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ON A FORMULA FOR HAAR MEASURE
IN COMPACT GROUPS

HENRY W.DAVIS

Let @ be a compact abelian group, H a locally compact abelian group
and ¢: H - ( a continuous homomorphism such that ¢(H) is dense in G.
Let u,» denote Haar measures on G, I, respectively. Hewitt and Ross
[7, 26.17] have shown that if {H,}5_, is a “Bohr sequence” in H and U

n=1

is open in G with w(U)=u(T), then

1
* U) = lim, o=~ [ xyopdr.
( ) /4( ) M, s v(Hn)H” Xuop av

where y is the indicator of U. They give several applications concern-
ing equidistributions. We point out that the theorem extends to arbi-
trary compact groups @ and arbitrary “Bohr nets” in H. Often the
limit (*) is uniform with respect to translation in H. We specify many
of the corresponding U’s. These sets form a base for the topology of &
and any measurable set may be approximated by such a U. Examples
are given. From these ideas we obtain an extension to groups, and a
strengthening, of a classical theorem due to Besicovitch and Bohr con-
cerning the almost periodicity of the integral translation numbers of an
almost periodic function. As another application we give a new charac-
terization of the Weyl almost periodic functions.

Let us make some notational remarks. If H is a locally compact
group (=LC group), «(H) denotes the set of continuous Bohr-von Neu-
mann 4P functions on H. We use the term ‘“Bohr net” as in [4], [5]:
Let (D, >) be a directed set and for each d € D let H,; be a Borel set
in H. Let v; be a totally finite non-zero Borel measure on H;. @®=
(Hg,vz,deD, >) is called a Bokr net in H if for every f e a(H)

1
limgep ——— [ fdvs = Mf .
va(H ) Hy

Here Mf is the mean value of f. If (D, > ) is the set of all positive integers
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with natural order we say @ is a Bohr sequence. If each v, is restriction
of left Haar measure to U, we say @ is homogeneous. Examples of Bohr
nets are given in [4]. All L.C groups have (many) Bohr nets.

Let v denote left Haar measure on H. By L, ,(H) we denote the
set of complex-valued Borel measurable functions f on H such that
Jz|fldv < oo for all compact sets Ec H. If fe L, ,,(H) we write

Myf = limg p,——

d<Hd) f J

whenever this exists. Also define

T = flo = limsupeep— f 1 dvg.
Molf| = nmhﬁdepmi 1 dva.

w w 3 1
@ = > — deD x,yeH N v d-
M| = IfI¥ = limoupaep S0P, yor Hf lofy| &

Here ,f,(t)=f(xty) for all te H. The Besicovitch and Weyl almost
periodic functions on H are obtained by closing «(H) in L, y,,(H) via
the norms |||y, ||-|l&, respectively. The corresponding spaces are de-
denoted By(H) and W4(H). See [4], [5] for further discussion of these
spaces. For Borel sets E<H we write my(E)=|xzlle- By C(H) we
denote the set of continuous complex-valued functions on H. The
identity element of a group is denoted e.

THEOREM 1. Let G be a compact group, H an LC group and ¢: H - G
a continuous homomorphism such that ¢(H) is dense in G. Let u denote
Haar measure tn G and let ®=(Hzvgz,deD, =) be a Bokr net in H. Let
U, F be, respectively, open and closed sets in G such that U<F and u(U)=
uw(F). Then

. 1
(*) p(U) = limg p——nr f‘l’U°‘P dvg .
va(Hg) Hy
U may be replaced by F in (*). Also yyop, xgop € By(H).
Proor. (*) is proven as in 26.17 of [7]. To show, for example, that

1#o® € By(H), take g, € C(Q) such that y,<g,,,<¢, and [g,du - u(F)
as n - oo, Then g,0p € o(H) and
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lgne0@ —xroPllo = Molgnop—xro¢]
S Mo(gnop) — Mo(xrop)
= [g.du—u(F)—>0 asn-—>ow.
If U,F satisfy the hypothesis of theorem 1 and z,y € H, then U'=
¢(x) Up(y), F'=g@(x) Fp(y) also satisfy the hypothesis of theorem 1. As

w(U)=pu(U), w(F')=pu(F) and as x,y € H are arbitrary we get that under
the hypothesis of theorem 1

1
(1 W) = lmgep s [ slagony
Hg

for any z,y € H. However this limit may not be uniform in z,y.

