ON A FORMULA FOR HAAR MEASURE IN COMPACT GROUPS

HENRY W. DAVIS

Let G be a compact abelian group, H a locally compact abelian group and $\varphi: H \to G$ a continuous homomorphism such that $\varphi(H)$ is dense in G. Let μ, ν denote Haar measures on G, H, respectively. Hewitt and Ross [7, 26.17] have shown that if $\{H_n\}_{n=1}^{\infty}$ is a "Bohr sequence" in H and U is open in G with $\mu(U) = \mu(\overline{U})$, then

(*)
$$\mu(U) = \lim_{n \to \infty} \frac{1}{\nu(H_n)} \int_{H_n} \chi_U \circ \varphi \, d\nu .$$

where χ_U is the indicator of U. They give several applications concerning equidistributions. We point out that the theorem extends to arbitrary compact groups G and arbitrary "Bohr nets" in H. Often the limit (*) is uniform with respect to translation in H. We specify many of the corresponding U's. These sets form a base for the topology of G and any measurable set may be approximated by such a U. Examples are given. From these ideas we obtain an extension to groups, and a strengthening, of a classical theorem due to Besicovitch and Bohr concerning the almost periodicity of the integral translation numbers of an almost periodic function. As another application we give a new characterization of the Weyl almost periodic functions.

Let us make some notational remarks. If H is a locally compact group (=LC group), $\alpha(H)$ denotes the set of continuous Bohr-von Neumann AP functions on H. We use the term "Bohr net" as in [4], [5]: Let (D, \geq) be a directed set and for each $d \in D$ let H_d be a Borel set in H. Let v_d be a totally finite non-zero Borel measure on H_d . $\Phi = (H_d, v_d, d \in D, \geq)$ is called a Bohr net in H if for every $f \in \alpha(H)$

$$\lim_{d\in D} \frac{1}{\nu_d(H_d)} \int_{H_d} f \, d\nu_d = Mf.$$

Here Mf is the mean value of f. If (D, \geq) is the set of all positive integers

Received March 16, 1971.

Work performed under the auspices of the U.S. Atomic Energy Commission.

with natural order we say Φ is a Bohr sequence. If each v_d is restriction of left Haar measure to U_d we say Φ is homogeneous. Examples of Bohr nets are given in [4]. All LC groups have (many) Bohr nets.

Let ν denote left Haar measure on H. By $L_{1, loc}(H)$ we denote the set of complex-valued Borel measurable functions f on H such that $\int_{E} |f| d\nu < \infty$ for all compact sets $E \subseteq H$. If $f \in L_{1, loc}(H)$ we write

$$M_{\Phi}f = \lim_{d \in D} \frac{1}{\nu_d(H_d)} \int_{H_d} f \, d\nu_d$$

whenever this exists. Also define

$$\begin{split} \overline{M}_{\pmb{\sigma}}|f| &= \|f\|_{\pmb{\sigma}} = \limsup_{d \in D} \frac{1}{\nu_d(H_d)} \int\limits_{H_d} |f| \; d\nu_d \;, \\ \\ \underline{M}_{\pmb{\sigma}}|f| &= \liminf_{d \in D} \frac{1}{\nu_d(H_d)} \int\limits_{H_d} |f| \; d\nu_d \;, \\ \\ M_{\pmb{\sigma}}^W|f| &= \|f\|_{\pmb{\sigma}}^W = \limsup_{d \in D} \sup_{x,\,y \in H} \frac{1}{\nu_d(H_d)} \int\limits_{H_d} |xf_y| \; d\nu_d \;. \end{split}$$

Here $_xf_y(t)=f(xty)$ for all $t\in H$. The Besicovitch and Weyl almost periodic functions on H are obtained by closing $\alpha(H)$ in $L_{1,loc}(H)$ via the norms $\|\cdot\|_{\sigma}$, $\|\cdot\|_{\sigma}^{W}$, respectively. The corresponding spaces are dedenoted $B_{\sigma}(H)$ and $W_{\sigma}(H)$. See [4], [5] for further discussion of these spaces. For Borel sets $E\subseteq H$ we write $m_{\sigma}(E)=\|\chi_E\|_{\sigma}$. By C(H) we denote the set of continuous complex-valued functions on H. The identity element of a group is denoted e.

