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0. Introduction.

We consider Theorem 5.3 on the construction of projective limits of
probability spaces as the main result of the present paper. Such a result
is well known when the probability spaces are connected by continuous
functions (some recent references are Théoréme 4.1 of [2], Theorem 3.2
of [5] and Théoréme p. 206 of [6]). The main feature of our theorem is
that the probability spaces are connected by (topologically nice) corre-
spondences. We have not introduced correspondences just in order to
generalize for the sake of generalization in itself, but because we are
convinced that for many applications, especially to stochastic processes,
one is forced to leave the classical setup. As an illustration of what we
have in mind, consider the Skorohod space D[0,1] which is a well suited
“target space” for the realization of many stochastic processes. Here,
the projections are not continuous, and it is more realistic to replace
them by the induced correspondences (cf. section 2). Thus one should
replace the projection

x —z(t) = z(t+)
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6 FLEMMING TOPSOE

by the correspondence
z — {x(t-),z(E+)}.

The notion of a measure preserving correspondence plays a funda-
mental role in most parts of the paper. This notion is introduced and
studied in Section 3. As was pointed out to me by A. Hede Madsen and
M. Niss, V. Strassen has been working with somewhat the same ideas,
cf. [7].

We shall employ without much further comment or explanation the
conventions and definitions of [9].

1. Preliminaries on correspondences.

Let X and Y be sets (non empty). ¢ is called a correspondence from
X to Y if ¢, to each element z of X assigns a non empty subset ¢(z) of
Y. We shall reserve the letters ¢ and ¢ for correspondences, whereas
ordinary functions will be denoted by the letter . Thus a symbol like
n: X — Y always refers to a function, and ¢: X — Y always refers to a
correspondenee from X to Y. In case each set g(x) is a one-point set,
we shall allow ourselves to say that ¢ is a function.

Let ¢: X - Y be a correspondence. For a subset 4 of X, the image
of A under ¢ is defined by

‘P(A) = UweA(p(x) .

For a subset B of Y we define two kinds of inverse images, the strong
tnverse and the weak inverse; these are given by

¢*(B) = {x : px)cB}, ¢*(B) = {z : px)nB+0}.
The simple biimplication
Ace¥B) <> ¢(d)cB
will often be useful. By the ‘“‘duality relation”
¢*((B) = [¢*(B),

properties expressed in terms of strong inverses can be translated into
properties expressed in terms of weak inverses and vice versa.

The graph of ¢ is the subset of X x ¥ consisting of the pairs (z,y)
with y € ¢(x).

If p: X - Y is a correspondence with ¢ X =Y, then ¢* is a corre-
spondence Y — X whose graph is the set of (y,x) with (x,y) € graph of ¢.

Assume now that X and Y are topological spaces. We assume that
all topological spaces to be considered are Hausdorff spaces. ¢: X - Y
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is said to be upper semicontinuous (u.s.c.) if the strong inverse of any
open subset of Y is open in X. Below we list four conditions all equiv-
alent to the upper semicontinuity of ¢:

(1.1) epwFeF(X), VEe F(Y),
(1.2) VN(gz) IN(@): ¢(N(®)) S N(ga);
(1.3) o*B < ¢o*(B), VB Y;
(14) (¢p°B)° 2 ¢*(B), VB Y.

We call ¢ open if one of the following three equivalent conditions
holds:

(1.5) ¢G e 9(Y), VG e 9(X);
(1.6) ¢*B 2 ¢o¥(B), VB Y
(1.7) (¢°B)° = ¢*(B), VB Y.

@ is compact-valued if (x) is compact for all x in X.

1.8 LeMMA. A correspondence ¢: X — Y is compact-valued if and only
if it has the following smoothness property: For every class & of closed
subsets of Y which filters downward, say F | Fy, it is true that the class of
sets g F with F in F filters downward towards the set ¢* F,.

We shall only have occasion to employ the “only if”’ part, and since
this part of the lemma is quite easy to establish, we shall not give the
details of the proof.

@ is said to preserve compact nets if, for any net (z,,y,) on the graph of ¢
for which the net (z,) is compact, it is true that the net (y,) is compact
too. As for the notion of compact nets, see P7 of [9].

The upper semicontinuous compact-valued correspondences will play
an important role in the sequel. We find the following, probably well-
known lemma convenient:

1.9 LEMmA. Let X and Y be topological spaces and assume that to each
element x of X we have assigned a subset p(x) of Y (it is not known in
advance that o(x) is non empty). Then @ is an upper semicontinuous

compact-valued correspondence if and only if ¢ possesses the following
properties:
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@) {z : @(x) is non empty} is dense in X.
(ii) The graph of ¢ is closed.
(iii) @ preserves compact nets.

Proor. Firstly assume that ¢ is an u.s.c. compact-valued correspond-
ence. It is immediate that ¢ has property (i). Let (z,,y,) be a net on
the graph of ¢ with (z,) compact. We may and do assume that (z,,v,)
is a universal net. Then, for some z, we have z, -~ x. We shall prove
that y, - y for some y € ¢(x). If we assume the contrary, then a simple
compactness argument (¢(z) is compact!) together with the fact that (y,)
is universal tell us that there exists a neighbourhood N(¢x) of ¢(x) such
that

Y, € [:N (px), eventually .

Employing the upper semicontinuity of ¢ and the convergence of z,
to x, we are soon led to a contradiction. Thus, for some y € ¢(z), the
net (y,) converges to y. Actually, this argument proves the validity of
(ii) as well as of (iii).

Then assume that (i), (ii), and (iii) hold. It is easy to see that ¢(z)
is non empty for all z, and thus ¢ is a correspondence. By (ii) it follows
that ¢(x) is closed for all #, and since, by (iii), p(x) is net-compact, p(x)
must be compact for all x. To prove that ¢ is us.c., let F e F(Y) be
given and consider a convergent net (z,) on ¢¥F, say z, — 2. To each
o we choose y, € ¢(z,) such that y, € F. By (iii) we can find ¥ such that
some subnet of (y,) converges to y. From (ii) it follows that y € ¢(x).
We also have y € F, hence x € g¥F'. We have seen that ¢* F is closed.

1.10 LeMMA. Let ¢: X - Y be u.s.c. and compact-valued. Then the
Jollowing properties hold:
(i) @K is compact in Y for all K compact in X.
(i) {p@ : G2K}|¢K for all K € 4 (X).

(i) follows from the lemma just proved, and (ii) follows in a straight
forward manner from (i).

Let : X - Y and y: Y — Z be correspondences. The composite cor-
respondence yop=yg from X to Z is then defined by

yp(@) = y(p(*)) .
Since we always have

(yp)d = @*(y°4),
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it is seen that if ¢ and v are u.s.c. then so is pp. Also, if ¢ and y are u.s.c.
and compact-valued, then so is pp.

In the same way as one can determine a topology by demanding that
certain functions are continuous, one can determine a topology by de-
manding that certain correspondences are u.s.c. Let there be given an
abstract set X, an index set I, a family (X;) of topological spaces in-
dexed by I, and, lastly, for each 4 €I a correspondence ¢;: X — X,.
By the weak topology on X determined by the correspondences ¢, we
understand the weakest topology on X rendering all the correspondences
@; ws.c. Of course, it is not automatic that the weak topology is Haus-
dorff, however, in the application we have in mind this will be so. By
4, we denote the class of sets ¢;%(() with ¢ eI and G € ¥(X,), and by
@, we denote the class of finite intersections of sets in ¥,. The topology
in question on X then has ¥, as a base. By [N] we denote the condi-
tion that whenever K € /#(X) and N(K) is a neighbourhood of K, we
can find G € 4, with KcGc N(K).

1.11 LeMMA. Let the topology of X be the weak topology determined by
the correspondences ¢;: X — X;; 1€ 1. Let Y be a topological space and ¢
a correspondence Y — X. Assume that o is u.s.c. for each ¢ € I.

(i): If @ is a function then @ is u.s.c. (that is, @ considered as a function
s continuous).

(ii): If condition [N holds and if ¢ is compact-valued, then ¢ is u.s.c.

The proof will be omitted.

It is not true in general that the correspondence ¢ of the above lemma
is u.s.c., and it does not help very much if one assumes that the corre-
spondences are compact-valued. Let us show this by giving a concrete
example:

1.12 ExamprLE. The index set is the set consisting of the two elements
1 and 2, the set X consists of three elements @, b and ¢, the topological
space X, and also the space X, is the discrete space with the two points
0 and 1, the topological space Y is the one-point compactification of
the natural numbers, and the correspondences ¢, ¢, and @, are given by

p(n) = {a}  for n=koo,
= {b,¢} for n=o0,

p1(a) = @1(0) = {0}, @i(c) = {1},
Pa(a) = @alc) = {1}, @y(0) = {0}.



10 FLEMMING TOPSQE

It is seen that the weak topology on X determined by ¢, and ¢, is the
discrete topology, that @,0p and @,op are u.s.c., and that ¢ fails to be
u.s.c. In fact, p does not have a closed graph. An example of somewhat
the same nature can be constructed such that ¢ will neither preserve
compact nets nor have a closed graph (we can even arrange it so that ¢
is compact-valued, and yet the image of a compact set under ¢ need not
be compact).

