ON THE HOMOTOPY GROUPS OF COMPLEX
PROJECTIVE ALGEBRAIC MANIFOLDS

W. BARTH and M. E. LARSEN

0. Introduction.

In this note we study an algebraic manifold A embedded in some complex-projective space \mathbb{P}_n of dimension n, small compared with $\dim A$. In [3] the first author gave a relation between the rational homology $H_{\ast}(A, \mathbb{Q})$ of A and the dimension n. This relation provides intermediate results between the well-known properties of hypersurfaces and the elementary fact that $A \subseteq \mathbb{P}_n$ is connected if $\dim_x A \geq \frac{1}{4}n$ at all points $x \in A$.

Here we want to generalize these intermediate results to homotopy groups. The best generalization would be the

Theorem. If $A \subseteq \mathbb{P}_n$ is closed algebraic, nonsingular, of dimension a at each of its points, and if $2a \geq n + s$, then the relative homotopy groups $\pi_i(\mathbb{P}_n \setminus A)$ vanish for $i = 1, \ldots, s + 1$.

We do not know whether this theorem holds. Our paper contains only the following two steps towards it:

Theorem I. If $A \subseteq \mathbb{P}_n$ is as above, and if $2a \geq n + 1$, then $\pi_1(A) = 0$.

Theorem II. If $A \subseteq \mathbb{P}_n$ is as above, and if $2a \geq n + s$, then the relative homotopy groups $\pi_i(\mathbb{P}_n \setminus A)$ are finite for $1 \leq i \leq s + 1$. In particular, the groups $\pi_3(A), \ldots, \pi_s(A)$ are finite.

Theorem II is easily reduced to theorem I. Theorem I is proved using Andreotti–Grauert [1] to extend sections in unramified coverings.

1. Preliminaries.

Here we are going to state our notational conventions, and to collect the analytical tools we use.

Received October 30, 1970.
P_n is the complex-projective space of dimension n. We put G := U(n+1), the unitary group, and G^1 := SU(n+1), the special unitary group. G and G^1 operate on P_n by \(x \rightarrow \sigma x \) for \(x \in P_n \), \(\sigma \in G \). The letter A will always denote a connected nonsingular closed algebraic subset of \(P_n \), with dimension at least a. We assume \(2a \geq n+1 \). Later on we shall use the maps

\[
\varphi: G \times A \to P_n, \quad p_G: G \times A \to G, \quad p_A: G \times A \to A,
\]

where \(p_G \) and \(p_A \) are projections and \(\varphi \) is the differentiable fiber bundle defined by \(\varphi(\sigma, x) = \sigma x \).

We need some properties of tubular neighbourhoods:

(a) If \(B \subseteq G \) is an open subset containing \(1 \in G \), then \(Bx \) is open for all \(x \in P_n \).

We choose \(B \) in the following way: Since \(G \) is compact, there exist local differentiable coordinates \(l_i \) for \(G \), centered at \(1 \), such that the function \(\Sigma l_i^2 \) is invariant under all inner automorphisms of \(G \). If \(c \in \mathbb{R} \), \(c > 0 \), is small enough, then the set \(B_c = \{ \sigma \in G \mid \Sigma l_i^2(\sigma) < c \} \) has the following properties:

i) \(B_c \) is connected;

ii) \(\sigma B_c \sigma^{-1} = B_c \) for all \(\sigma \in G \).

These imply, just as in [2, lemmata 3, 4 and 5]: there exists some \(b = b(c) \) such that for all \(x \in P_n \)

\[
B_c x = \{ y \in P_n \mid \text{dist}(x, y) < b \},
\]

where dist denotes the usual Fubini-Study metric on \(P_n \). Thus, for small \(c \), the set \(B_c A \) is a tubular neighbourhood of \(A \). We fix one such \(c \) once for all and put \(B := B_c \), \(TA := BA \). Then obviously \(T \sigma A = \sigma TA \) for \(\sigma \in G \) is a tubular neighbourhood of \(\sigma A \).

(b) For every \(\sigma \in G \) the set \(\varphi^{-1}(A) \cap (B \sigma \times A) \) is connected.

In order to prove (b) it is enough to show that \(\varphi^{-1}(A) \cap (\overline{B}_o \sigma \times A) \) is connected whenever \(B_o \subseteq B \) is an open connected subset. Now \(\varphi^{-1}(A) \) is a closed submanifold of \(G \times A \), so \(\varphi^{-1}(A) \cap (\overline{B}_o \sigma \times A) \) contains at most finitely many connected components \(K_1, \ldots, K_r \). Since these \(K_i \) are compact, their images \(p_G(K_i) \subseteq \overline{B}_o \sigma \) are closed. Now we use

i) \(A \cap \sigma'A \) is never empty for \(\sigma' \in G \), since by assumption \(2a \geq n+1 \);

ii) \(A \cap \sigma'A \) is always connected (cf. [3, prop. 4]).