NotaTioN. In the terminology of theorem 1, let &, denote the Borel
sets U<@ such that (}) holds for every x,y € H. Let &, be the sets
U € &, such that (1) holds uniformly in x,y € H.

Theorems 2 and 4, below, indicate that &, and &, are plentiful.

THEOREM 2. Assume the notation of theorem 1. Take fe C(G) and
y€G. For all but a countable set of n> 0 the sets

{ze@: |f@)-f@)l<n}, {weG:|fl@)-fy)l=n}

are in &,.

Proor. Letting U,,F, be the two sets above, we apply theorem 1.
F, ~ U, < {wel@:|f(@)-f)l=n} = 4,.
p(4,) =0 for all but a countable set of >0 because the 4, are pairwise

disjoint and u(G) <oo. For these #, U, F, € &,.

Norarriow. For fe C(G), n> 0 define D, (f)={xeG : ||f;—fllo<n} and
E.(f)=¢~YD,(f)). Here |||, denotes the supremum norm and ¢ is as
in theorem 1.

The theorems below are also true if we had defined D,(f) to be

{wel: | fo—flo<m},
{wel : |lof = flloo <m}

{ze@: lof —fllo =7} -

THEOREM 3. Assume the hypothesis of theorem 1. Let M be a locally
compact subgroup of H with Bohr net ¥. Let u, denote Haar measure on
9(M)-. For fe C(Q) and 7> 0 define

or
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= E(f) = E(f)nM .

There is a set Ty(f) containing all but a countable set of the positive num-
bers such that for all n € Ty(f)

(1) (D, (F)ng(M)-) = my(E,)
and

(2) 18, € W) .
Furthermore, for all n € Ty,(f)

(3) limew, ﬂ+QETM(f)m9’(E7)+Q) = mW(En) .
Finally,

Tu(f) = {n>0: m({zep(M)~: [Ifo—fllo=n})=0} .

Proor. (1) is proven by applying theorem 1 and the methods of
theorem 2. Note that, since f is uniformly continuous on @, ||f,—fll.
is a continuous function of # € ¢. By the methods of theorem 2 T',,(f),
defined as indicated above, contains all but a countable set of the posi-
tive numbers. For 5 e Ty, (f) we apply theorem 1 letting (M)~ play
the role of G and F=D,(f)ne(M)-. This yields (1) along with the fact
that y p, € B, (M).

(3) fo]lows from (1) since EM VE, and p, is continuous.

We next show that for n € Ty(f)

(4) ”ZE,,Hg < my(B,) ,
from which it follows that
(5) gl = molE,) .

Take n € Ty(f) and arbitrary ¢>0. By (1) and (3) we may take o> 0
such that n+ 20 € T'4,(f) and

(6) mW(E,ﬁ.gQ) = ’mw(En)+s .

Since D,(f) is a neighborhood of e in G and ¢(J) is compact, there exist
Wyye o oy Wy, Wy'y. .., wy," € M such that

Write ¥=(V,4,leL, >). By the remark following theorem 1, we may
take I, € L such that

1 ——
(7) ER_V_J .f “’"(XEnne)widl' S Moyllipiee) +e
Vi
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for all 1>, and all 1<i<m, 1<j<n. Take arbitrary z,y e M. For
some p,q, then, x=w,w, y=vw, where u,v e E,. Forl>1,

1 1 -
Z(Vﬁ i,[ ”(Xf«'q)a: dll = m fJ; wq,(”(xﬁ'l))wp dl‘

=

1
| Az d
Al( Vl) f’[ wq (ZE,,.,.gQ)wp z‘l

IIA

mw(Eﬂ+2q)+8, by (7)
= mW(En)+2s, by (6) .

As z,y € M are arbitrary we get that for all I>1,

1 —
SUPz, et 77 IJ;m(XE,,)y dly = my(H,) + 2,

whence
Ixg, ¥ = my(B,)+26 .