2. Correspondences induced by functions.

Let X and Y be topological spaces and n: X — Y a function from X
to Y. If y=am(x), one often has an interpretation as ““if the system is
in state x then the action = leeds to the value y’. This interpretation
may, however, be meaningless since small changes in & may possibly
give rise to other y-values. We therefore define @, the correspondence
induced by =, by taking as ¢(x) the set of those y € Y for which there
exists some net (z,,y,) with z, -z, y, >y and y,==(z,) for all . In
other words, ¢ is the correspondence whose graph is the closure in X x ¥
of the graph of n. We shall therefore also employ the notation ¢=a.
As is easily seen,

(2.1) ¢®) = Nypn(N(z)) ,

the intersection being taken over all neighbourhoods N(x) of x. In-
tuitively, one should think of ¢(x) as the realistic image of z (in contrast
to the unrealistic image n(z)). Of course, if the graph of x is already
closed, for instance if # is continuous, then we get nothing new since
then ¢(x)= {n(x)} holds for all x.

Note, that the definition of the induced correspondence also makes
sense if z is a correspondence. Actually, many of the considerations
below can equally well be carried out in this more general setting.

The situation we shall be particularly interested in is that in which
X is a function space on which we aim at realizing a stochastic process.
If T is the time interval, then X is a subset of RT. If i={t;,...,t,} is a
finite subset of 7', then we denote by =; the projection X — Rf. Thus
m;(x) is the function ¢ -~ R whose value at {e4 is z(f). The induced
correspondence we denote ¢;. Let us demonstrate by the example
X =D[0,1] that ¢; can be strictly larger than z;: Put

w=Ty, Q=@

Let t, be a sequence of time points strictly decreasing to } and put
@, =1y, 11, =1 n. Then z, converges to z in D[0,1] and n(x,) con-
verges to 0. Thus ¢(x) contains both 1 (=x(})) and 0 (=z(}-)).
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2.2 LEMMA. Let n: X — Y be given and denote by ¢ the induced corre-
spondence. Consider the three properties:

(2.3) Va AN (z): n(N(x)) is compact;
(2.4) Yz VN(z) AN (z): a(N'(z))  n(N(z));
(2.5) 7 8 open .

(V). If (2.8) holds, then @ is u.s.c. and compact-valued, and ¢ can be
characterized as the smallest u.s.c. compact-valued correspondence contain-
ing 7.

(ii). If (2.3) and (2.4) hold, then we have
(2.6) ¢F = a-F, YFe F(Y).
(iii). If (2.4) and (2.5) hold, then ¢ is open.

Proor. The assertion (i) follows without much difficulty from Lemma
1.9.

To prove (ii), assume that (2.3) and (2.4) hold and consider a closed
subset F of Y. We indicate by the notation N(-) that the neighbour-
hood in question is one for which the set 7z(Ny(-)) is relatively compact.
We have

7nF = {x: N(x) n n'F+0,VN(2)}
= {z:7a(N@)nF+0,VN(x)}

= {x: a(Ny(x)) N F+0,VNyx)}

and, by a standard compactness argument, this set is identical with the
set

# : Ny@a(Nox)) N F+0} = g»F .
This proves (ii).
If (2.4) holds, then, for any subset 4 of X, we have

p(4) = Nypa(N(4)) .

Thus ¢G@ =G holds for any open subset G of X.
From this fact follows (iii).

The lemma tells us which topological properties one can expect of
induced correspondences. Note, that if X < R7 is a function space, then
(2.3) for all m;’s is equivalent to the requirement that for each ¢ e T
the mapping x — x(t) be locally bounded.
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The following lemma is needed later on.

2.7 LEMMA. Let 7, X — Y and 7yt Y — Z be given functions and as-
sume that 7, is u.s.c. compact-valued and that m, is continuous. Then the
formula

70Ty = Ryolty (=m0f,)

holds.

Proor. In the proof we shall not distinguish notationally between a
correspondence and its graph.

In order to prove the inclusion 7,07, S 7,07, , it is enough to prove
that @07, is closed. Let (z,,2,) be a convergent net on 7,o%,, say
(%,,2,) = (%,2). We can find a net (y,) such that, for each «,

(xa’ yzx) € ﬁl a'nd (:’/w za) € 77:2 .

Since 7, preserves compact nets, (y,) has a convergent subnet. Assume
for simplicity that (y,) itself converges, say y, - y. Since (z,,v,) - (z,9),
we see that (z,y) € #,, and since (y,,2,) - (¥,2), we see that (y,2) € 7,.
Thus (z,z) € @07, as desired.

To prove the remaining inclusion 7,07, & 7,0%,, assume that (z,z) €
7z07,. Then we can find y with (x,y) € #; and (y,2) € @,. Since (x,y) € 7,
there is a net (x,,y,) on xn; converging to (x,y). By the continuity of =,
(%, 72(y,)) is a net on myom; converging to (x,z), hence (x,z) belongs to

By simple examples one may show that none of the inclusions

0Ty S TTp0f; O  JTy07; S T07,

need hold if one drops the assumptions on z; and 7.

3. Image measures.

Let (X,u) be a probability space and Y some set with a measurable
structure. For a function n: X — Y we are often interested in knowing,
for subsets B of Y, the probability that the action = leeds to a value in
the set B. This leeds to the usual definition of the image measure
7n: nB=p(x"1B). What happens if we no longer deal with a function
but with a correspondence ¢: X — Y ? Recall one of the possible inter-
pretations of ¢: @ represents the value of x after some action or measure-
ment, but due to some special circumstances, a particular measurement
of z may leed to any value in the set ¢(x). We are interested in knowing,
for subsets B of Y the probability B that a measurement leeds to a
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value in the set B. For z in the set p*B we are sure that the value will
be in B, and if, for some z, the value does lie in B, then x must be an
element of ¢* B; thus »B must satisfy the inequalities

w@*B) = nB = u(e”B) .

With the above background the reader is, so we hope, willing to
accept the following definition:

3.1 DrrinrTION. Let X and Y be topological spaces and ¢: X - ¥
a correspondence. For u e M (X ; r) we define a set p(u), called the set
of image measures of u under ¢, as the set of those € M, (Y ; r) for which
the two inequalities

(3.2) p*(@*B) = n*B
and
(3.3) N B = uy(¢®B)

hold for every subset B of Y.

An upper star in (3.2) indicates outer measure, and a lower star in
(3.3) indicates inner measure.

Clearly, it would be possible to extend the definition to more general
situations, for instance one need not limit oneself to a topological situa-
tion nor to totally finite measures.

Note, that we have imposed no measurability conditions on ¢. There-
fore, we can not be sure that ¢(u) is non empty (perhaps, one could call ¢
p-measurable if @(u) is non empty).

The set ¢(u) is convex.

If (X,u) and (Y,7) are given, we shall say that ¢ is measure preserving
if 7 € p(u).

3.4 LEMMA. Let pe M (X;7), neM(Y;r) and ¢: X - Y be given.
Then the following conditions are all equivalent:

(3.5) @ 18 measure preserving;

(3.6) uX =Y, up*@*B) £ 9*B,VBcY;
(3.7) pX =Y, p*e*G@) £ nG, VGe¥%(Y);
(3.8) pX =Y, p*A £ n*(pd),VAcX.

Proor. (3.5) <= (3.6) = (8.7) is clear. (3.7) = (3.8) follows from

p*A £ info pu* (9 @) < infgo, MG = n*(pd),
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and (3.8) = (3.6) follows from
#*(9°B) = n*(e(¢°B)) = n*B .

The lemma is proved.

It follows from (3.8) that if u is a unit mass, say u=e¢, then ¢(u) con-
sists of all regular probability measures # with #*(px)=1.

We shall mostly deal with u.s.c. correspondences; (3.7) then takes
the form u(p®@)=<7nG. In this case one can also relax (3.8) by only
paying attention to closed subsets F' of X, since

w(@*G) = sup{uF : Fcp°G} < sup{n*(pF) : pF <G} = G .
In the same way one proves the following result:
3.9 LemmA. Let p be tight, n regular and ¢ u.s.c. Assume also that

uX=nY. Then ¢ is measure preserving if and only if uK =n*(pK) holds
for all compact subsets K of X.

In this lemma we may in fact relax the condition on ¢ only assuming
that @*G is measurable for all G € 4(Y).

3.10 Lemma. Assume that peM YX; 1,7), that ne MY ;r), that
@ 18 u.s.c. compact-valued and that Y is regular. If

we* F) z 4(F)
holds for all F € #(Y), then ¢ 18 measure preserving.

Proor. This follows from the inequalities
nF < infgopn@ < infoopu(g”G) = u(g®F)
where we have utilized Lemma 1.8.
3.11 LEMMA. Let ¢ be u.s.c. and compact-valued.

(1): If u 1s tight, then every measure in @(u) 18 tight.
(ii): If u is v-smooth, then every measure in @(u) s T-smooth.

Proor. (i): Let neg(u). To ¢>0 we can find K e X (X) with
uK >uX —¢e. For the compact set p K we then have
n(eK) 2 pK > uX—e¢.

Since 7 is regular, we can conclude that % is tight.
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(ii): Letn € ¢(u). Consider a family # < % (X) with # {J. By Lemma
1.8 and the 7-smoothness of u we have

inf {u(g*F): Fe F} = 0.