Property i) shows \(\overline{B}_o \sigma = \bigcup_{i=1}^r p_G K_i \). Since \(\overline{B}_o \sigma \) is connected, \(p_G K_i \cap p_G K_j \not= \emptyset \) for some \(i \not= j \) if \(r \geq 2 \). Then, for \(\sigma' \in p_G K_i \cap p_G K_j \), the set

\[
\varphi^{-1}(A) \cap (\{ \sigma' \} \times A) \cong A \cap \sigma'A
\]
must have more than one connected component. So \(r \geq 2 \) contradicts ii).

(c) Tubular neighbourhoods are pseudoconcave [2, Satz 3].

We need the following consequence [1, thm. 10] of this fact:

If \(F \) is a coherent analytic sheaf over \(P_n \), subject to the condition

\[
dih F > n - a,
\]

then for every point \(q \in \partial(B_d A) \), \(d < c \), there exists an arbitrarily small neighbourhood \(U \subseteq P_n \), such that the restriction

\[
H^0(U, F) \rightarrow H^0(U \cap (B_d A), F)
\]

is bijective.

Obviously, \(U_q \cap (B_d A) \) has to be connected if \(U_q \) is the connected component of \(q \) in \(U \cap (\text{support of } F) \).

2. Reduction of theorem II to theorem I.

Here we assume \(\pi_1(A) = 0 \). There is the general Hurewicz homomorphism for relative groups:

\[
\pi_i(P_n, A) \rightarrow H_i(P_n, A; Z).
\]

If \(2a \geq n + s \), then \(H^i(P_n, A; R) = 0 \) for \(1 \leq i \leq s + 1 \) [3, thm. III]. Therefore the groups \(H_i(P_n, A; Z) \) are finite in this range. From [4, thm. 21, p. 511] we deduce, that the Hurewicz homomorphism is an isomorphism modulo the class of abelian torsion groups. This implies that \(\pi_i(P_n, A) \) is finite if \(1 \leq i \leq s + 1 \). Next we use the relative homotopy sequence

\[
\ldots \rightarrow \pi_i(A) \rightarrow \pi_i(P_n) \rightarrow \pi_i(P_n, A) \rightarrow \ldots
\]

which shows that the kernels of the homomorphisms \(\pi_i(A) \rightarrow \pi_i(P_n) \), \(1 \leq i \leq s \), are finite. It is well known that \(\pi_i(P_n) \) vanishes for \(3 \leq i \leq 2n \). So theorem II is proved under the assumption \(\pi_1(A) = 0 \).

3. Reformulation of the problem.

By a covering over a complex space \(S \) we understand a map \(\gamma: C \rightarrow S \) of a topological space \(C \) onto \(S \) such that for each \(s \in S \) there is a neighbourhood \(U \) of \(s \) with \(\gamma^{-1}(U) \) a disjoint union of open sets on each of which \(\gamma \) is homeomorphic. An isomorphism between two coverings \(\gamma_1: C_1 \rightarrow S \) and \(\gamma_2: C_2 \rightarrow S \) is a bijective map \(h: C_1 \rightarrow C_2 \) such that the diagram
is commutative. We will denote this $h: (C_1 \simeq C_2) \mid S$. A covering is called trivial if it is isomorphic to some projection $S \times J \rightarrow S$. If $f: T \rightarrow S$ is a continuous map and $\gamma: C \rightarrow S$ is a covering, then we denote by $f^{\ast}C$ the fiber product of f and γ, which is a covering over T.

For a connected complex space S, $\pi_1(S) = 0$, if and only if every covering over S is trivial.

So to prove theorem I we have to show: every covering $\gamma_1: C_1 \rightarrow A$ is trivial. If any γ_1 is fixed, we denote the covering $\text{id} \times \gamma_1: G \times C_1 \rightarrow G \times A$ over $G \times A$ by $\gamma: C \rightarrow G \times A$. We denote by C_σ the covering $\sigma^{-1}C_1$ over σA. Because of

$$\varphi \mid \{\sigma\} \times A = \sigma \circ p_\sigma \mid \{\sigma\} \times A,$$

we have

$$(\varphi^{\ast} C_\sigma \simeq C) \mid \{\sigma\} \times A.$$

Let B and $T \sigma A$ be as in (a) of section 1. Let $\tau: T \sigma A \rightarrow \sigma A$ be a tubular retraction. Then we have:

Lemma 1. There exists a unique isomorphism $(\varphi^{\ast} \tau^{\ast} C_\sigma \simeq C) \mid B \sigma \times A$ extending the natural one over $\{\sigma\} \times A$.