As £> 0 is arbitrary, (4), and, hence, (5) follow.
We now show that (2) holds. Take n € Ty(f). As

m({rep()~: |Ifs—fllo=n}) = 0
and as p, is regular, there exist f, € C(g(M)-) such that

0= fn = fn+1 = XD,,(f)nqp(IIrI)-
and

[fadis > m(DF)npd1)).

Let g, =¢/M. Then f,op; € x(M). Also

. 1
HXE',, _fno(pl”'?” = hmsupleL Supw,ueM“"_“ f [ax(x.ﬁ,,)y— z(fn°¢1)y] dll
WV )

. . 1
= I!xmlllf — liminf; 7 inf, , oy 3_1(775 fz(fn°¢’1)y ah
Vi

= my(E,) ~ M (frop1) ,

by (5) and the fact that the mean value of a Bohr-Von Neumann 4P
function is obtained via a Bohr net uniformly with respect to transla-
tion (see proof of 2.1 in [3]). Thus by (1)
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I, ~Fao@il S m(DAHINPI)) = [ frdiy >0 a5 m > oo

This proves the theorem.
It is useful to point out the following.

ProposiTiON. Let @ =(Hgvz,deD, =) be a Bohr net in the locally com-
pact group H. Let fe W4(H). Then

1
M,f = lim,, ——j d
d>f ded(Hd)Hda:fy a
uniformly in x,y € H.

Proor. M,f exists, as is pointed out in [4]. For & € L, ;,.(H) write

1, loc

1
hy = —— .
wal) = H{ by

If h ex(H),
wy(zh,) - Mh as d gets large in D ,

uniformly in x,y € H by the proof of 2.1 in [3]. Take ¢>0 and h € x(H)
such that ||f—k||¥ <e. Then

|Mof—Mh| < |If-hl7 < e.
Take d, € D such that
de(mhy)_MhI <é& wdlx(h_f)yl <é
for all d>d,, z,y € H. Then for d>d,, z,yc H
[walafy) — Mof| S Walolh—F)yl +|walshy) — Mh|+ | Mh— Mof| < 3¢,
proving the proposition.
CororrarY. If fe C(G) and n € Ty(f), then D,(f) € &;.

Proor. Apply (1), (2) of theorem 3 with M =H to the above proposi-
tion. ‘

The following shows that the members of &, are plentiful. Let 4
denote symmetric difference.

THEOREM 4. Assume the hypothesis of theorem 1. Then &, contains a
closed (and an open) base for the topology of G. If A <G is Haar measurable
and ¢ > 0, then there exists K € &, such that u(AAE)>¢. E may be taken to
be esther open or closed.
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Proor. To show that &; contains a base for the topology of G it
suffices to show that it contains a local base at e because &, is closed
under translation by members of ¢(H) and ¢(H)-=@G. If W is an arbi-
trary neighborhood of e and fe C(@) is chosen so that f=1 on G~ W,
f(@)<=[0,1], and f(e)=0, then

e € {z€@: |fo—flow<n} = Dy(f) = W

for all 0<n<1. It has been shown that for most such # D,(f) € &, and
by a similar argument the same is true for {xe@: ||f,—f|lo <7n}. These
sets are respectively closed and open. Thus &, contains the required
local base.

To prove the last assertion note that since x is regular it suffices to
prove the following: For every closed F <@ and open U<@ with F< U
there exists a closed (open) set E € &, such that F<E < U. We give the
proof for the case of a closed set E. The open case is handled by con-
sidering sets of the form {xe@ :||f,—fll, <7} instead of the sets D,(f).
As each D,(f) is a neighborhood of e, as the translates of the D, (f)’s
by elements of ¢(H) are a base for the topology of G, and as F is com-
pact, there exists xy,...,x, € H, f;,...,f, € C(G), 9y,...,5,>0 such that
7€ Ty(f;), 12i<n, and

F cFE < U, where E = U <P(xi)Dn,-(fi) .
=1

E is closed and, since 7, € T'y(f;) for each ¢, u(E ~ E® =0, because

bd(E) < 91 bd[@(z) Da,(f)]

and each of the summands has y-measure zero due to the way 7';,(f;)
is defined. By theorem 1, u(E)=m4(p~Y(E)). Hence, to show that E € &,
it suffices to show that x, iz € Wo(H) by the proposition. As
X B £ € W4(H) for each 4, it suffices to show the following:

If y4,€ Wo(H), @ = 1,2, then x4, 4, € Wo(H) .

