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ON THE HOMOTOPY TYPE OF CERTAIN SPACES
OF DIFFERENTIABLE MAPS

VAGN LUNDSGAARD HANSEN

0. Introduction.

In this paper we shall establish certain relations in the homotopy
theory of the classical function spaces in differential topology. If M
and X are smooth manifolds with M compact the spaces we have in
mind are C"(M,X), C7(M,X; k) and Emb7(M,X), which denote respec-
tively the space of differentiable maps of class C" with Cr-topology,
2=<r=oco and its subspaces of k-mersions and embeddings.

Our main motivation to look for such relations is that comparatively
little is known about the homotopy theory of the space Emb7(M,X)
and much more is known about that of C"(M,X), since the latter space
by a theorem of Palais [9, Theorem 13.14] is homotopy equivalent to
the space of continuous maps C°(M,X), which in many special cases
has been studied extensively by topologists. To indicate how little is
known about the homotopy theory of the space Embr(M,X), it suffices
to mention that it is an open question when it has finitely generated
homotopy groups.

The relations in homotopy theory that we shall establish are expressed
in terms of homotopy properties of the inclusion maps

i) O"(M,X; k) - C"(M,X),

ii) Emb"(M,X) - O"(M,X) .

After some preliminary material in sections 1 and 2 we show in Theo-
rem 3.1 that the map i) is a ¢(n,m,k)-equivalence and that ii) is an
(m--2n —1)-equivalence. Here n and m denote respectively the dimen-
sion of M and X and

qgn,m,k) = m—2k+ (n—k)(m—k).

This indicates that the maps ought to be homotopy equivalences, when
X is an infinite dimensional smooth manifold. In Theorem 3.2 we show

that this is indeed the case for 2 <r<oo. For r=oc0 we need to assume
that C°(M,X) is an ANR.
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If we consider an expanding sequence of finite dimensional smooth
manifolds of increasing dimension, say

Xpy € Xpg1 € ... XLt

then it is an easy consequence of Theorem 3.1 that the following induced
maps between the naturally induced direct limit spaces

i) O"(M,X; k) > C"(M,X) ,

ii) Emb"(M,X),, - C"(M,X),
are homotopy equivalences. Theorems concerning such limit spaces are
contained in section 4.

Finally, in section 5 we prove that the functors C7(M,-; k) and
Embr(M, ) commute with smooth homotopy direct limits, thereby prov-
ing a conjecture in [4].

1. Definitions and preliminaries.

Throughout this paper M shall denote a finite dimensional, paracom-
pact (usually compact) smooth manifold with or without boundary,
and X shall denote a paracompact (equivalent metrizable) smooth mani-
fold modelled on a Banach space of finite or infinite dimension. The
manifold X is always without boundary. The infinite dimensional
Banach spaces are sometimes supposed to be C*-smooth, that is, they
admit partitions of unity of class C* subordinated to any open covering.
It is easy to see that X then also admits partitions of unity of class C*.

For 0=r=< o we denote by C7(M,X) the space of differentiable maps
of class Cr from M into X. We equip C"(M,X) with the C"-topology,
which is a metrizable topology. Assume now that M is compact. Then
it is known that C7(M,X) for 0 =r < oo is a metrizable smooth manifold
modelled on Banach spaces. If X is either finite dimensional or modelled
on an infinite dimensional C*-smooth Banach space, then it is also
known that C®(M,X) is a metrizable manifold modelled on Fréchet
spaces. For proofs of these statements see Krikorian [6] or Penot
[10]. Therefore C*(M,X) is an ANR (absolute neighbourhood retract)
for the class of metrizable spaces for all 0 =r<co and for r=oo if the
model for X is C*°-smooth. See Palais [8, Theorem 5] for this conclusion.

(It is unknown whether C*°(M,X) is a manifold without any assump-
tions on X or as here on the model for X.)