THEOREM 1. Let G be a compact group, H an LC group and $\varphi: H \to G$ a continuous homomorphism such that $\varphi(H)$ is dense in G. Let μ denote Haar measure in G and let $\Phi = (H_d, v_d, d \in D, \geq)$ be a Bohr net in H. Let U, F be, respectively, open and closed sets in G such that $U \subseteq F$ and $\mu(U) = \mu(F)$. Then

(*)
$$\mu(U) = \lim_{d \in D} \frac{1}{\nu_d(H_d)} \int_{H_d} \psi_U \circ \varphi \, d\nu_d.$$

U may be replaced by F in (*). Also $\chi_U \circ \varphi$, $\chi_F \circ \varphi \in B_{\varphi}(H)$.

PROOF. (*) is proven as in 26.17 of [7]. To show, for example, that $\chi_F \circ \varphi \in B_{\Phi}(H)$, take $g_n \in C(G)$ such that $\chi_F \leq g_{n+1} \leq g_n$ and $\int g_n d\mu \to \mu(F)$ as $n \to \infty$. Then $g_n \circ \varphi \in \alpha(H)$ and

$$\begin{split} ||g_n \circ \varphi - \chi_F \circ \varphi||_{\sigma} &= \overline{M}_{\sigma}[g_n \circ \varphi - \chi_F \circ \varphi] \\ &\leq \overline{M}_{\sigma}(g_n \circ \varphi) - \underline{M}_{\sigma}(\chi_F \circ \varphi) \\ &= \int g_n d\mu - \mu(F) \to 0 \quad \text{as } n \to \infty . \end{split}$$

If U, F satisfy the hypothesis of theorem 1 and $x, y \in H$, then $U' = \varphi(x) U \varphi(y)$, $F' = \varphi(x) F \varphi(y)$ also satisfy the hypothesis of theorem 1. As $\mu(U') = \mu(U)$, $\mu(F') = \mu(F)$ and as $x, y \in H$ are arbitrary we get that under the hypothesis of theorem 1

$$\mu(U) = \lim_{d \in D} \frac{1}{v_d(H_d)} \int_{H_d} x(\chi_U \circ \varphi)_y \, dv_d$$

for any $x, y \in H$. However this limit may not be uniform in x, y.

NOTATION. In the terminology of theorem 1, let \mathscr{E}_0 denote the Borel sets $U \subset G$ such that (†) holds for every $x, y \in H$. Let \mathscr{E}_1 be the sets $U \in \mathscr{E}_0$ such that (†) holds uniformly in $x, y \in H$.

Theorems 2 and 4, below, indicate that \mathcal{E}_0 and \mathcal{E}_1 are plentiful.

THEOREM 2. Assume the notation of theorem 1. Take $f \in C(G)$ and $y \in G$. For all but a countable set of $\eta > 0$ the sets

$$\{x\!\in\!G: |f(x)\!-\!f(y)| < \eta\}, \quad \{x\!\in\!G: |f(x)\!-\!f(y)| \leqq \eta\}$$

are in \mathcal{E}_0 .

Proof. Letting U_{η}, F_{η} be the two sets above, we apply theorem 1.

$$F_{\eta} \, \sim \, U_{\eta} \, \subseteq \, \{x \! \in \! G: |f(x) \! - \! f(y)| = \! \eta\} \, = \, A_{\eta} \; .$$

 $\mu(A_{\eta})=0$ for all but a countable set of $\eta>0$ because the A_{η} are pairwise disjoint and $\mu(G)<\infty$. For these η , $U_{\eta},F_{\eta}\in\mathscr{E}_{0}$.

Notation. For $f \in C(G)$, $\eta > 0$ define $D_{\eta}(f) = \{x \in G : ||f_x - f||_{\infty} \leq \eta\}$ and $E_{\eta}(f) = \varphi^{-1}(D_{\eta}(f))$. Here $||\cdot||_{\infty}$ denotes the supremum norm and φ is as in theorem 1.

The theorems below are also true if we had defined $D_{\eta}(f)$ to be

$$\{x \in G : ||f_x - f||_{\infty} < \eta \} ,$$

$$\{x \in G : ||_x f - f||_{\infty} < \eta \}$$

 \mathbf{or}

$$\{x \in G: ||_x f - f||_\infty \leq \eta\}.$$

THEOREM 3. Assume the hypothesis of theorem 1. Let M be a locally compact subgroup of H with Bohr net Ψ . Let μ_1 denote Haar measure on $\varphi(M)^-$. For $f \in C(G)$ and $\eta > 0$ define

$$\bar{E}_n = \bar{E}_n(f) = E_n(f) \cap M$$
.