It follows that inf{nF : F € #}=0. By the regularity of # we now con-
clude that % is z-smooth.

The lemma just proved would not hold had we not demanded in the
definition of image measures that these be regular.

3.12 LEmMA. If u and 5 are T-smooth and ¢ measure preserving, then
the supports satisfy

supp (1) < @(supp (u)) -

Proor. Let F € #(X) satisfy uF=puX. Then, from (3.8) we obtain
7(¢F)=7Y, hence supp(y) c@F. Apply this with F =supp (u).

A correspondence x — ¢(x) induces a correspondence u — ¢(u), or does
it? We have not proved that ¢(u) is non empty for all . The two results
below show that under certain circumstances u — ¢(u) is indeed a corre-
spondence.

3.13 THEOREM. Let ¢: X — Y be u.s.c. and compact-valued. Then the
forming of image measures u — @(u) defines a correspondence M (X ; t) —
M (Y; t) which is u.s.c. and compact-valued too, when we provide M (X ; t)
and M (Y ; ¢) with the topologies of weak convergence (cf. [9]).

Proor. We shall appeal to Lemma 1.9.
If 4 has finite support, then it is easy to check that ¢(u) is non empty.
Thus (i), Lemma 1.9 holds (apply (iii), Theorem 11.1 of [9]).

To prove that u — ¢(u) has a closed graph, let (u,) be a convergent
net on

MAX58): pa>0ps
let (n,) be a convergent net on
MAY50): =0

and let, for each «, 7, € p(x,). We are to prove that % € g(u). To do this
we shall apply Lemma 3.9. We have

nY =limy,Y = limy, X = uX .
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For K € X' (X) we find

infgo g liminf, u,G
infg ok limsup, 7, (¢@)

infg 5 g (el = 5(eK) .

uK = infyo 6

A IAHIA

We now conclude that 7 € ¢(u).

To finish the proof, we shall show that u — @(u) preserves compact
nets. For this, we appeal to the characterization of compact nets given in
Theorem 9.1 of [9]. Let (u,) be a compact net on M (X ; ¢) and let, for
each «, 7, be a measure in p(u,). Let ¥< %(Y) dominate £ (Y) and let
¢ be positive. The class of sets ¢°G with @ in ¢ is a subclass of %(X)
dominating 2" (X). Since (u,) is compact, we can find finitely many
sets from ¥, say Gy,...,G,, such that

min,_y,__ntll#(E) <
holds eventually. Then

minv==1,...,nna([:Gv) <e

also holds eventually. This argument together with the observation
that limsup#,Y <o holds, tells us that (»,) is compact.

3.14 CoroLLARY. (cf. Lemme 2 of [1]). Let ¢: X — Y be a correspond-
ence with pX =Y such that the image of every closed set (in X) is closed
(tn Y) and such that the weak inverse image of every one-point set is com-
pact (in X). Then, to any measure n € M, (Y ; 1) there exists at least one
measure p € M (X ;t) such that n € p(u).

Proor. Apply Theorem 3.13 to the correspondence ¢*: ¥ — X.

3.15 CorOLLARY. Let ¢: X - X be an u.s.c. compact-valued corre-
spondence from the compact space X to itself. Then there exists a
meMNX;t) which is invariant under @, that is, u € p(u).

Proor. Apply the Kakutani fixed-point theorem to the correspond-
ence ¢: M (X ; t) > M LX; 8).

3.16 THEOREM. Let X and Y be regular and ¢: X - Y u.s.c. and
compact-valued. Then u — @(u) defines an u.s.c. and compact-valued cor-
respondence from M (X ; 1) to M (Y ; T) when we provide these spaces of
measures with the topology of weak convergence.
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Proor. The pattern of the proof is the same as before. Again, there
are only difficulties in proving that the graph is closed and that compact
nets are preserved.

} With the same notations as before, we can prove that the graph is
closed by employing the inequalities

"7F = inngFnG = infG_gFliminfanaG
= infGQFhmsupanaé = inngFlimsupmua((pwa)
< infoopu(e@ @) = u(gPF) .

To prove that compact nets are preserved we shall appeal to Theorem
9.2 of [9]. Let (u,) be a compact net on M (X ; 7) and let, for each «,
7. € P(,). Let F 2 F(Y) satisfy F 0.

Then the class of sets ¢*F with F € & is a subclass of & (X) filtering
downwards to the empty set. Since (u,) is compact, we conclude that

ianeflimsupalua(¢wF) =0
holds, and it follows that
infp. glimsup,n,F = 0

holds. This together with limsup#,Y <o shows that (7,) is compact.

Clearly, Theorem 3.16 admits a corollary analogous to Corollary 3.14.

4. Identification of measures.
For the next sections we need a refinement of the results of P 19 of [9].

4.1 DerFintTIONS. Let X be a topological space, D an abstract set
whose elements we denote by the letter « and let there be given a map-
ping & - (G, F,) of D into %(X) x #(X) such that G, F, holds for all
a €D,

The mapping is latticelike if (4.2) and (4.3) below hold:
(4.2) Vopapda: G, UG, c G, c F,c F, UF,;
(4.3) Voyap3a: G, NG, c G, cF,cF, nF,.
The mapping separates points if (4.4) holds:

(4.4) V, + 2, dx: 2, €G,, 2, ¢ F, .

The mapping separates compact sets if (4.5) holds (K, K, denoting com-
pact sets):

Math. Scand. 30 — 2
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(4.5) VE,nK,=03a: K, c G, cF, c[K,.

The mapping separates points and closed sets if (4.6) holds (F’s denoting
closed sets):

(4.6) Ved Fia: 2@, F“gEF.

The mapping almost separates points and closed sets if (4.7) holds:
(4.7) Vr¢é¢ FIN@)Vye Fin: Nx) = G,, y¢F, .

4.8 LeMMmA (identification of tight measures). Let D — %(X) x F(X)

be a latticelike mapping separating points. Then the mapping also sepa-
rates compact sets.

As a corollary we have that, if u, and u, are tight measures on X for which
G S F, holds for all o« € D, then u, < uy holds; if, furthermore u, X =
e X holds, then u, and u, are identical.

Proor. Let K, and K, be disjoint compact sets. Fix, for some time,
y € K,. Choose to each z € K, an index x(x) € D such that

Telyy), Y&Fup-
We can find finitely many points in K,, say x,...,%,, such that
Kl = Ga(zl)u ... U Ga(zn)
holds. Choose « € D such that
Gm(zl)U . UGa(zn) [ G“ [ F“ [ F“(xl)U UFa(a:,‘)

holds. Then K,<@,, y ¢ F,. What we have seen is this: To any y € K,
there exists «(y) € D with

Ky Gy and yé&Fy,.
We can find finitely many points in K,, say ¥,,...,¥,,, such that
Fa(vl)n ﬂFa(ym) s EK2
holds. Now choose & € D such that
G“(yl)ﬂ . nG‘,(,,m) [ Ga [ F“ [ Fa(m)n S ﬂFa(”m)

holds. Then K,c@,cF,c[ K, holds.

4.9 LEMMmA (identification of z-smooth measures). Let D - %(X) x
F(X) be a latticelike mapping almost separating points and closed sets.

Assume that X is regular. Then, for any set-function A: F(X) - R, which
18 monotone and t-smooth at O we have
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(4.10) VF,nF,=0Ve>0daeD: A(F,\G,)<e, \F,nF,)<c.

As a corollary we have that if p,, pus € M(X ; 7) are such that u, G, S p, F,
holds for all « € D, then u,=<pu, holds. If, furthermore, u, X =u,X, then

Uy = pg follows.
Proor. To establish (4.10), let F,, F, be disjoint closed sets. Consider
the class ¥ < 9(X) defined by
G={G :G@nFy=0,Ve>03ua: G < G, A(FynF,)<e}.

First we shall prove that ¢ is upward filtering, in fact we shall prove
that if G, and G, are in ¥, then so is G, U G,. Clearly,

(GluGz)an = 0-
To any given positive ¢, we first choose «; and «, such that

G,c@G,, MF,nF,) < 3¢,
G,c G, AF,nF,) < je.

We choose « such that
G,v6,cG, cF, cF, UF,.
Then Q,uG,c G, and A(F,nF,)<e hold. We have now seen that
G,uG,e¥.

For every G € ¥ we have G<[F,. We aim at proving that ¢ ¢ [F,
holds. To do this, consider an element x € [¥,. Choose an open neigh-
bourhood N(z) of z according to the defining property (4.7) applied to
xz and F,. Consider the class # < % (X) defined by

F ={F;nF, : aeD,G,2N(x)}.
We shall first prove that & g holds. To prove that & is downward
filtering, let F,nF, and FynF,, be sets in #. Choose & so that
G,nG,cG cF,cF,nF,.

It is then easy to check that F,nF, e & ; this shows that & is down-

ward filtering. To prove & | 0, let y € X be given. If y € F, we choose,

by (4.7), x € D such that N(x)<=@, and y ¢ F, hold. Then
F,nF,e# and yé&F,nF,.