For 0<k=<min{dimM,dimX} and 1=5r=<o, C"(M,X; k) shall de-
note the open subspace of k-mersions in C7(M,X). We recall that
feCr(M,X) is a k-mersion if it has rank>k everywhere. Thus
Cr(M,X; 0) is just the space C7(M,X) itself, and if dim M <dim X then
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Cr(M,X; dmM) = Imm"(M,X)

is the space of immersions. Again provided 1=<r =< we have also the
open subspace of embeddings Emb™(M,X) in C7(M,X). If C"(M,X) is
an ANR then the spaces C"(M,X; k) and Emb7(M,X) are also ANR’s
since they are open subspaces of an ANR.

For convenience we make also the following almost standard

DeriviTiON. Let X and Y be non-empty topological spaces, and let
f:X - Y be a continuous map. Let also ¢=0 be an integer.

We call f a 0-equivalence if the induced map between path components
fy 1 75(X) > 7o(Y) is onto.

For g=1 we call f a g-equivalence if fy : m(X) — mo(Y) is a bijection
and if for any base point 2 € X the induced map f, : 7,(X,%) = 7,( Y, f(x))
is an epimorphism for 0 £4 <¢q and a monomorphism for 0<¢<g—1.

Finally, we call f a weak homotopy equivalence if it is a g-equivalence
for all ¢=0.

In later sections we shall use extensively that a weak homotopy
equivalence f: X — Y automatically is a homotopy equivalence if X and
Y are ANR’s. This is a theorem of J. H. C. Whitehead (see Palais [8]).

2. A transversality theorem.

In section 3 we shall need a corollary to a parametrized version of
Thom’s tranversality theorem. Before stating the theorem we explain
some terminology.

Let @, M and X be finite dimensional smooth manifolds. Denote by
J*(M,X) the space of s-jets of maps from M into X. For fe C"(Q x M,X)
and 0<s=<r we define the partial s-jet of f after M as the map

st(f) : QXM*JS(M:X) ’

which maps (¢,2) € @ x M into the usual s-jet of f,: M -~ X at z e M,
that is j,,%(f)(g, ) =j*(f,)(®)-

In the following when we talk about approximations of maps in
C"(@ x M, X), we will always mean approximations with respect to a
metric defining the C"-topology on C7(Q x M, X).

The transversality theorem we need now reads as follows:

TarorEM 2.1. Let Q, M and X be finite dimensional smooth mani-
Jolds, and let A<Q and K <M be closed subsets. Let also W<J (M, X)
be a smooth submanifold with closed image and suppose that

r > max{dim (¢ x M)—codim (W), s}.
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Then any map fe C"(Q x M,X) such that j,;,5(f) is transversal to W on
A x K can be arbitrarily close approximated by a map g€ C7(Q x M,X)
such that g|Ax K=f| A x K and such that j,,%(g) ts transversal to W on
all of @ x M.

If we put @ equal to a point in this theorem we get of course the
classical Thom transversality theorem. The proof of the version with a
parameter space @ stated here can be modelled on the proof of the spe-
cial case given in for example Morlet [7]. The theorem is also a conse-
quence of the general transversality theorem of Abraham (see for ex-
ample Abraham and Robbin [1]). As usual the restriction on the degree
of differentiability r is caused by the application of Sard’s theorem.

The theorem has this useful

COROLLARY 2.2. Let @, M™ and X™ be finite dimensional smooth mani-
Sfolds and let A <Q and K <= M be closed subsets. Suppose also that 2<r < oo,
0=k=<min{n,m} and 0<i<m—2k+ (n—k)(m—k).

Then any map f € C*(Q x M, X) such that f, has rank =k on K for g€ A
can be arbitrarily close approximated by a map g€ C(Q x M,X) such
that g| A x K=f| A x K and such that g, has rank Zk on M for all q € Q.