There is a set $T_M(f)$ containing all but a countable set of the positive numbers such that for all $\eta \in T_M(f)$

$$\mu_1(D_{\eta}(f) \cap \varphi(M)^-) = m_{\Psi}(\overline{E}_{\eta})$$

and

$$\chi_{\bar{E}_{\chi}} \in W_{\Psi}(M) .$$

Furthermore, for all $\eta \in T_M(f)$

(3)
$$\lim_{\varrho \downarrow 0, \, \eta + \varrho \in T_{\underline{M}}(f)} m_{\Psi}(\overline{E}_{\eta + \varrho}) = m_{\Psi}(\overline{E}_{\eta}) .$$

Finally,

$$T_M(f) = \{\eta > 0: \mu_1(\{x \in \varphi(M)^-: \|f_x - f\|_{\infty} = \eta\}) = 0\}.$$

PROOF. (1) is proven by applying theorem 1 and the methods of theorem 2. Note that, since f is uniformly continuous on G, $\|f_x-f\|_{\infty}$ is a continuous function of $x\in G$. By the methods of theorem 2 $T_M(f)$, defined as indicated above, contains all but a countable set of the positive numbers. For $\eta\in T_M(f)$ we apply theorem 1 letting $\varphi(M)^-$ play the role of G and $F=D_{\eta}(f)\cap\varphi(M)^-$. This yields (1) along with the fact that $\chi_{\tilde{E}_n}\in B_{\psi}(M)$.

(3) follows from (1) since $\bar{E}_{\eta+\varrho} \downarrow \bar{E}_{\eta}$ and μ_1 is continuous.

We next show that for $\eta \in T_M(f)$

$$||\chi_{\overline{E}_{\eta}}||_{\Psi}^{W} \leq m_{\Psi}(\overline{E}_{\eta}),$$

from which it follows that

(5)
$$\|\chi_{\overline{E}_{\boldsymbol{\eta}}}\|_{\boldsymbol{\Psi}}^{W} = m_{\boldsymbol{\Psi}}(\overline{E}_{\boldsymbol{\eta}}).$$

Take $\eta \in T_M(f)$ and arbitrary $\varepsilon > 0$. By (1) and (3) we may take $\varrho > 0$ such that $\eta + 2\varrho \in T_M(f)$ and

(6)
$$m_{\Psi}(\overline{E}_{\eta+2\varrho}) \leq m_{\Psi}(\overline{E}_{\eta}) + \varepsilon .$$

Since $D_{\varrho}(f)$ is a neighborhood of e in G and $\varphi(M)$ is compact, there exist $w_1, \ldots, w_n, w_1', \ldots, w_m' \in M$ such that

$$M = \bigcup_{i=1}^{n} w_{i} \overline{E}_{\varrho} = \bigcup_{i=1}^{m} \overline{E}_{\varrho} w_{i}'.$$

Write $\Psi = (V_l, \lambda_l, l \in L, >)$. By the remark following theorem 1, we may take $l_0 \in L$ such that

(7)
$$\frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} w_{i'}(\chi_{\overline{E}_{\eta+2\varrho}})_{w_{j}} d\lambda_{l} \leq m_{\Psi}(\overline{E}_{\eta+2\varrho}) + \varepsilon$$

for all $l > l_0$ and all $1 \le i \le m$, $1 \le j \le n$. Take arbitrary $x, y \in M$. For some p, q, then, $x = w_p u$, $y = v w_q'$ where $u, v \in \overline{E}_p$. For $l > l_0$

$$\begin{split} \frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} y(\chi_{\overline{E}_{\eta}})_{x} d\lambda_{l} &= \frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} w_{q}' (v(\chi_{\overline{E}_{\eta}}))_{w_{p}}^{-} d\lambda_{l} \\ &\leq \frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} w_{q}' (\chi_{\overline{E}_{\eta+2\varrho}})_{w_{p}} d\lambda_{l} \\ &\leq m_{\Psi}(\overline{E}_{\eta+2\varrho}) + \varepsilon, \text{ by (7)} \\ &\leq m_{\Psi}(\overline{E}_{\eta}) + 2\varepsilon, \text{ by (6)} . \end{split}$$

As $x, y \in M$ are arbitrary we get that for all $l > l_0$

$$\sup_{x,\,y\in M}\frac{1}{\lambda_l(\,V_{\,l})}\,\int\limits_{V_l}{}_x(\chi_{\,\overline{\!E}_{\!\eta}})_y\;d\lambda_l\;\leq\;m_{\,\varPsi}(\,\overline{\!E}_{\!\,\eta})+2\varepsilon\;,$$

whence

$$||\chi_{\overline{E}_{\eta}}||_{\Psi}^{W} \leq m_{\Psi}(\overline{E}_{\eta}) + 2\varepsilon$$
 .