Now W,(H) is a vector space closed under the formation of absolute
values, since if fe Wo(H) and ||f—g,/l& - 0 with g, € «(H), then

11— 1918 S If-galld = 0.
As

Kaguag = $(Xayt Xty Xty — Xa5l) 5

it follows that 5, w4y € Wo(H) when g, does, t=1,2. This proves the
theorem.
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CoroLLARY. The sets of the form D,(f), where f e C(G) and 5 € Tgx(f),
are a local base for the neighborhood system of e. &, contains all finite
unions of the translates of these sets by elements in @(H) as well as the
symmetric difference of two such translates.

ExampLEes. a) Let G be an arbitrary compact group with Haar meas-
ure u. Let H=G@ with the discrete topology and let ¢ be the identity
map. Let D be the set of all ordered pairs ({«,}r_;,{a,}r_;) Where «,>0
for 12r<n, 3x,=1 and a,€@, 15r=n (n may differ for different
members of D). For

dy = ({61 {a,}]) and  dy = ({87, {bJT")
in D define d,; d, € D by

dydy = ({0 Pt {@briny) «

For d,d’ € D define d <d’ if and only if there exist dy,. .. ,d,e,...,,€ D
such that d'=d,...d,de,...¢. (D, >)is a directed set. Let us denote
a typical element d € D by

d = ({7 (@D .

For d € D define U= {a?}"?). Let »; be a measure on the subsets of U,
determined by the requirement that v,({a,?})=«,% for each a,?€c U,.
Then (Ug,v4,deD, =) is a Bohr net (cf., [4, 3.1¢]). For E € &, we have

/"(-E) = ]-imdeDz {“rd : arde(xE?/)ﬂ Ud}

uniformly in z,y € G.

b) Let G be an arbitrary compact group with Haar measure u. Let
H,p be as in a). Haar measure in H is counting measure and for finite
F<H we let |F| be the cardinal of F. Let (Ug;deD, =) be a homogene-
ous Bohr net in H. This exists by theorem 3.4 of [3]. Then for E € &,

w(E) = limgep|(xBy)nU,|[| Uyl

uniformly in z,y € G.
c) Let G be a separable compact group with Haar measure x. Then
there is a denumerable subgroup H dense in . There is a sequence
—{“m» e s 8ppy}s m=1,2,..., of finite sets in H such that 4,=4,<
. U%_,4,=H, and for every E € &,

/"(E) = limn»ml(wa)nAnI/kn )

uniformly in «,y € H. In the abelian case one can require that k,=14,,|.
This follows from 4.2 of [3] or Theorem 1 of [6], and 18.14 of [7] for
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the abelian case. It is striking to contrast the plentifulness of &, (theorem
4) with the thinness of H.
More examples occur in 26.20 of [7].

Norarion. Let R be the additive group of real numbers (usual
topology), Z the additive group of integers (discrete topology), and R
the Bohr compactification of R. Suppose that, in the context of theo-
rem 3, R=H. Then we shall always assume G=R and M =Z. We shall
consider R to be a subset of R so that ¢ may be considered the identity
map. The map «(R) - C(R) by f — f, where f is the continuous exten-
sion of f to R, is an isomorphism. Thus for f € (R) it makes sense to
write B,(f) for E,(f). In fact E,(f) is the set of integral 5-translation
numbers of f.

The following classical definition and theorem are due to Besicovitch
and Bohr [1]. Let |F| denote the cardinal of F.

DerinitioN. Let fe «(R). Take e,9>0. We say E,(f)=E, is almost
periodic with error <7 if there exists g <, I >0 such that for all a,be Z
with b —a>1 we have

I[(E,n[a,b]) +s] n (Z~E,)|
b—a

=7

whenever s € B,. We say B, is almost periodic if for every 5>0, E, is
almost periodic with error <#.

TrrorEM (Besicovitch and Bohr). Let fe x(R). Then E(f) is almost
periodic for almost all &> 0.