Proor. Let W(p)<JYM,X) be the subset of 1-jets of rank p. Then
W(p) is a submanifold with closed image of codimension c¢(p)=
(n—p)m—p) in JYM,X). Observe now that a map ge C"(Q x M,X)
will satisfy the condition rank(g,)=% on M for all ¢ € @ if and only if
Jut(g) avoids W=W(©O)u...uW(k—1). If ¢(p)—(¢+n)=1 for all 0Zp
<k—1 then it is clear that j,,(g) will avoid W if and only if j,(g) is
transversal to W(p) for 0Sp=<k—1. Since ¥ <min{n,m} it follows from
the formula ¢(p) = (n — p)(m —p) that ¢(p) = c(k—1)forall0Sp=<k—1and
therefore that

c(P)—@+n) 2 ck—1)—(@+n) = (n—k+1)m—Fk+1)—(¢+n).
Therefore ¢(p)—(2+n)=1 for all 0sp=<k—1 if and only if
1t S m—=2k+(n—-k)(m—k).

Remark also that r=2 is the degree of differentiability we need in this
case in order to apply Theorem 2.1 since (i+n)—c(p)< —1 for 0Sp=
k—-1.

With these observations at our disposal the corollary is an immediate
consequence of Theorem 2.1.
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3. Homotopy properties of the inclusion maps of C"(M, X; k) and
Emb"(M, X) into C"(M, X).

The purpose of this section is to provide proofs of the following theo-
rems announced in a slightly different form as Lemma 2.2 and Lemma, 2.3
in [5].

For any integers n, m and k we put g¢(n,m,k)=m—2k+ (n—k)(m—k).

THEOREM 3.1. Let M™ and X™ be finite dimensional smooth manifolds
with M compact, and let k and r be integers satisfying 0=k <min{n,m}
and 2=5r =00,

i) If 0=q(n,m,k), then C"(M,X; k) =0 and the tnclusion map

Or(M,X; k) - C*(M,X)

s a q(n,m,k)-equivalence.
ii) If 0=m—2n—1, then Emb”(M,X) +0 and the inclusion map

Embr (M, X) - O"(M, X)

s an (m— 2n— 1)-equivalence.

TrEOREM 3.2. Let M™ be a compact smooth manifold and let X be a
smooth manifold modelled on an infinite dimensional Banach space E.
Let also k and r be integers satisfying 0Sk=<n and 2=r < o,

Then CT(M,X; k) and Emb™(M,X) are both non-empty. Furthermore,
if we for r=oco assume that C*°(M,X) is an ANR then the following inclu-
ston maps are homotopy equivalences:

i) O"(M,X; k) - C"(M,X)

ii) Embr(M,X) - C"(M,X) .

REMARK 3.3. C®(M,X) is an ANR if F is C®-smooth and is expected
to be so in general. (Again, observe that it is unknown, whether
C*(M,X) is a metrizable manifold, in particular an ANR, without any
assumptions on X.)

A path in C7(M,X) is also called a regular homotopy. If we put k=n
in Theorem 3.1 i) it follows therefore that any differentiable map is
regular homotopic to an immersion when m—2n =0, and that any two
immersions which are regular homotopic are regular homotopic through
immersions when m —2n—12 0. Similar results holds by Theorem 3.1 ii)
for embeddings when m —2n—120 and m—2n—22=0 respectively. This
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is of course the classical results of Whitney. Theorem 3.1 can therefore
be seen as a generalization of Whitney’s results.

REMARK 3.4. For 7= oo the result in Theorem 3.1 ii) follows also from
a stronger theorem of Dax [2], which takes into account connectedness
properties of M and X in the spirit of Haefliger [3].

Proor oF THEOREM 3.1. Let @' be a compact smooth manifold with
the compact submanifold 4 =@? and the base point ¢, A <@

i) It is well-known (and follows in fact immediately from Corollary
2.2) that C"(M,X; k) +0 when ¢(n,m,k)=0. Suppose now that 07 =
g(n,m,k) and let f,e C"(M,X; k) be an arbitrary k-mersion. Consider
then the homotopy class of a map

f:(@%,4,9) - (C"(M, X),C"(M, X;; k).f,)
with the associated map
F:Qix M» > Xm

We can assume without loss of generality that f is of class Cr. Since
f(A)=Cr(M,X; k), the map fq=f(q) has of course rank =k on M for
all g € A. By Corollary 2.2, f can then be approximated arbitrarily close
in the Cr-topology by a map §:@Qix M" - X™ such that §|4 x M =
flA x M and such that g, has rank =%k on M for all ¢ € Q. Using a
tubular neighbourhood for X in a Banach space £ we can therefore
also homotope f into a map 9 as above by connecting them linearly in
the tubular neighbourhood and then projecting onto X. This homotopy
will now induce a homotopy of f into a map g : @* -~ C"(M, X ; k) which
is constantly equal to f| 4 over A. Hence f represents relatively the zero
class. Consider now the induced map

”i(or(M’X; k):fo) - ni(CT(M»X)’fo) .