As $\varepsilon > 0$ is arbitrary, (4), and, hence, (5) follow. We now show that (2) holds. Take $\eta \in T_M(f)$. As

$$\mu_1(\{x\!\in\!\varphi(M)^-:\|f_x\!-\!f\|_\infty\!=\!\eta\})\,=\,0$$

and as μ_1 is regular, there exist $f_n \in C(\varphi(M)^-)$ such that

$$0 \le f_n \le f_{n+1} \le \chi_{D_n(f) \cap \varphi(M)}$$

and

$$\int \! f_n \; d\mu_1 \; \to \; \mu_1 \! \big(D(f) \cap \varphi(M)^- \big) \; .$$

Let $\varphi_1 = \varphi/M$. Then $f_n \circ \varphi_1 \in \alpha(M)$. Also

$$\begin{split} \|\chi_{\overline{E}_{\eta}} - f_{n} \circ \varphi_{1}\|_{\Psi}^{W} &= \limsup_{l \in L} \sup_{x, y \in M} \frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} \left[_{x} (\chi_{\overline{E}_{\eta}})_{y-x} (f_{n} \circ \varphi_{1})_{y}\right] d\lambda_{l} \\ &\leq \|\chi_{\overline{E}_{\eta}}\|_{\Psi}^{W} - \liminf_{l \in L} \inf_{x, y \in M} \frac{1}{\lambda_{l}(V_{l})} \int_{V_{l}} x (f_{n} \circ \varphi_{1})_{y} d\lambda_{l} \\ &= m_{\Psi}(\overline{E}_{\eta}) - M(f_{n} \circ \varphi_{1}) \;, \end{split}$$

by (5) and the fact that the mean value of a Bohr-Von Neumann AP function is obtained via a Bohr net uniformly with respect to translation (see proof of 2.1 in [3]). Thus by (1)

$$\|\chi_{\overline{E}_{\eta}} - f_n \circ \varphi_1\|_{\Psi}^W \leq \mu_1(D_{\eta}(f) \cap \varphi(M)^-) - \int f_n \ d\mu_1 \to 0 \quad \text{ as } n \to \infty.$$

This proves the theorem.

It is useful to point out the following.

PROPOSITION. Let $\Phi = (H_d, \nu_d, d \in D, \geq)$ be a Bohr net in the locally compact group H. Let $f \in W_{\Phi}(H)$. Then

$$M_{\varPhi}f = \lim_{d \in D} \frac{1}{v_d(H_d)} \int_{H_d} x f_y \, dv_d$$

uniformly in $x, y \in H$.

PROOF. $M_{\phi}f$ exists, as is pointed out in [4]. For $h \in L_{1,loc}(H)$ write

$$w_d(h) = \frac{1}{v_d(H_d)} \int_{H_d} h \, dv_d .$$

If $h \in \alpha(H)$,

$$w_d(xh_y) \to Mh$$
 as d gets large in D ,

uniformly in $x, y \in H$ by the proof of 2.1 in [3]. Take $\varepsilon > 0$ and $h \in \alpha(H)$ such that $||f-h||_{\phi}^{W} < \varepsilon$. Then

$$|M_{\boldsymbol{\sigma}}f - Mh| \leq ||f - h||_{\boldsymbol{\sigma}}^{W} < \varepsilon$$
.

Take $d_0 \in D$ such that

$$|w_d(xh_u) - Mh| < \varepsilon, \quad |w_d|_x(h-f)_u| < \varepsilon$$

for all $d \ge d_0$, $x, y \in H$. Then for $d \ge d_0$, $x, y \in H$

$$|w_d(xf_y) - M_{\Phi}f| \leq w_d|_x(h-f)_y| + |w_d(xh_y) - Mh| + |Mh - M_{\Phi}f| < 3\varepsilon,$$

proving the proposition.