In the original Besicovitch-Bohr definition of being almost periodic
with error <7 it is not required that a,b € Z but only that a,b € R. Also
the open interval (a,b) rather than [a,b] is considered. However it is
not hard to show that the two definitions are equivalent. We now use
theorem 3 to extend the Besicovitch-Bohr theorem, in a strengthened
form, to groups.

TuroreM 5. Assume the hypothesis of theorem 3. Let ) denote left Haar
measure on M and assume that ¥ =(V,;, leL,>) is homogeneous. Take
feC(@), e in Ty(f), and n>0. Then there exists p<e, ly€ L such that

HIs(B,n[2 V9] 0 (M ~E)} _
AVy) B

Jorall1>1,, z,ye M, se E,.
Proor. By theorem 3 there exists p <& such that (¢4 ) € Ty (f) and
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my(B,,,~E,)<in. As in the proof to theorem 4, yg sro~Es € W M).

By the proposition following theorem 3, there exists I, € L such that
nwVp)n(M~E,)]
<7
A(Vyv)

AE

et+o

Supu, veM

for all I>1,. Take any s E, and any z,y € M. Then
A{[S(Es n [ley])] n (M~Es)} < Z[Es-!-g n (Sley) n (MNEQ)]
AViy) h MViy)
for all I>1, by the above. This proves the theorem.

<7

CorOLLARY. Let fe a(R). Then E,(f) is almost periodic for all but a
countable set of > 0.

Proor. We apply theorem 5 letting ¥ be the Bohr sequence
(Yo, me{l,2,...},2)in Z.

Theorem 1 has been applied in [2] to give a new characterization of
the Besicovitch almost periodic functions (cf., 2.7, 2.8 and 2.11 of [2]).
In a similar fashion theorem 3 yields a new characterization of the Weyl
almost periodic functions. In the context of theorem 3 let H=R and
let @=((—T,T),T € (0,), =) be the usual Bohr net. We omit writing
@ for this case. Thus, for example, if f € L, ;,,(R) we have

1 T
# ”f”W = lian-—)oo I:SupxeR'2_1'1 J' lx.f] d@:l .
_r

Here ¢ denotes Lebesgue measure. (It is well-known that in this setting
writing “lim”” on the right side of (}) is equivalent to writing “limsup”.)
For a measurable set ' <R define

&7 (E) = llxzll” .

The characterization of B(R) given in [2] is in terms of five conditions
(Ai), 1£¢=<4, and (B). Let (WAi), (WB) be the conditions obtained by
making the following symbolic changes in (Ai),(B), 1=:i=4:

Il > I-I”, BE(e,f) > WE(e.f), M ->M", g—g”.
Thus, for example, we have

(WA1) fis || |"-normal,
(WB) For all but a countable set of ¢>0,

M7 M7 (|f (@ +w)—f (@) xwee n(w)] = 27 (WE(e.f)) .
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THEOREM 6. Let f e Ly 1o4(R). Then fe W(R) if and only if f satisfies
(WA1) and (WB). Condition (WA1) may be replaced by any of the equiv-
alent conditions (WAZ2), (WA3) or (WA4).

Proor. In all of section 2 of [2] except for the proof of 2.7 make the
following symbolic changes, additional to those above:

(Ai) > (WAi), (B)—>(WB), {B-—AP}->W(R), u-—o.
For the proof of 2.7 apply theorem 3, above.

The function given in section 3 of [2] may be used to show that the
width requirement of (WA2) is necessary. Finally, it should be men-
tioned that by using theorem 1 instead of theorem 3 it is possible to
obtain slightly different characterizations of W(R). Namely, (WB) in
theorem 6 may be replaced by either of

(WB1) For all but a countable set of ¢>0

MM\ f (w+2) —f @) gwren(w)] S eG(WE(e.f)) »
or

(WB2) For all but a countable set of ¢>0

MM\ f (w+2) —f @)t pren(w)] £ e8(BE(e.f)) .
Here §(E)=M(yz). In the case that (WB2) is used, the conditions
(WAI) in theorem 6 may be replaced by (Ai), 1<4¢=<4. This is proven
by adjusting the arguments of [2] in a straightforward way.
Among the questions suggested by the above are: What is a fuller
description of &,, &,% Is it necessary to have an exceptional set in the
Besicovitch-Bohr theorem and in the condition (WB)?
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