If we put @*=_S? and A.=gq, in the analysis above, we conclude that this
map is epic for 0=i=q(n,m,k). If we put @Qi+'=Di+1 and 4=8% it
follows from the analogous analysis with dim@=¢+1 that this map is
monic for ¢+1=2q(n,m,k). This is, however, exactly what we had to
prove.

ii) It is again well-known that Emb"(M,X)+0 when m—2n—120.
Suppose now that 0<is<m—2n—1 and let f, e Emb"(M,X) be an ar-
bitrary embedding. Consider then the homotopy class of a map

f:(@44,4,) ~ (C"(M, X), Emb™ (M, X)), f,)
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with the associated map
F:Qix Mn» > Xm

which we again without loss of generality can assume to be of class Cr.
Since 0Z2¢=m—2n—1=<m—2n we can as in the proof of i) homotope f
into a map ¢ : @* - Imm"(M,X) fixing everything on 4. We observe
now that Emb7 (M, X) in this case is equal to the space of 1-1 immersions,
since M is compact. It is easy to see that g(q)=g, is 1-1 for all ¢q € @*
if and only if the map defined by the diagram

Dgx 1y xly

Qi x M x M QP x QFx M x M

1o x Twist x 1,

X
Qianinan_g___g_, Xmy Xm

maps @ x (M*x M\ 4,,) into X™x Xm\AX. This last condition is a
transversality condition when ¢+ 2n <m — 1 or equivalently ¢ <m —2n—1.
A transversality argument will therefore allow an arbitraryly close ap-
proximation of § with a map & such that 2|4 x M =§|A x M and such
that ﬁq is 1-1 for all g € @* provided of course 0 <4 <m — 2n— 1. Proceeding
as in the proof of i) we can therefore homotope g into a map
h: Q' - Emb"(M,X) such that the homotopy is constantly equal to
g|A=f|A on A. f represents therefore relatively the zero class.

The proof of ii) is now finished in analogy with the proof of i).

Proor or THEOREM 3.2. A chart on X provides a diffeomorphism
0:U — E from an open set U <X into the model Banach space E. Let
E=F@R™ be a splitting of E into a Banach space F' and a copy of eu-
clidean m-space R™ with m = 2n+ 1. Choose now an arbitrary embedding
Ja: M™ - R™ and an arbitrary differentiable map f, : M® - F. Then

f=0"(fixf): M->X
is an embedding. Therefore Emb”(M,X) +@ and hence also
Cr(M,X;k) 0.

Let now again Q¢ be a compact smooth manifold with the compact
submanifold 4 <@* and the base point ¢, € 4 <@,

i) Let f, € Cr(M,X; k) be an arbitrary k-mersion and consider for any
©20 the homotopy class of a map

Math. Scand. 30 — 6
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f: (Qi:A’QO) g (Or(M,X),O'(M,X; k)’fo)

with the associated map
f:QixMr > X,

We can again assume without loss of generality that f is of class C.
We want to change f by a homotopy constant on A x M to obtain a
map which is a k-mersion for each fixed ¢ € . We do that in a sequence
of steps, in each step only making changes on a piece of the domain
mapped into a chart on the target and keeping fixed what has been
obtained after the previous steps. To make this precise we choose open
coverings of @ by charts, say {V;} and {U;} with ¢=1,...,l, such that
V,<V,<U,. Similarly, we choose for each i=1,...,l, open coverings of
M by charts, say {V,} and {U;’} with j=1,...,n; such that

Vi< VicUi.