Proof. Trivial. Existence, because $\tau \varphi$ induces the identity on the fundamental groups. Uniqueness, because the base space is connected.

Now, let us look at $C \mid \varphi^{-1}(A) \cap G^1 \times A$ and $\varphi^{\ast}(C_1)$. These are isomorphic if restricted to $\{1\} \times A$. If we can show that they are isomorphic all over $\varphi^{-1}(A) \cap G^1 \times A$, then we get theorem I. Because then, C restricted to any fiber $F = \varphi^{-1}(x) \cap G^1 \times A$ for some $x \in A$, and hence any $x \in P_n$, is trivial.

From the fibering

$$F \hookrightarrow G^1 \times A \rightarrow P_n,$$

we get the exact sequence [4, thm. 10, p. 377]

$$\pi_1(F) \rightarrow \pi_1(G^1 \times A) \rightarrow \pi_1(P_n) = 0.$$

So a covering over $G^1 \times A$ is trivial if the restriction to F is trivial. This means that C is trivial, and therefore C_1, with which we started, has to be trivial.
4. An extension lemma.

Lemma 2. Let $\sigma \in G$ be arbitrary and $\delta : D \to A \cap T \sigma A$ a covering. Then every continuous cross-section $s : A \cap \sigma A \to D$ can be uniquely extended to a cross-section over $A \cap T \sigma A$.

Proof. The uniqueness part is trivial, since by (b) of section 1 the set $\varphi^{-1}(A) \cap (B \sigma \times A)$ and therefore also

$$\varphi(\varphi^{-1}(A) \cap (B \sigma \times A)) = A \cap \varphi(B \sigma \times A) = A \cap T \sigma A$$

is connected. We put

$$d := \sup \{c' : \text{there exists a cross-section } s_{c'} \text{ over } \ A \cap (B_{c'} \sigma A) \text{ extending } s \} ,$$

and have to show $d = c$.

i) $d > 0$: By assumption, $\delta | s(A \cap \sigma A)$ is bijective. We cover $s(A \cap \sigma A)$ by open sets $U_i \subseteq V_i$ such that V_i is path connected and

a) $\delta | V_i$ is bijective;

b) if $\delta U_i \cap \delta U_j \neq \emptyset$, then $\delta U_i \subseteq \delta V_j$;

c) $\delta^{-1} A \cap (U \setminus V_i) = s(A \cap \sigma A)$;

d) $U_i \cap s(A \cap \sigma A) \neq \emptyset$ for all i.

Then δ is bijective on $U = \bigcup U_i$. Otherwise there would exist $p \in U_i, q \in U_j$ such that $p \neq q$, but $\delta p = \delta q$. Because of a), we have $i \neq j$. Because of b), $\delta U_i \subseteq \delta V_j$. So c) and d) show $U_i \cap V_j \neq 0$, and this implies $U_i \subseteq V_j$. Since $\delta | V_j$ is bijective, we get $p = q$.

ii) There is a cross-section $S : A \cap (B_\sigma \sigma A) \to D$ extending s: All sets $A \cap B_{c'} \sigma A$ are connected, since $\varphi^{-1}(A) \cap (B_{c'} \sigma \times A)$ is connected according to (b) of section 1, and

$$\varphi(\varphi^{-1}(A) \cap (B_{c'} \sigma \times A)) = A \cap \varphi(B_{c'} \sigma \times A) = A \cap (B_{c'} \sigma A) .$$

So for $c' < d$, the cross-section $s_{c'}$ over $A \cap B_{c'} \sigma A$ is uniquely determined by s. Thus $s_{c'} | B_{c'} \sigma A = s_{c''}$ for $c'' < c'$. This means that the collection $\{s_{c'} c' < d\}$ determines a cross-section S over $A \cap (B_\sigma \sigma A)$.

iii) Denote by R the closure of $S(A \cap B_\sigma \sigma A)$ in D. Then $\delta | R$ is bijective: Since S is a cross-section, $\delta | R$ is bijective. If there are $p_1, p_2 \in R$, $p_1 \neq p_2$, with $q = \delta(p_1) = \delta(p_2)$, then $q \in \delta(B \sigma \sigma A)$. Now take an open neighbourhood $U_q \subseteq A$ of q as in (c) of section 1 using $O_\mathcal{A}$ for F. This is possible, since by assumption A is nonsingular and so

$$\text{dih} O_\mathcal{A} = \dim A = a > n - a .$$

We may assume

$$U_q = \delta U_1 = \delta U_2, \quad U_i \subseteq D \text{ open} ,$$
where \(p_i \in U_i \) and \(\delta | U_i \) is bijective. We may further assume \(U_1 \cap U_2 = \emptyset \).