If y e[F,, then any set F,nF, in & satisfies y ¢ FonF, (and we may
assume that & is non empty). Thus & | g holds.
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Since 1 is 7-smooth at ¢ it follows that, for any > 0, there exists an
o« € D with A(FynF,)<e and G,2 N(x). Looking at the definition of ¥,
we see that N(z) € 4. Hence the desired result:

G F,.
This implies that
{F.\G : Ge F}|0.

Thus, to any ¢>0, we can find G'e ¥ with A(F;,\ G)<e. Since G € %,
we can also find x € D with ¢,2G and A(FynF,)<e. Then (4.10) is
fully proved since we have A(F;\G,)<¢c as well as A(F,nF,)<e.

To prove the remaining part of the lemma, let u,, u, € M (X ; 7) satisfy
G, SuF, for all x. Consider disjoint closed sets F,,F,. Applying
(4.10) with A=max (u,u,) we find, to ¢>0, an « € D with

”I(FI\GG) < & and luz(F2 n F“) < é&.
Then we have

Fy = m(Fn Q) +u(FiNG,) = 1, G +e
au2Fa+8
Ua(F o0 Fo)+ us(F N Fo)+ e

2e+ po([ Fp) -

We infer that u,F; < u,((F,). By regularity of u, and u,, u, < u, follows
according to P16 of [9].

IA 1A

IIA

5. A theorem on projective limits of probability spaces.

5.1 DeriniTiON. By 9A; we denote the category whose objects are
pairs (X, ) with X a Hausdorff space and u a tight probability measure
on X, and whose morphisms ¢: (X,u) - (Y,7) are u.s.c. compact-valued
and measure preserving correspondences X — Y,

The identity morphism (X,u) — (X,u) is the identity correspondence
idx defined by idx () ={x} for all 2 € X. As composition of morphisms
we use composition of correspondences. It is easy to check that 9, is
a category; for example, let us prove that composition of morphisms is
well defined. To do this, let ¢,: (X,u) > (Y,7) and ¢,: (Y,n) - (Z,8)
be morphisms and consider the correspondence @;=g@,¢,: X — Z. The
general formulas

@3°B = ¢,%(p,°B) and @4 = @y 4)
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tell us that @, is u.s.c. and compact-valued. Since, for any G € ¥(Z),
we have

w(@3° @) = u(p (Pt @) < (et = UA) s

@, is also measure preserving. Thus g is a morphism (X, u) - (Z,{).

We shall study projective systems in the category ;. A projective
system consists of an upward directed set I=(I,<), a family (X, u;);r
of objects in %, and a family (¢;);<; of morphisms in U, indexed by
those pairs (¢,j) of elements of I for which ¢ <j; the morphism ¢, is a
morphism (X;,u;) - (X;, ;). We demand that ¢, is, for each ¢ € I, the
identity morphism (X, u;) - (X;,u;) and, furthermore, that the ¢;;’s are
consistent by which we mean that ¢;;@;;=@;;, holds whenever 1 <j=<k.
We often speak of “the projective system (X,,u;,®;;)” .

Let (X, u:9:) be a projective system in 2. We shall say that
(X, u, ;) is a projective limit of the given projective system if (X,u) is
an object in 9, and if, for each ¢ € I, ¢; is a morphism (X,u) - (X, 1;)
and if, furthermore, the ¢;’s are consistent with the ¢;’s by which we
mean that the relation ¢;=g,;p; holds whenever s <j. The measure u is
often referred to as the projective limit measure.

Note that our definition of a projective limit is not the one usually
adopted in category theory. What is known in category theory as a
projective limit we shall call a universal projective limit. To be precise,
we shall say that (X,u,q;) is a universal projective limit (of the projective
system (X, u;, ;) if (X,u,;) is a projective limit and if, for any pro-
jective limit (Y,n,y;) there exists one and only one morphism
0: (Y,n) > (X,u) such that yp,=¢;00 for all ¢ € I.

The terminology introduced above in the specific category A, will later
be applied to other categories, in the next section also to a purely topo-
logical category.

If (X,u,p;) is a universal projective limit, then (X,u) is uniquely de-
termined up to an isomorphism (in the categorical sense). It is quite
easy to see that (X,u) and (X’,u’) are isomorphic if and only if there
exists a measure preserving homeomorphism 7n: X - X',

When we attempt to find a projective limit (X,u,q;), then we shall
always (at least in this section) assume that the space X and the corre-
spondences ¢, are given in advance, and we shall then assume that X is
a Hausdorff space, that each g; is an u.s.c. compact-valued correspond-
ence X — X,, and that the consistence relation ¢;=g;;¢, holds for all
t<j. We shall refer to X as the target space, but most often, when we
speak of a target space, we shall in fact have X as well as the ¢;’s in
mind. If there exists a tight probability measure u on the target space X
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such that (X,u,q,) is a projective limit, then we shall say that a pro-
Jjective limit can be realized on X.

If one has applications to stochastic processes in mind, then it is quite
clear to us — and perhaps the reader agrees — that the notion of a pro-
jective limit is much more important than that of a universal projective
limit. For instance, if we consider the usual setup of a stochastic process
as a consistent family of finite dimensional distributions, then a universal
projective limit gives us a version of the process on the pretty uninforma-
tive function space of all functions on the time set in question in the point-
wise topology, whereas the possibility to vary the target space allows us
to study versions of the process on a variety of concrete function spaces.

Let (X, u;, ;) be a projective system and let X with correspondences
(p;) be a target space. The only thing we lack in having a projective
limit is a certain measure on X. Usually, in attempts to construct such
a measure, the class of cylinder sets on X plays a dominant role. This will
also be so in our case, but certain difficulties arise since we have two
kinds of inverses for correspondences. To find a convenient substitute
for the class of cylinder sets, we first define the set D as the set of all
pairs «=(3,F) with 2 € I and E a subset of X, (in other words, D is the
disjoint sum of the power sets of the X;). Then we define a mapping
D -4 X)x F(X) by « > (G, F,) where

Ga = (p’ts(E)’ Fa = (P’l,w(E) .

This mapping is going to replace the notion of cylinder set. We shall
say that the cylinder sets separate points (separate compact sets, separate
points and closed sets, or almost separate points and closed sets) if the
mapping D - 9(X) x #(X) does so.

5.2 LEMMA. Let (X, u;, ;) be a projective system in the category U, and
let X with correspondences (p;) be a target space.

Then the mapping « — (G, F,) defined above is latticelike, and the
mapping separates points if and only if, for any pair (x,y) of distinct
points of X, there exists an © € I such that ¢,(x) and @,(y) are disjoint.

Proor. First we remark that for any «=(s,E;) in D and any j with
J z ¢ there exists f € D of the form = (j,E;) such that the inclusions
G,cGacFzcF,

hold. To see this, we just have to put E;=¢;*(E,).
To establish (4.2) and (4.3), consider elements «; and «, in D. Due to
the above remark, we may assume that «, and «, are of the form «,=
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(¢,B,), xg=(3,E;) with a common s. Then (4.2) and (4.3) follow from the -
inclusions

9(Ey) U p(By) £ p((B1VEY)°) S 9(ByUEy) = 9By U p(Ey)
and
9 (By) N 92(EBy) = 9 ((BanEy)°) € 9(BinBy) € 9(Ey) 0 92(Fy) .
If the cylinder sets separate points, then %y clearly implies
) N@i(y) = O for some i .

On the other hand, if this condition holds, then the cylinder sets must
separate points since, for x4y, we can find ¢+ with ¢,(x)ne,(y)=90 and
then, by compactness, we can find ¥ < X, such that

pw) s B < E < [jpuly)
hence x e G, and y ¢ F, with «= (i, E).

The same argument shows that the cylinder sets separate compact
sets if and only if, for each pair K,, K, of disjoint compact sets, we have

p(K) Ny (K,) =0 forsomeiel.

Here then comes our main theorem:

5.3 THEOREM. Let (X;,u,, ;) be a projective system in the category U,
and let X with correspondences (¢;) be a target space. Assume that the
cylinder sets separate points.

Then a projective limit can be realized on X if and only if

(5.4) SUPge () infierps(p K) = 1

holds, and when this condition is satisfied, the projective limit measure,
which is unique, is given by the formula

(5.5) /I,A = sungAinfiez,ui(%K); Ae Q(X) .

Proor. Let us first prove that a projective limit measure is unique.
Assume that p, and p, are both projective limit measures (on the given
target space). Then for any «=(i,E) in D we have

w8, = ﬂl(‘PisEo') = /‘iﬁ S wkE 2 py(pE) = p,F,,

and it follows by Lemma 4.8 that u; =u,.
. Then let us prove the “only if”” part. This is in fact quite easy, since
if yisa projective limit measure, then, by Lemma 3.9, we must have
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1 = supgpuK = supginfyrpy(p;K) .

We are now faced with the essential part of the proof and assume that
(5.4) holds. We shall construct u in several steps of which only the very
last one requires condition (5.4). Firstly,

(1) 12j, KeA(X) = pyg;K) = pi@iK) -
This follows from
v @K) = pdoy(9;K)) 2 pi(e; K) .
Now define 1: o (X) -~ R, by
AK = inf;;ui(p;K), K eA(X).
By (i) we can also write
2K = lim;p(p,K) .
It follows that 1 is subadditive. We now claim:
(i) A is additive .