COROLLARY. If $f \in C(G)$ and $\eta \in T_H(f)$, then $D_n(f) \in \mathscr{E}_1$.

PROOF. Apply (1), (2) of theorem 3 with M=H to the above proposition.

The following shows that the members of \mathcal{E}_1 are plentiful. Let Δ denote symmetric difference.

THEOREM 4. Assume the hypothesis of theorem 1. Then \mathscr{E}_1 contains a closed (and an open) base for the topology of G. If $A \subseteq G$ is Haar measurable and $\varepsilon > 0$, then there exists $E \in \mathscr{E}_1$ such that $\mu(A \Delta E) > \varepsilon$. E may be taken to be either open or closed.

PROOF. To show that \mathscr{E}_1 contains a base for the topology of G it suffices to show that it contains a local base at e because \mathscr{E}_1 is closed under translation by members of $\varphi(H)$ and $\varphi(H)^-=G$. If W is an arbitrary neighborhood of e and $f \in C(G)$ is chosen so that $f \equiv 1$ on $G \sim W$, $f(G) \subset [0,1]$, and f(e) = 0, then

$$e \in \{x \in G : \|f_x - f\|_{\infty} < \eta\} \subset D_n(f) \subset W$$

for all $0 < \eta < 1$. It has been shown that for most such η $D_{\eta}(f) \in \mathscr{E}_1$ and by a similar argument the same is true for $\{x \in G : \|f_x - f\|_{\infty} < \eta\}$. These sets are respectively closed and open. Thus \mathscr{E}_1 contains the required local base.

To prove the last assertion note that since μ is regular it suffices to prove the following: For every closed $F \subset G$ and open $U \subset G$ with $F \subset U$ there exists a closed (open) set $E \in \mathscr{E}_1$ such that $F \subset E \subset U$. We give the proof for the case of a closed set E. The open case is handled by considering sets of the form $\{x \in G : \|f_x - f\|_{\infty} < \eta\}$ instead of the sets $D_{\eta}(f)$. As each $D_{\eta}(f)$ is a neighborhood of e, as the translates of the $D_{\eta}(f)$'s by elements of $\varphi(H)$ are a base for the topology of G, and as F is compact, there exists $x_1, \ldots, x_n \in H, f_1, \ldots, f_n \in C(G), \eta_1, \ldots, \eta_n > 0$ such that $\eta_i \in T_H(f_i), 1 \le i \le n$, and

$$F \subset E \subset U$$
, where $E = \bigcup_{i=1}^{n} \varphi(x_i) D_{\eta_i}(f_i)$.

E is closed and, since $\eta_i \in T_H(f_i)$ for each i, $\mu(E \sim E^0) = 0$, because

$$\mathrm{bd}(E) \subset \bigcup_{i=1}^n \mathrm{bd}[\varphi(x_i)D_{\eta_i}(f_i)]$$

and each of the summands has μ -measure zero due to the way $T_H(f_i)$ is defined. By theorem 1, $\mu(E) = m_{\sigma}(\varphi^{-1}(E))$. Hence, to show that $E \in \mathscr{E}_1$ it suffices to show that $\chi_{\varphi^{-1}(E)} \in W_{\sigma}(H)$ by the proposition. As $\chi_{x_i E_{\eta_i}(f_i)} \in W_{\sigma}(H)$ for each i, it suffices to show the following:

If
$$\chi_{A_i} \in W_{\Phi}(H)$$
, $i = 1, 2$, then $\chi_{A_1 \cup A_2} \in W_{\Phi}(H)$.

Now $W_{\varphi}(H)$ is a vector space closed under the formation of absolute values, since if $f \in W_{\varphi}(H)$ and $||f-g_n||_{\varphi}^W \to 0$ with $g_n \in \alpha(H)$, then

$$\| |f| - |g_n| \|_{\Phi}^{W} \leq \|f - g_n\|_{\Phi}^{W} \xrightarrow{n} 0.$$

As

$$\chi_{A_1 \cup A_2} = \frac{1}{2} (\chi_{A_1} + \chi_{A_2} + |\chi_{A_1} - \chi_{A_2}|)$$
,

it follows that $\chi_{A_1 \cup A_2} \in W_{\Phi}(H)$ when χ_{A_i} does, i = 1, 2. This proves the theorem.