Furthermore, all these coverings shall be chosen such that f(U,x U )
is contained in a chart on X. Consider now U, x U,. Since f maps this
subset into a chart on X, f| U, x U,! corresponds by a diffeomorphism
to a map

U,xUr~>E = FOR™,

where we choose m sufficiently large in the splitting £=F®R™ of E.
By the technique behind Corollary 2.2 we can alter the component into
R™ of this map and thereby construct a homotopy (with support in
U, x U,2) from f to a map

fl:QxM X,

such that the homotopy is constant on 4 x M and such that ( fll)q has
rank >k on V,! for each g AuV,. Consider then f,! on U, x U,.. By
the same method as before we can change f,! inside U, x U,! and thereby
obtain a map

fQxM-~X,

such that f,! is homotopic to f;! through a homotopy constant on
AxMuV,x 7! and such that (f,), has rank =% on V,!u¥,! for each
ge AuV,. We construct now by induction a sequence of maps

f! fll: fal"": f'l.l, f12’~ < i,’-n, 5,,,

such that the map fA'nc for each ¢=1,...,l is homotopic to f through a
homotopy constant on 4 xM and such that ( ff,‘)q has rank >k on
M=Up, Vi for each g AUV,...u¥;. Since Q=U._, V,, the map
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2.
§g=JlQxM->X

will therefore induce a map g :@Q — C"(M,X; k) homotopic to f by a
homotopy constant on A. This shows that f relatively represents the
zero class.

Proceeding now as in the proof of Theorem 3.1 i) we conclude that the
induced map

7 O7(M, X5 k). fo) = 7 O"(M, X)), fo)
is a bijection for all ¢=0. Since f, was chosen arbitrarily the map
C'(M,X; k) - C"(M,X)

is therefore a weak homotopy equivalence, and hence a homotopy
equivalence, since the spaces involved are ANR’s. This completes the
proof of i).

ii) The proof of ii) is carried through in a manner similar to that of
Theorem 3.1 ii) by reducing transversality questions to finite dimensional
known ones as above.

4, Limit spaces of k-mersions and embeddings.

We recall from [4] that a smooth closed expanding system (X, f,n,)
is a system indexed over the integers n=n, of smooth manifolds X,
and smooth embeddings f, ,.1:X, - X,,; with closed images. As
usual we will abbreviate closed expanding system to CES. The limit
space for an expanding system is the direct limit X =lim {X,.f, n+1}
(weak topology). If M™ is a compact smooth manifold then we get for
each 0 <7< oo an induced CES (C"(M,X),f,,n,). Similarly, if the dimen-
sion of the manifolds X, is increasing, we get for each 1 <7 =< o and each
0<k=n the induced CES’s (C"(M,X; k),fx,n,) and (Emb"(M,X),f,n,).
Observe, that the lower spaces in these last mentioned induced CES’s
may be the empty set. We shall be particularly interested in the limit
spaces for these induced CES’s, that is

OT(M=X)oo = I_ir_,n,,{or(M’Xn): (fn,n+1)*}
C"(M,X; k), = lim, {C"(M,X.,; k), (fr,ms1)x}
Embr(MsX)oo = !i_I_,nn{Embr(M’Xn)’(fn,n+1)*} ¢
If X is a finite dimensional smooth manifold then we can construct a

smooth CES (X x R,f,0) by taking X x R* as the nth manifold in the
system and the embedding f, ,41: X X R®* > X x R*+! induced by the
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standard inclusion R®»<R"+! as the nth embedding in the system. We
will call (X x R, f,0) the smooth CES generated by X.

DerIiNiTION 4.1. Let M™ and X™ be finite dimensional smooth mani-
folds with M™ compact. For each 0<k=<n and each 1 <7< we will
call the limit spaces

Crr(M,X; k) = C"(M,XxR; k)y
and
Emb ;" (M,X) = Emb"(M,X x R),,

respectively the snduced limsit space of k-mersions and embeddings.

The following theorem is the main theorem in this section:

THEOREM 4.2. Let M™ be a compact smooth manifold and let (X,f,n,)
be a smooth CES of finite dimensional manifolds of increasing dimension.
Suppose also that 0Sk=<n and 25 r L oo,

Then the following limits of inclusion maps are homotopy equivalences:

i) C"(M,X; k), > C" (M, X, ,

ii) Embr(M,X), - C"(M,X),, .