So

\[
\delta(U_1 \cap \hat{R}) \cap \delta(U_2 \cap \hat{R}) = \emptyset ,
\]

since \(\delta | \hat{R} \) is bijective. Because of

\[
\delta \hat{R} \cap U = \delta(\hat{R} \cap \delta^{-1} U) ,
\]

the sets \(\delta(U_i \cap \hat{R}) \) are connected components of \(\delta \hat{R} \cap U \), which cannot be different in view of (c) of section 1. This contradicts \(p_1 \neq p_2 \).

iv) In the same way as in i), we show: \(\delta \) is even bijective on an open neighbourhood of \(R \).

If \(d < c \), this would contradict the choice of \(d \). So \(d = c \), and the lemma is proved.

5. The extension method.

Here we give a proposition, which is the heart of the proof of theorem I.

We want to extend isomorphisms between coverings. This becomes a special case of extending sections: If \(\gamma_i : C_i \to S \), \(i = 1, 2 \) are two coverings, denote by \(\text{Isom}(C_1, C_2) \) the sheaf of germs of isomorphisms \((C_1 \cong C_2) | U \), where \(U \subseteq S \) is open. Obviously, \(\text{Isom}(C_1, C_2) \) is a covering of \(S \), non-empty if \(\gamma_1 \) and \(\gamma_2 \) have the same degree over \(S \).

Proposition. Let \(B \subseteq G \) be an open ball containing \(1 \) as in section 1. If we are given arbitrarily some \(\sigma \in G \) and an isomorphism

\[
i_{\sigma} : (C \cong \varphi^*C_1) | \varphi^{-1}(A) \cap (\{\sigma\} \times A) ,
\]

then there exists a unique isomorphism

\[
I_{\sigma} : (C \cong \varphi^*C_1) | \varphi^{-1}(A) \cap (B\sigma \times A)
\]

extending \(i_{\sigma} \).

Proof. According to section 3, there exists a covering \(C_\sigma \) over \(T\sigma A \) and an isomorphism

\[
J : (C \cong \varphi^*C_\sigma) | B\sigma \times A .
\]

Since \(\varphi | \{\sigma\} \times A \) is a homeomorphism, we obtain an isomorphism

\[
h_\sigma : (C_\sigma \cong C_1) | A \cap \sigma A
\]

with \(\varphi^* h_\sigma = i_{\sigma} \circ J^{-1} \). Now \(h_\sigma \) forms a section over \(A \cap \sigma A \) in the covering \(\text{Isom}(C_\sigma, C_1) \) of \(A \cap T\sigma A \). According to (b) of section 1, \(A \cap T\sigma A \) is con-
nected. Using lemma 2 we find that h_{σ} can be extended to a section H_{σ} over all of $A \cap T\sigma A$ in the covering Isom(C_{σ}, C_1). This means that h_{σ} extends to an isomorphism

$$H_{\sigma} \colon (C_{\sigma} \simeq C_1)|A \cap T\sigma A.$$

We put $I_{\sigma} = (\varphi^*H_{\sigma}) \circ J|B\sigma \times A$. Obviously this is an isomorphism between C and φ^*C_1 over $B\sigma \times A$ extending i_{σ}. That I_{σ} is uniquely determined by i_{σ} follows from the connectedness of $\varphi^{-1}(A) \cap (B\sigma \times A)$.

Over $S := \varphi^{-1}(A) \cap (G^1 \times A)$ we have the two coverings C and φ^*C_1. The covering Isom(C, φ^*C_1) over S is a sheaf of sets, and we can form the direct image sheaf $E := (p_G)_* \text{Isom}(C, \varphi^*C_1)$ over G^1. A germ in E_{σ}, $\sigma \in G^1$, is represented by an isomorphism $(C \simeq \varphi^*C_1)$ over a neighbourhood of $(\{\sigma\} \times A)$.

By the proposition above, for any $\sigma \in G^1$, the natural map

$$\Gamma(B\sigma, E) \to E_{\sigma}$$

is surjective. This means that the sheaf E is locally constant over G^1. Since G^1 is simply connected E is constant.

The isomorphism $(C \simeq \varphi^*C_1)|\{1\} \times A$ represents (by the proposition) a germ in E_1. This germ can be extended to an element in $\Gamma(G^1, E)$. This means, the isomorphism can be extended to an isomorphism

$$(C \simeq \varphi^*C_1)|\varphi^{-1}(A) \cap (G^1 \times A).$$

Thus, theorem I is proved.

ADDED IN PROOF: Recently, A. Ogus proved by algebraic methods theorem I for the profinite completion $\hat{\pi}_1(A)$ instead of $\pi_1(A)$. (Thesis, Harvard University, 1972).

REFERENCES