COROLLARY. The sets of the form $D_{\eta}(f)$, where $f \in C(G)$ and $\eta \in T_H(f)$, are a local base for the neighborhood system of e. \mathscr{E}_1 contains all finite unions of the translates of these sets by elements in $\varphi(H)$ as well as the symmetric difference of two such translates.

Examples. a) Let G be an arbitrary compact group with Haar measure μ . Let H=G with the discrete topology and let φ be the identity map. Let D be the set of all ordered pairs $(\{\alpha_r\}_{r=1}^n, \{a_r\}_{r=1}^n)$ where $\alpha_r > 0$ for $1 \le r \le n$, $\sum \alpha_r = 1$ and $\alpha_r \in G$, $1 \le r \le n$ (n may differ for different members of D). For

$$d_1 = (\{\alpha_r\}_{1'}^n, \{\alpha_r\}_{1}^n)$$
 and $d_2 = (\{\beta_t\}_{1}^m, \{b_t\}_{1}^m)$

in D define $d_1 d_2 \in D$ by

$$d_1 d_2 = (\{\alpha_r \beta_t\}_{r, t=1}^{n, m}, \{\alpha_r b_t\}_{r, t=1}^{n, m})$$
.

For $d, d' \in D$ define $d \leq d'$ if and only if there exist $d_1, \ldots, d_k, e_1, \ldots, e_l \in D$ such that $d' = d_1 \ldots d_k d e_1 \ldots e_l$. (D, \geq) is a directed set. Let us denote a typical element $d \in D$ by

$$d = (\{\alpha_r^d\}_{r=1}^{n(d)}, \{a_r^d\}_{r=1}^{n(d)})$$
.

For $d \in D$ define $U_d = \{a_r^d\}_{r=1}^{n(d)}$. Let v_d be a measure on the subsets of U_d determined by the requirement that $v_d(\{a_r^d\}) = \alpha_r^d$ for each $a_r^d \in U_d$. Then $(U_d, v_d, d \in D, \geq)$ is a Bohr net (cf., [4, 3.1c]). For $E \in \mathscr{E}_1$ we have

$$\mu(E) = \lim_{d \in D} \sum \{ \alpha_r^d : \alpha_r^d \in (xEy) \cap U_d \}$$

uniformly in $x, y \in G$.

b) Let G be an arbitrary compact group with Haar measure μ . Let H, φ be as in a). Haar measure in H is counting measure and for finite $F \subset H$ we let |F| be the cardinal of F. Let $(U_d, d \in D, \geq)$ be a homogeneous Bohr net in H. This exists by theorem 3.4 of [3]. Then for $E \in \mathscr{E}_1$

$$\mu(E) = \lim_{d \in D} |(xEy) \cap U_d|/|U_d|$$

uniformly in $x, y \in G$.

c) Let G be a separable compact group with Haar measure μ . Then there is a denumerable subgroup H dense in G. There is a sequence $A_n = \{a_{n1}, \ldots, a_{nk_n}\}, \ n = 1, 2, \ldots$, of finite sets in H such that $A_1 \subseteq A_2 \subseteq \ldots, \bigcup_{n=1}^{\infty} A_n = H$, and for every $E \in \mathscr{E}_1$

$$\mu(E) = \lim_{n \to \infty} |(xEy) \cap A_n|/k_n ,$$

uniformly in $x, y \in H$. In the abelian case one can require that $k_n = |A_n|$. This follows from 4.2 of [3] or Theorem 1 of [6], and 18.14 of [7] for

the abelian case. It is striking to contrast the plentifulness of \mathcal{E}_1 (theorem 4) with the thinness of H.

More examples occur in 26.20 of [7].

Notation. Let R be the additive group of real numbers (usual topology), Z the additive group of integers (discrete topology), and \overline{R} the Bohr compactification of R. Suppose that, in the context of theorem 3, R=H. Then we shall always assume $G=\overline{R}$ and M=Z. We shall consider R to be a subset of \overline{R} so that φ may be considered the identity map. The map $\alpha(R) \to C(\overline{R})$ by $f \to \overline{f}$, where \overline{f} is the continuous extension of f to \overline{R} , is an isomorphism. Thus for $f \in \alpha(R)$ it makes sense to write $\overline{E}_{\eta}(f)$ for $\overline{E}_{\eta}(\overline{f})$. In fact $\overline{E}_{\eta}(f)$ is the set of integral η -translation numbers of f.