Proor. Since the homotopy functor commutes with the direct limit
functor it follows immediately from Theorem 3.1 that both the maps
are weak homotopy equivalences. From [4, Corollary 6.4] we know that
all the spaces involved have the homotopy type of ANR’s. But then
the maps are homotopy equivalences by Whitehead’s theorem.

From [4] we extract

THEOREM 4.3. Let M be a compact smooth manifold and let (X,f,n,)
be a smooth CES of finite dimensional manifolds.

Then the following maps are homotopy equivalences:

i) The limit of natural maps

Cr(M,X)o, > CUM, X)q,
Jor each 1 7 =< oo,
ii) The map given by the universal property of direct limits

%M, X),, -~ C(M,X,) .

Proor. For the proof of i) see [4, section 8, proof of Theorem 5.5 for
a CES].
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Since both the spaces in ii) have the homotopy type of ANR’s (see
[4, Theorem 1.1 and Corollary 6.4]), ii) follows from [4, Lemma 7.1 ii)]
by Whitehead’s Theorem.

Combining Theorem 4.2 and Theorem 4.3 we get

CorOLLARY 4.4. Let M™ be a compact smooth manifold and let
(X,f,my) be a smooth CES of finite dimensional manifolds of increasing
dimension. Let also 0Lk<n and 2L r £ co.

Then all the limit spaces C"(M,X; k)., and Emb" (M ,X),, have the same
homotopy type as C(M,X,).

In particular we get

CoroLLARY 4.5. Let M™ and X™ be finite dimensional smooth manifolds
with M™ compact. Let also 0Sk=<n and 2=5r= oo,

Then oll the induced limit spaces Cr"(M,X ; k) and Emb;"(M,X) have
the same homotopy type as CO(M,X).

Proor. Observe that (X xR), =X xR, and that R =R®=lim R"
is contractible. But then (X x R),, is homotopy equivalent to X X and
hence the corollary follows from Corollary 4.4.

5. A theorem on smooth homotopy direct limits.

The purpose of this section is to prove Theorem 5.2 below, which we
conjectured in [4, Remark 9.3]. A special case of Theorem 5.1 was also
part of Theorem 2.1 in [5].

We recall from [4] that the smooth manifold X is a smooth HDL
(homotopy direct limit) of the smooth CES (X, f,n,) with respect to the
system of smooth maps (g,7¢) = {g,}nzn,, if €ach g, : X, - X is a smooth
map such that g,=g,.,10fy ns1 for all n=ny, and such that the map
9 : X, > X induced by the universal property of direct limits is a
homotopy equivalence. Smooth HDL’s are of course special examples
of (continuous) HDL’s.

TrrorEM 5.1. Let (X,f,m) be a smooth CES of finite dimensional
manifolds of increasing dimension and let X be a metrizable smooth mani-
fold modelled on an infinite dimensional C®-smooth Banach space. Suppose
also that X is a smooth HDL of (X, f,n,) with respect to the system of smooth
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embeddings (g,ny). Finally, let M™ be an arbitrary compact smooth mani-
Jold and let 0<k=n and 2=r= .

Then CT(M,X; k) and Emb(M,X) are HDL’s of the corresponding
induced CES’s (C"(M,X; k),fs,no) and (Emb"(M,X),fy,n,) with respect
to the induced systems of continuous embeddings (gy,n,).

For 2<r< oo the induced limits will actually be smooth.

Proor. Consider the following commutative diagrams of natural
maps:

O X )y — DX, On(ML X5 )

l

OT(M:X)oo — OT(M)X)
and
g*oo
Emb"(M,X),, ———— Emb" (M, X)
C'(M,X), ocr(M,X) .

The vertical maps are homotopy equivalences by Theorem 3.2 and
Theorem 4.2, The bottom horizontal map is a homotopy equivalence
by [4, Theorem 5.5]. Then g,., must be a homotopy equivalence. This
is exactly what we should prove.
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