To prove this, let K;, K, be disjoint sets in /' (X). By Lemma 4.8,
the cylinder sets separate compact sets, and we can find ¢ € I such that

pKing; Ky = 0.
Then we also have

9;Kyng; Ky, =0 forall jzi.
To &> 0 we choose j =1 so that

MK UK,) Z py(p(K,UKy))—e .
Then
MK UK,) 2 p(p; K Up; Kp)—¢
= puy(@; Kq) +pi(@; Kp)—e 2 AK, +2AK,—¢.

In connection with the subadditivity of A this proves (ii). Further we

claim that

(iii) A is semi-regular .

For the notion of semi-regularity see [5] or Section 2 of [9]. To prove
(iii), let K € A(X) and &> 0 be given. Choose 7 so that

pip: K) < AK +e.
Choose G;2¢,K so that
,uiG,- < AK +¢&
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Put G=¢;*G;. Then G2 K and for any K'e X (X) with K'2G it is
easy to see that AK’ <AK +¢. This proves (iii).
By (ii) Lemma 2.4 of [9], A is tight. Hence the formula

defines a measure u in N, (X;¢). By the definition of A we have, for
each 1,
(iv) Ked(X) = pK=sp(pK) .

Lastly, we apply (5.4) and find that u(X)=1. Thus (X,u) is an object
in our category, and (iv) in connection with Lemma 3.9 shows, that all
the @; are measure preserving.

Theorem 5.3 is proved.

We shall now indicate in some detail how Theorem 5.3 can be applied
in the study of stochastic processes. We consider a stochastic process
with values in R over the time set 7', given in terms of the finite dimen-
sional distributions (u;);c;- In other words, the process is given by a
projective system (R?, u;,7;;) in U,, where ¢ runs over all the finite subsets
of T', and m;; for ¢<j denotes the projection from R’/ to Ri. We are
interested in investigating whether the process can be realized on a given
function space X cRT. By z; we denote the projection X - R? and we
put

¢, =% and @ =a;

(®y;=m;; since m;; is continuous). We assume that the following two
conditions are satisfied: Firstly, for every ¢ € T' the mapping n;: X — R
is locally bounded and, secondly, for every pair z,y of distinct functions
in X there exist neighbourhoods N(z) and N(y) of z and y, respectively,
and a finite subset ¢ of 7' such that

7 (N(x) nw(N(y) = 2.

The first condition ensures that the ¢;’s are u.s.c. compact-valued cor-
respondences (cf. Lemma 2.2) and that the consistency relations ¢;=
@95 Vi <j hold (cf. Lemma 2.7). The second condition tells us that the
cylinder sets separate points. Thus Theorem 5.3 can be applied. Note
that the ¢,; are all functions, only the p; may be correspondences. The
“classical” case mentioned in the introduction arises if also the g, are
functions. In concrete situations we are of course left with two difficult
problems, firstly the choice of a function space and, secondly, in order to
understand what condition 5.4 involves, we must be able to describe in
some detail the compact subsets of X.
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Lastly, we shall point out that Theorem 5.3 may also be applied in a
somewhat different way. Suppose, we want to study a Markoff process
with 7'=R, as time set and with {0,1,2,...} as the set of possible states.
It is natural to suggest that the function space X should consist of all
functions z: R, — {0,1,2,...} that are right continuous and have limits
from the left. If z(t—) is finite, it is natural that the induced corre-
spondence ¢, should have the value @, (x)={z(t—),z({+)}. However, if
x(t—)=o0, it is unnatural that g,(x)={x(t+)} should hold. Therefore,
we are forced to compactify the state space, and thus we now consider the
extended state space §={0,1,2,...}U{cc}. For i={t;,...,t,} we define
@ (x) as the set of all points (z(t; +),...,2(t, +)) in S*=8" obtainable
by the 2" possible choices of + and —. The weakest topology on X
for our theory to work is the weak topology determined by the corre-
spondences ¢, (cf. Section 1). This topology is the same as the weak
topology determined by the correspondences ¢;; t € R,. With this topo-
logy we may continue the investigations; however, we do not yet know
how to characterize the compact subsets of X.

6. On the existence of universal projective limits in a purely
topological category.

Even though we have remarked that, from some points of view, the
problem of universal projective limits in the category U, is not very
important, our mathematical curiosity has not been able to withstand
the temptation to attack this problem — in fact, we have used a lot of
effort to solve it and yet, we do not have a complete solution. However,
this much can be said: only very rarely a universal projective limit
exists. This circumstance, at least at first sight, seemed surprising since
universal projective limits practically always exist in the category of
probability spaces connected by continuous functions.

In this section we shall study the purely topological category A ob-
tained from 9(; by simply forgetting the measures. It is hoped that the
results of this section are of some interest in their own right.

6.1 DeriniTION. We denote by U the category whose objects are
Hausdorff spaces X and whose morphisms ¢: X — Y are u.s.c. compact-
valued correspondences.

We demand that all our topological spaces are non empty, thus the
objects in 9 are by definition non empty.

Below we shall study a fixed projective system (X,,¢;;) in the category
A. We shall seek conditions under which a universal projective limit
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exists. Recall that it is a matter of three or four lines to settle the
analogous problem in the category of Hausdorff spaces connected by
continuous functions. In 9 the situation is quite different.

We shall denote by X, the set of ‘“subconsistent’ families (K,);.; of
compact non empty subsets of the X;. By sub-consistency we mean
that @y K;< K, holds for all 1 <j. In short, we can write

Xo={(K)) : K;+0,Vi; o ; K;<K,;,Vi<j}.
For each i, € I we define a correspondence ¢, : X, > X, by
‘Pi.,((Ki)) = Ki.,» (K;) e X, .
In X, we introduce an ordering as follows:
21 STy <> Vi @) S @)
here z; and z, denote elements of X,. We define a subset X, of X, by

Xoo = {re Xy : Vij: (0;) = i)},

in other words, X, consists of the consistent families (K;) in X,.

By X we denote the set of minimal elements of X,. In case X is non
empty, we provide X with a topology, namely the weak topology de-
termined by the correspondences ¢;: X — X, (now, of course, ¢; denotes
the restriction of the previous ¢; to X). The subsets of X of the form
@:8(G) with 7 € I and G € 4(X,) constitute a basis for the topology on X.

We shall prove that if there exists a universal projective limit of
(X4, 945) at all, then it must be (isomorphic to) X together with the corre-
spondences @; (& propos: two objects in 9 are isomorphic if and only if
they are homeomorphic).

6.2 LemmA. For each i€ 1, let A; be a subset of X, (perhaps A; s
empty for some or even for all ©). Consider the set

Q={geX,: p(9)24,Vi},

and provide @ with the ordering induced from X,. Then:

(1): For every q € Q there exists a minimal element of @ dominated by q.

(ii): If ¢, and q, are distinct minimal elements of Q, then, for at least
one i € I, the sets ,(q,) and ¢,(q,) are disjoint.

(iil): If each A; is non empty, and if Q is non empty, then Q contains a
smallest element.

(iv): If ;4,2 4, holds for all i<j, then every minimal element of Q
belongs to X,,.
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Proor. (i): For the given element g € @ consider the set
A=1{aecQ :asq}.

Let B be a totally ordered (non empty) subset of A. For each iel
define a compact subset K; of X; by

K; = nbeB‘Pi(b) .

A compactness argument tells us that K; is non empty. Clearly, ¢;(q) 2
K,;2A4,; holds. For i<j we have

o K; < Nyep®i;9;(0) = Nyepps(d) = K; .

Thus (K;) Q. We have seen that every totally ordered subset of A4
has a minorant in 4. Hence, by Zorn’s lemma, 4 has a minimal element.

(ii): Let ¢, and ¢, be minimal elements of ¢ and assume that
?:(¢1)N@y(gs) is non empty for all 5. Put K;=g¢,(q;)Nps(gs). Then (K))
is an element of @ dominated by ¢, as well as by ¢,. By minimality,
(K;)=q, and (K,)=q, follow. Thus ¢;=g¢,.

(iii): Follows from (i) and (ii).

(iv): Let g be a minimal element of . Define, for each i € I, a subset
K, of X; by

K = Nyzipii(q) -

We can also write (p;,(g)) ¢ K;. Since all the g;¢,(q)’s are compact
non empty, K, is compact and non empty as well. Since for ¢ <j we have

P55 K5 S Dz Py P @) = Nz Pirul) = Ky,
(K,) is an element of X,. We also have
Ky 2 Nipud; 2 4,

hence (K,) e Q. Since (K,)<g¢ and since ¢ is minimal, (K;)=g¢ follows,
that is, we have
njgi%j%(‘l) = @4(q)

for all 5. The equality ¢;;;(q)=¢;(q) for all ¢ <j follows, hence q € X.

For the moment we shall only apply the result just proved to the case
where all the A’s are empty. Then @ =X, and the set of minimal ele-
ments of @ is identical to the set X. By (iv), X is a subset of X,. By
(i), X is non empty if and only if X, is non empty. Let us prove that
X is a Hausdorff space (assuming X +¢). Let x; and z, be distinct ele-
ments of X and choose, according to (ii), ¢ € I so that

@i(xy) N@xy) = 0.
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Then choose disjoint open neighbourhoods @; and G, of the compact
sets @;(x;) and ¢@,(x,), respectively. Then ¢,°G, and ¢,;*G, are disjoint
neighbourhoods of #; and z,. Let us put some basic facts on X together:

6.3 LEMMA. Assume that X +0. Then (X,@;) is a projective limit of
(X, 94) in the category A. Furthermore, the cylinder sets separate points;
they even separate compact sets.