The following classical definition and theorem are due to Besicovitch and Bohr [1]. Let |F| denote the cardinal of F.

DEFINITION. Let $f \in \alpha(R)$. Take $\varepsilon, \eta > 0$. We say $\overline{E}_{\varepsilon}(f) = \overline{E}_{\varepsilon}$ is almost periodic with error $\leq \eta$ if there exists $\varrho < \varepsilon$, I > 0 such that for all $a, b \in \mathbf{Z}$ with b-a > I we have

$$\frac{|[(\overline{E}_{\mathfrak{e}} \cap [a,b]) + s] \cap (\mathsf{Z} \sim \overline{E}_{\mathfrak{e}})|}{b-a} \leqq \eta$$

whenever $s \in \overline{E}_{\varrho}$. We say \overline{E}_{s} is almost periodic if for every $\eta > 0$, \overline{E}_{s} is almost periodic with error $\leq \eta$.

Theorem (Besicovitch and Bohr). Let $f \in \alpha(R)$. Then $\overline{E}_{\mathfrak{s}}(f)$ is almost periodic for almost all $\varepsilon > 0$.

In the original Besicovitch–Bohr definition of being almost periodic with error $\leq \eta$ it is not required that $a,b \in \mathbf{Z}$ but only that $a,b \in \mathbf{R}$. Also the open interval (a,b) rather than [a,b] is considered. However it is not hard to show that the two definitions are equivalent. We now use theorem 3 to extend the Besicovitch–Bohr theorem, in a strengthened form, to groups.

Theorem 5. Assume the hypothesis of theorem 3. Let λ denote left Haar measure on M and assume that $\Psi = (V_l, l \in L, >)$ is homogeneous. Take $f \in C(G)$, ε in $T_M(f)$, and $\eta > 0$. Then there exists $\varrho < \varepsilon$, $l_\varrho \in L$ such that

$$\frac{\lambda\{[s(\overline{E}_{\epsilon}\cap[xV_{l}y])]\cap(M\sim\overline{E}_{\epsilon})\}}{\lambda(V_{l}y)}\leq\eta$$

for all $l > l_0$, $x, y \in M$, $s \in \overline{E}_o$.

Proof. By theorem 3 there exists $\varrho < \varepsilon$ such that $(\varepsilon + \varrho) \in T_M(f)$ and

 $m_{\Psi}(\overline{E}_{s+\varrho} \sim \overline{E}_s) < \frac{1}{2}\eta$. As in the proof to theorem 4, $\chi_{\overline{E}_{s+\varrho} \sim \overline{E}_s} \in W_{\Psi}(M)$. By the proposition following theorem 3, there exists $l_0 \in L$ such that

$$\sup\nolimits_{u,\,v\in M}\frac{\lambda[\overline{E}_{s+\varrho}\cap(u\,V_{l}v)\cap(M\sim\overline{E}_{s})]}{\lambda(V_{l}v)}<\,\eta$$

for all $l > l_0$. Take any $s \in \overline{E}_{\mathbf{0}}$ and any $x, y \in M$. Then

$$\frac{\lambda\{[s(\overline{E}_{\mathfrak{s}}\cap[xV_1y])]\cap(M\sim\overline{E}_{\mathfrak{s}})\}}{\lambda(V_1y)}\leq\frac{\lambda[\overline{E}_{\mathfrak{s}+\varrho}\cap(sxV_1y)\cap(M\sim\overline{E}_{\mathfrak{s}})]}{\lambda(V_1y)}<\eta$$

for all $l > l_0$ by the above. This proves the theorem.

COROLLARY. Let $f \in \alpha(R)$. Then $\overline{E}_{\varepsilon}(f)$ is almost periodic for all but a countable set of $\varepsilon > 0$.

Proof. We apply theorem 5 letting Ψ be the Bohr sequence

$$(\{i\}_{i=1}^n, n \in \{1, 2, \ldots\}, \geq)$$
 in Z .

