 is simply connected E is constant.

The isomorphism $(C \cong \varphi^*C_1)|\{1\} \times A$ represents (by the proposition) a germ in E_1 . This germ can be extended to an element in $\Gamma(G^1, E)$. This means, the isomorphism can be extended to an isomorphism

$$(C \cong \varphi^*C_1) \, | \, \varphi^{-1}(A) \cap (G^1 \times A) \; .$$

Thus, theorem I is proved.

ADDED IN PROOF: Recently, A. Ogus proved by algebraic methods theorem I for the profinite completion $\hat{\pi}_1(A)$ instead of $\pi_1(A)$. (Thesis, Harvard University, 1972).

REFERENCES

- A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
- W. Barth, Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven Raum, Math. Ann. 187 (1970), 150–162.
- W. Barth, Transplanting cohomology classes in complex-projective space, Amer. J. Math. 92 (1970), 951-967.
- 4. E. H. Spanier, Algebraic topology, McGraw-Hill Book Company, New York, 1966.

UNIVERSITY OF MÜNSTER, GERMANY UNIVERSITY OF COPENHAGEN, DENMARK