When we speak of cylinder sets in X we have the mapping
« - (G, F,) from Section 5 in mind. Note that the considerations
centering around Lemma 5.2 were purely topological.

We now assume that (X;,¢,;) admits a universal projective limit
(Z,p;). We aim at proving that then (X,¢;) is a universal projective
limit too. First we remark that X must be non empty; to see this,
choose an element z € Z; then (y,(2)) € X4 and X +0.

6.4 LEMMA. Let (Z,y,;) be a universal projective limit.

(1): To any x € X, there exists one and only one compact subset A of Z
with v, 4 =g,x for all 1.

(ii): If A and A’ are compact non empty subsets of Z with w, A=y, A’
Jor all i, then A=A".

(iii): If A and A’ are compact non empty subsets of Z with p;Acyp; A’
Sor all ¢, then Ac A'.

Proor. (i): Denote by Y the topological space consisting of the one
element x. Then Y is provided in the natural way with morphisms
;0 Y > X,. It is easy to check that (Y,p;) is a projective limit of
(X4 @;;). Hence there exists a uniquely determined morphism 0: ¥ -~ Z
such that y;0 =g, holds for all s. This proves (i) (put 4 =6y =0(z)).

(ii) follows from (i), and (iii) follows from (ii) applied to the sets A4’
and Aud’.

We now define a function (note, not a correspondence) f: Z — X, by

f@) = (v:(2)), z€Z.

We shall prove in several steps that f is a homeomorphism of Z onto X:

(6.5) f is one-to-one ,
(6.6) fZ)=2 X,
(8.7) fZ)ye X,
(6.8) f is continuous ,

(6.9) f-1is continuous .
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Proor oF (6.5): If f(z)=f(z'), apply (ii) Lemma 6.4 to the sets A= {z}
and A’'={z'}. We conclude that A=A4’', hence z=2".

Proor or (6.6): Let x € X be given. Denote by 4 the set determined
from z as explained in (i) Lemma 6.4. Choose a € A. Then f(a)<z
holds and, since x is minimal, f(a)=x follows.

Proor oF (6.7): Let x € f(Z), say x=f(z). Let z; be an element of X
with 2, <z (apply (i) of Lemma 6.2). By (6.6) there exists 2z’ € Z such
that f(z')=2,. By (iii) Lemma 6.4 we have {z'} < {z}, hence 2'=2. Then
z=f(2)=f(z')=2, € X.

Proor or (6.8): This follows from the fact that ¢;f=1v,, V4 in connec-
tion with (i) Lemma 1.11.

Proor or (6.9): Since X is non empty, (X,p;) is a projective limit.
Thus there exists one and only one morphism 6: X - Z such that
p;0=0;, Vi. Let  be an element of X. Then 4 =0(x) is compact and
v;A=g¢;(x), Vi. The same can be said about the one-point set f-1(x).
Thus A=f-'(z). By this argument we see that 6 and f-! coincide
(0(x)={f-(x)} for all x € X). Since 0 is u.s.c., f~! must be continuous.

6.10 THEOREM. If (X, ;) admits a universal projective limit, then
(X, ;) s a universal projective limit.

Proor. Let (Z,y;) be a universal projective limit. What we have
seen is that there exists a homeomorphism f: Z — X such that ¢,f=1vy,
and y;f~1=¢; for all 5. The assertion follows from these facts by a
standard argument. Let us write down the details: If (Y,£;) is a pro-
jective limit, then there exists 6: ¥ - Z such that y;0=¢;, Vi. Put
0’'=f0. Then 6’ is a morphism Y — X for which ¢,0'=§;, Vi. If
0"": Y - X is another such morphism, then the morphisms

f:Y—>Z and f10:Y->2Z
satisfy

pi(f10°) = & and  y(f107) = &

for all ¢. Since (Z,yp;) is universal, f-16'=f-16" follows. Thus 6’ =
F(f70) = f(f-107) = 6"

Somewhat justified by Theorem 6.10 we write lim X; instead of X,
or instead of (X,;). This notation is not in agreement with the usual
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notation in category theory since, in a great many cases, li(_lll_Xi will not
be a universal projective limit.

We shall now discuss under which conditions X is a universal projec-
tive limit. We shall introduce four conditions on the given projective
system (X, @;;).

By [0] we denote the condition that X be non empty or, equivalently,
that X, be non empty.

By [M] we denote a condition somewhat resembling the maximality
condition of Bochner. What we demand is, that to any y € X, and to
any 1€l and any z; € p,(y) there exists an element x € X with x < y
and x; € @;().

Note that if y € X, and if we put K;=g¢;(y), V1, then (K,,¢,;;) is again
a projective system in the category U. By [K] we denote the condition
that for any y=(K;) € Xy, the topological space lim K; be compact.

Let ¢, denote the class of sets of the form ¢,*G with s € I and @ € 9(X,).
Denote by [N] the condition introduced earlier in connection with
Lemma 1.11; in the present case this condition amounts to the require-
ment that whenever K € #(X) and N(K) is a neighbourhood of K, we
can find @ € ¢, with K <G < N(K).

Note, that [M] holds if and only if

¢'io(1‘]:'_l£lKi) = ‘K‘io
for any (K;) € Xy, and any ¢, € 1.

6.11 Lemma. If [K] is fulfilled, then im K; is compact for any family
(K;) in X,.

Proor. Given (K,) € X,, put A=1imK;. Define for each ¢ a subset
of X, by
A; = g4) .

Consider the set @ of Lemma 6.2 associated with the 4,. Since each 4,
is contained in K;, @ is non empty. From Lemma 6.2 we conclude that
there exists a smallest element z € @ and that this z is in Xy,. Thus
there exists (K,;') € Xy, such that

A, c K/ < K,Vi.
We claim that
IimK,; = limK,’.
The inclusion “2” is clear. Assume that z, € limK;=4. Then it fol-
lows that
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P4(me) € @4(4) = 4; € K/

for all < and x €limK,. Lastly, we just have to remark that lim K
is compact by [K]

6.12 CoNJECTURE. The fulfillment of [O], [M], and [K] is necessary and
sufficient for (X;,¢;) to admit a universal projective limit.

The necessity part of this conjecture is true as will follow from the
result below in connection with Theorem 6.10.

6.13 THEOREM. If im X; is a universal projective limit, then [O], [M]
and [K] hold.

Proor. Clearly, [0] is fulfilled.

Let y € Xg. Put K;=¢,(y), Vi. Denote by A the uniquely determined
compact subset of X for which ¢;(4)= K, holds for all s (cf. Lemma 6.4).
We claim that
(6.14) A4 = Ny (Ky) -

The inclusion “<” follows since ¢;(4)=K,. To prove the other inclu-
sion, let z € N;p,*K; be given. By (ii) of Lemma 6.4 we conclude that
A=Au{z}, thus z€ 4. This proves (6.14). By (6.14) we can also write
A=1limK; (this formula also involves the topology of the two sets).
Thus & limK; is compact and we have established condition [K].

For the set A above we have ¢;A=K;. Therefore, if we consider an
1€l and a point z; € K;, we can find a € 4 such that x; € ¢;(a). This
argument proves the validity of [M].

6.15 LEMMA. Assume that (M) and [K] hold. Then, for any (K;) € X4
there exists one and only one compact subset A of X for which ¢; A=K,
holds for all ©. Furthermore, this set is given by the formula

(6.16) ‘ A = Nyp Ky = Niero(K)

Proor. Put A=N;;¢K;. Then A=limK,;, and 4 compact fol-
lows from [K]. Clearly, ¢;4 < K, holds for all s. By [M], we deduce
the other inclusion ¢, 4 2 K;. Thus ¢;4 = K; holds for all . This proves
existence.

To prove uniqueness, let A’ € 4 (X) be another set with ¢;4'=K;
for all 5. Then 4'< A clearly holds. Assume now that x e X\ 4'.

By Lemma 6.3 we can find ¢ € I such that ¢;xne;4'=0, that is,
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)N K, =0 or xz¢p¥K,;.
We have seen that
(4" = Uy, foK;
holds. Then we have

A" € A=0NipK; < N K, < A

and conclude that 4 =4" and that formula (6.16) holds.

6.17 REMARK. The above proof shows that if [M] holds, then we
have for any (K;) € X,

ImK; = Ny9°K; .

In particular, im K; is a closed subset of X. As a simple consequence
of this remark and of Lemma 6.11 we see that if each X, is compact
and if [M] holds, then condition [K] is equivalent to the compactness
of X=limX,.

Assume now that [0], [M] and [K] hold, and let us try to prove that
X is a universal projective limit. Then we shall consider some other
projective limit, say (Y,y;). It is our task to investigate whether there
exists a uniquely determined 6 which to any y € Y assigns a subset 6(y)
of X such that the following conditions hold:

(6.18) 6 is a correspondence (that is, 6(y)+ 0, Vy),
(6.19) 0 is w.s.c.,

(6.20) 0 is compact-valued ,

(6.21) @0 =y, Vi.