Theorem 1 has been applied in [2] to give a new characterization of the Besicovitch almost periodic functions (cf., 2.7, 2.8 and 2.11 of [2]). In a similar fashion theorem 3 yields a new characterization of the Weyl almost periodic functions. In the context of theorem 3 let $H=\mathbb{R}$ and let $\Phi=((-T,T),T\in(0,\infty),\geq)$ be the usual Bohr net. We omit writing Φ for this case. Thus, for example, if $f\in L_{1,1oc}(R)$ we have

$$||f||^{W} = \lim_{T \to \infty} \left[\sup_{x \in R} \frac{1}{2T} \int_{-T}^{T} |_{x} f| \ d\varrho \right].$$

Here ϱ denotes Lebesgue measure. (It is well-known that in this setting writing "lim" on the right side of (\sharp) is equivalent to writing "lim sup".) For a measurable set $E \subseteq R$ define

$$\bar{\varrho}^W(E) = ||\chi_E||^W.$$

The characterization of B(R) given in [2] is in terms of five conditions (Ai), $1 \le i \le 4$, and (B). Let (WAi), (WB) be the conditions obtained by making the following symbolic changes in (Ai), (B), $1 \le i \le 4$:

$$\|\cdot\| \to \|\cdot\|^{\overline{W}}, \quad BE(\varepsilon,f) \to WE(\varepsilon,f), \quad \overline{M} \to M^{\overline{W}}, \quad \bar{\mu} \to \bar{\varrho}^{\overline{W}} \; .$$

Thus, for example, we have

(WA1) f is $|| ||^{W}$ -normal,

(WB) For all but a countable set of $\varepsilon > 0$,

$$M_x^W M_w^W [|f(x+w)-f(x)|\chi_{WE(s,f)}(w)] \leq \varepsilon \bar{\varrho}^W (WE(\varepsilon,f))$$
.

THEOREM 6. Let $f \in L_{1,100}(R)$. Then $f \in W(R)$ if and only if f satisfies (WA1) and (WB). Condition (WA1) may be replaced by any of the equivalent conditions (WA2), (WA3) or (WA4).

PROOF. In all of section 2 of [2] except for the proof of 2.7 make the following symbolic changes, additional to those above:

$$(Ai) \rightarrow (WAi), \quad (B) \rightarrow (WB), \quad \{B - AP\} \rightarrow W(R), \quad \mu \rightarrow \varrho.$$

For the proof of 2.7 apply theorem 3, above.

The function given in section 3 of [2] may be used to show that the width requirement of (WA2) is necessary. Finally, it should be mentioned that by using theorem 1 instead of theorem 3 it is possible to obtain slightly different characterizations of W(R). Namely, (WB) in theorem 6 may be replaced by either of

(WB1) For all but a countable set of $\varepsilon > 0$

$$M_x{}^W \overline{M}_w[|f(w+x)-f(x)|\chi_{WE(\epsilon,f)}(w)] \le \varepsilon \, \bar{\varrho}(WE(\epsilon,f))$$
,

or

(WB2) For all but a countable set of $\varepsilon > 0$

$$M_x{}^W \overline{M}_w[|f(w+x)-f(x)|\chi_{BE(e,f)}(w)] \le \varepsilon \bar{\varrho}(BE(\varepsilon,f))$$
.

Here $\bar{\varrho}(E) = \overline{M}(\chi_E)$. In the case that (WB2) is used, the conditions (WAi) in theorem 6 may be replaced by (Ai), $1 \le i \le 4$. This is proven by adjusting the arguments of [2] in a straightforward way.

Among the questions suggested by the above are: What is a fuller description of \mathscr{E}_0 , \mathscr{E}_1 ? Is it necessary to have an exceptional set in the Besicovitch-Bohr theorem and in the condition (WB)?

REFERENCES

- A. Besicovitch and H. Bohr, On almost periodic properties of translation numbers, J. London Math. Soc. 3 (1928), 172-176.
- A. Dabboucy and H. Davis, A new characterization of Besicovitch almost periodic functions, Math. Scand. 28 (1971), 341-354.
- H. Davis, On the mean value of Haar measurable almost periodic functions, Duke Math.
 J. 34 (1967), 201–214.
- H. Davis, Stepanoff and Weyl AP functions on locally compact groups, Duke Math. J. 34 (1967), 535-548.
- H. Davis, On completing the von Neumann almost periodic functions, Duke Math. J. 35 (1968), 199-216.
- H. Günzler, Means over countable semigroups and almost-periodicity in l¹, J. reine und angewandte Math. 232 (1968), 194-206.
- E. Hewitt and K. Ross, Abstract harmonic analysis I (Grundlehren Math. Wissensch. 115), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.

BROOKHAVEN NATIONAL LABORATORY, UPTON, LONG ISLAND, NEW YORK, U.S.A.