By Lemma 6.15 we see that there is only one hope for such a 0 viz. the 8
given by

(6.22) 0%) = Nierps(vi(y)) -

By Lemma 6.2 this 0 satisfies (6.18), and (6.20) and (6.21) are taken care
of by Lemma 6.15. So it only remains to establish (6.19), that is, the
u.s.c. of . However, due to Lemma 1.11, or rather the remarks to this
lemma, we run into difficulties here. Even though we can not prove in

general that 6 is u.s.c., we can prove something without introducing
further conditions:

6:23 LemMA. Assume that [0], [M] and [K] hold and let (Y,y;) be a
projective limit. Define 6: ¥ -~ X by (6.22).
Math. Scand. 30 — 8
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Then the graph of 0 is closed, and for any compact subset K of Y we have
0K = Ny K) = Nyerp(y; K)

In particular, 0(K) is compact for oll K € 4" (Y). Thus, by Lemma 1.9,
0 is almost u.s.c.!t)

Proor. Let (y,,z,) be a net on the graph of 0 and assume that y, — v,
z, . If (y,x) does not belong to the graph of 0, then there exists an
1el with g@)x)nyy)=0. Choose disjoint neighbourhoods N(p,z),
N(y,;y). Since ¢; is u.s.c. and since z, >z, we have g,(z,) < N(p;x),
eventually. A similar argument shows that v,(y,) = N(v,y), eventually.
We conclude that there exists an « such that both ¢,(z,)< N(p;x) and
v(¥,) = N(py) hold. For this «,

(pi(xa) n "/’i(?/a) =0

holds, in other words, (y,,z,) does not belong to the graph of 6. This
contradiction proves that the graph of 6 is closed.
Now let K € #°(Y) and put

4 = Nipfy,K)
Then A is compact and ¢, 4=y, K, Vi. Since
¢:i(0K) = (p0)K = y; K, V1,

0K < ¢, %(y; K) for all ¢, and we have seen that 6K < 4. Since K is com-
pact and the graph of 0 closed, the set 0K is closed. Hence, as a closed
subset of a compact set, 6K is compact. Put A’'=0K, apply Lemma
6.15 and conclude that A=A4'. We then have K =4.

If we introduce the further condition [N], then we obtain from the
above discussion and from Lemma 1.11 the following theorem.

6.24. TarormM. If [0, [M], [K] and [N] hold, then lim X, s a uni-
versal projective limit.

6.25 THEOREM. If all the X,'s are compact, then the conditions [O],
[M] and [K] are sufficient to ensure that im X; is a universal projective
lemat.

1) If, for instance, X is a k-space, then 0 will be u.s.c.
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This result can either be obtained as a corollary to Lemma 6.23 and
Lemma 1.9 or as a corollary to Theorem 6.24 (the fact that [N] holds
follows since the cylinder sets separate compact sets).

6.26 THEOREM. Assume that each X, is metrizable, or, more generally,
that to each i € I and each K; € A (X,) there exists a countable base for the
neighbourhood system of K;. Assume, furthermore, that I contains a co-
final sequence.

Then the conditions [O), [M] and [K] are sufficient to ensure that lim X,
is a universal projective limat.

Proor. To simplify the proof notationally we shall assume that I=
{1,2,8,...} in the usual ordering. This assumption also leeds to one or
two real simplifications. What we shall prove is that [¥] holds (given
that [O0], [M] and [K] hold). Let K € %" (X) and N(K), a neighbourhood
of K, be given. Put K;,=¢,;K; 1€1. We claim that we can find sets
(Gim)iz1,s,...;m=1,2,... Such that:

(i) Vi,m: Gy, € 9(X,);
() Vo: (Go) V K5
(iii) Vi: (Gyp)m is @ neighbourhood base for K;;
(iv) YiSjVm: ¢y(Gyp) € Gip-
To see this, first find sets (G;,) such that (i), (ii) and (iii) hold. Then
define the @,,, recursively by
Glm = G;m’ vm;
Gi+1,m = G;2+1,m n (pg,i+1(Gim)’ Vm> i= 1,2:° L]
For the purpose of an indirect proof, assume that whenever K < ¢,*G;

holds (with @; € ¢(X,)), the inclusion ¢,*G;< N(K) fails to hold. There-
fore we can find a sequence (x;) such that

z; € pf(G)\N(K), i=12,....
For ¢ <j,

Define, for each ¢, subsets of X; by
4; = K;u U:’L‘Pi(%) .

The above inclusions in connection with Lemma 7.5 of [9] imply that
the sets

U::-i('Ki v (pi(xv))’ i= 1’ 2: oo
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are compact. Therefore, each 4, is compact. Since the consistency rela-
tions (P'i]“Aj=‘A'?:’ i§j, ObViously hOld, (A't) € XOO’ Put

A = limA4,.

By the remarks to Theorem 6.25, condition [N] holds in the space A.
Since N(K)nA is a neighbourhood of K in that space, we can find ¢ € I
and G, € 4(X,) such that

Kcof(@)ndc NK)nd.

Determine j=¢ such that G,;<@; holds. Then z;e¢;%G,)n4, and
x; € N(K) follows. This contradiction establishes condition [N].

By three concrete examples we shall now show that none of the con-
ditions [O], [M] or [K] can be omitted in Conjecture 6.12. In these
examples, I will be the set of natural numbers in the usual ordering,
and all the spaces X; will be discrete spaces.

6.27 ExaMpLE. This example is to show that [M] and [K] may hold
but [O] fail.

We put X;={1,2,...} for each ¢=1,2,..., and define the ¢,; by the
consistency relations and by the requirement

Piia(n) = {n,n+1}, iel, neX,,,.

It is quite easy to see that X, is empty.

6.28 ExamMpLE. This example is to show that [O] and [K] may hold
but [M] fail.

We put X,;={0,1} for all i e I and define the ¢,; by consistency and
by the requirement

@4,40(0) = {0}, @4,442(1) = {0,1}, 1el.

Then X consists of the one element x=({0}); and X, contains one fur-
ther element viz. (X;);. Clearly, [M] fails but [0] and [K] hold.

6.29 ExampLE. This example is to show that [O] and [M] may hold
but [K] fail.

We put X;={1,2,...,i} for all ieI. The ¢; are defined by consi-
stency and by the requirements

‘Pi,i?q(n) = {n}, nsi,
@10 +1) = X,
for all 1 e I.
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X consists of countably many elements x,,%,,..., where z; is
defined by
Pi(@y,) = {lo} i 127,
=X, if i<i,.

We leave to the reader to verify this; the reader is also asked to verify
[M]. That [O] holds, is of course trivial. That [K] fails, follows from the
fact that the topology of X is the discrete topology (for @, e 9(X,),
defined by G;={i}, we have ¢5(@,)={x}).

We remark that we have been unable to find an example where
[0], [M] and [K] hold but [N] fails. Due to Theorem 6.26 such an ex-
ample, if it exists, can not be as simple as the examples above.

Of the conditions introduced for the discussion of our problem, condi-
tion [O] is of course quite innocent and we feel that condition [M] is in
an acceptable form. However, condition [K] is not in a form which al-
lows one to decide easily, in concrete cases, whether or not it holds. We
shall now give a lemma which improves on this situation. The lemma is
connected with the usual proof of the Tychonoff compactness theorem,
but when we compare the present setup with the setup in the Tychonoff
theorem we find that additional difficulties arise. The convergence of
sets appearing in the lemma is that of closed topological convergence
(cf. P8 of [9]).

6.30 LeMMa. Assume that all the X, are compact. Let (x,) be a univer-
sal net on X=lmX;. Then:

(i): For each 1 €I there exists a compact subset K, of X, such that
?i(x,) - K.

(ii): For each i, the set K, is non empty.

(iii): For i <j, the inclusion ¢ ;K;2 K; holds.

(iv): There exists a smallest element (K;*) of X, such that K;*2K,
forall sel.

(v): (K;*) is an element of X,.

(vi): A necessary and sufficient condition that (x,) converges, is that
(K;*) e X (in which case x, - (K;*) holds).

The proof is left to the reader. Parts of it are straight forward, and
parts of it follow from Lemma 6.2.

By simple examples it can be seen that (K,*) may be distinct from
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(K;). Thus take I={1,2}, X;={0,1}, X,={1,2,3,...}u{co} and define
@12 DY @15(00)={0,1}, @15(n)={0}; consider a universal subnet of the se-
quence (n),_; q, ..., noting that X and X, are to be identified.

One may wonder if the K;* can be described explicitly — perhaps by
the formula
K> = Usgi nigs @i K -

At last, let us briefly discuss the example in which all the ¢,; are func-
tions. By an argument which we shall leave to the reader, it can be
seen that X consists of those families (;),.; of points of the spaces X,
for which ¢;(x;)={xz;} for all i<j. All the ¢, are then functions. It is
easy to deduce from Lemma 6.30 that [K] holds. Also, it is easy to see
that [N] holds. By a well-known argument it can be proved that [M]
holds. Thus, a necessary and sufficient condition that X be a universal
projective limit is that [O] holds. In case I contains a cofinal sequence
or in case all the X, are compact, condition [O] holds. It is known that
[O] does not always hold (cf. [3] or [4]).

7. On the existence of universal projective limits in 9,

We shall study a projective system (X, u;,@;) in the category %,
By (X,¢;) we denote the projective limit of (X;,¢;;) introduced in the
previous section (cf. Lemma 6.3).

7.1 LEMMA. Assume that (X;,¢;;) satisfies conditions [0], [M] and [K]
of Section 6. Then a necessary and sufficient condition that a projective
limit can be realized on X is that

sup(Ki)eXooinfiequi(Ki) =1.

This result is easily derived from Theorem 5.3 and the results of
Section 6.

7.2 THEOREM. Assume that (X;,¢;;) admits a universal projective limit
in the category .

(i): If a projective limit measure u can be realized on X, then (X,u,@;)
s a untversal projective limit of (X, p;, @y5)-

(ii): If (X, p:945) has a universal projective limit in the category U,
then it can be realized on X.

Proor. (i): Let (Y,7,v;) be a projective limit of (X, u; ;). Let
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§: Y - X denote the uniquely determined morphism in ¥ for which
@;0=1y; holds for all =. Then we have, for K € #'(Y):

w(0K) = inf;pu,(p,0K) = inf,u,(y,K) 2 nK ,

and it follows that 0 is measure preserving. Hence 0 is a morphism in
A,

(ii): Assume that (Z,(,&,;) is a universal projective limit. Denote by 0
the uniquely determined morphism Z — X in % for which ¢,0=§;
holds for all ¢. We have

1\

SuPLe.x"(Z)infi.”i(‘PieL)
S“PLex(Z)infiﬂi(&L)
SUP 7.1 (Z)C(L) =1,

SUP ke (X) inf; (¢, K)

v

and it follows by Theorem 5.3 that we can realize a projective limit
measure x4 on X. For each compact subset L of Z we have

w(0L) = infu,(@;,0L) = inf,u,(&,L) = (L.

Hence 0 is measure preserving. From this fact and from the universal
property of Z, it is easy to deduce that X has the universal property
(also employ the identities ¢,0=2¢&,).

8. Variants of the result on projective limits of measure spaces.

We believe that for the problem of projective limits of measure spaces,
the category 9, is the cleanest and perhaps most natural one. However,
it is clear that by changing the category slightly, one can obtain results
closely related to our main theorem, Theorem 5.3. For instance, this
applies if one works with correspondences for which images of compact
sets are measurable or strong inverse images of open sets are measurable.
The two results below are not obtained by introducing measurability
conditions — we still stick to simple topological conditions on the corre-
spondences. Both results can be seen as an attempt to avoid any com-
Pactness assumptions. In the first result we drop the requirement that
the correspondences be compact-valued, and in the second we also try
to avoid the tightness assumption imposed on the measures.

8.1 DeFmNITION. By 9/ we denote the category whose objects are
pairs (X,u) with X a Hausdorff space and u a tight probability measure
on X, and whose morphisms ¢: (X,u) - (Y,7) are u.s.c. open and
measure preserving correspondences X — Y.
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8.2 THEOREM. Let (X u; ;) be a projective system in the category
A/, and let X be a target space with u.s.c. open correspondences ¢;: X — X;.
Assume that the cylinder sets separate points.

Then a projective limit can be realized on X if and only if

(8.3) SUPgey(xinfe o ginfuy(p,G) = 1,

and when this condition is satisfied, the projective limit measure, which is
unique, 18 given by the formula

Proor. Uniqueness of the projective limit measure follows as in the
proof of Theorem 5.3. The necessity of (8.3) follows from

1 = uX = supginfgo g pu@ < supginfso g inf;uy(p,G) .

To prove sufficiency of (8.3), consider the functions » and A defined on
the open and the compact subsets of X, respectively, by

v@ = infu(e;G), Ge%X),
AK = infgopG, Ked(X).
For j =1 we have
1i(®;G) = pode; @) = w9 @)

Thus we may replace the “inf’ occuring in the definition of v by a
“lim”, hence » is subadditive. Since » is clearly monotone, it follows
from the proof of (i), Lemma 2 of [10] that A will be tight if we merely
can prove that

MK UK,) = AK,+ 1K,

holds for all pairs of disjoint compact subsets of X. Let then K,, K, be
such a pair. To £¢>0 we choose G2 K UK, such that

G < (KLU K,)+e.
Then we choose 4, so that
pi(@G) < MK, U Ky)+e

holds for all ¢21%,. Since the cylinder sets separate compact sets (cf.
Lemma 4.8), we can find G412 K, and G,2 K, and ¢ € I such that ¢;@,
and ¢, G, are disjoint. We may assume that ¢ = 4y and also that G, UG, < @.
Then we have
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AK,+21K, < vGy+vG,
i@ Gh) + i 9 Qo)

= ty(@1G1 U 9, Gp) = py(9,G) < MK, UK,)+e,

=
=

from which we obtain the desired conclusion.

Since A is now known to be tight, we see that u defined by (8.4) is a
tight measure on X, and due to (8.3), uX =1 holds. For ¢ € 4(X) and
i € I we have, by (8.4), that uG = u,(p;G). It follows, that for ¢ € I and
G; e 9(X,;) we have

w@f @) £ weefGy)) £ mGy s

hence ¢, is measure preserving.

8.3 DerFinITION. By 2, we denote the category whose objects are
pairs (X,u) with X a regular space and u a 7-smooth probability meas-
ure on X, and whose morphisms ¢: (X,u) — (¥,7) are u.s.c. open and
measure preserving correspondences X — Y.

8.4 THEOREM. Let (X;,u;, @) be a projective system in the category U,
and let X be a target space (regular) with u.s.c. open correspondences
9,0 X - X,. Assume that the cylinder sets almost separate points and
closed sets. Consider the set function v on %(X) defined by

vG = inf;uy(@; @) -

Then sufficient conditions that a projective limit can be realized on X
are that v be T-smooth at O with respect to F(X) (cf. P12 of [9]) and that
pp; X)=1 holds for all i € I. Under these conditions the projective limit
measure, which is unique, is given by

Proor. Define 1: #(X) - R, by
J.F = in.fagF'VG .

Then 1 is monotone and r-smooth at @, and » is monotone and subaddi-
tive (subadditive since »G =lim (@, @)). If we can establish the implica-
tion

then it will follow from results in [10] (Lemma 2 and Theorem 2) that u
defined by (8.5) is a 7-smooth measure on X.
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Therefore, let F,,F, in #(X) with F,nF,=0 be given. Given is also
e>0. Choose G2 F,UF, such that
v@ < M(F,UF,)+¢.
Then choose %, such that

uips @) < M(FUF,) +¢

holds for all ¢=¢,. Since the cylinder sets almost separate points and
closed sets we can, by Lemma 4.9, find «= (¢, E) such that

MF\G,) <e and AF,nF,) <ce.
We may and do assume that i >¢,. Put

G1=G0G“, G2=G\F“0

Then
P01 NGy =0

holds. We claim that the inequalities
AF, £ MF\G)+vGy, AF, £ MFynF,)+vG,

hold. To prove the first one, let H be open such that H2 F;\G,. Then
F,cHuG,, and
AF; £ v(HUG,) = vH +vG,

follows. Now the first inequality follows from

The second inequality is proved in the same way. Now we have
AP +AF, < A(F,\G,)+vG +AFynF,)+vGy

26 +vG, +vGy

26+ pi@i G1) + 14 @ Ga)

2e+ puy(@; G Up; Gy)
2 + (@, @) < 36+ MF,UF) .

IA 1T IA TIA DA

This argument establishes the desired implication and we have seen that
ueM(X; t). We also have uX =1 since y,(p; X)=1 for all 5. That the
¢; are measure preserving follows by a known argument.

The uniqueness of x follows from Lemma 4.9.

Perhaps, the conditions of Theorem 8.4 are necessary as well.

The reason why we have worked in Theorem 8.4 with the condition
that the cylinder sets almost separate points and closed sets, and not
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with the simpler condition that the cylinder sets separate points and
closed sets is that the latter condition is far too restrictive. For instance,
if the target space is C[0,1], then the cylinder sets will not separate
points and closed sets, but it is easy to see that the cylinder sets almost
separate points and closed sets. A similar statement can be made in
case the target space is D[0,1], however, it becomes quite difficult to
prove that the cylinder sets almost separate points and closed sets.

9. Weak convergence of measures on a projective limit space.

Let (X;,@,) be a projective system in the category % and let (X,q,)
be a projective limit. We shall find conditions under which a given net
(p,) on M, (X ; t) converges weakly. The conditions will be of the usual
type, a compactness condition and a condition ensuring that sufficiently
many of the nets obtained by ‘“projection’” on the “coordinate spaces”
converge.

9.1 THEOREM. Let (X;,¢;) be a projective system in U and (X,p;) a
projective limit of (X;,¢@,;). Let I' be an wpward directed subset of I and
assume that the cylinder sets based on indices in I' separate points (that is,
for x+y we can find o= (1,E) with i1 € I' such that xe G, and y & F,).
Assume that all the X, are completely regular.

Let (u,) be a compact net on M, (X ; t) and assume that for each i €I’
there exists a convergent met (n;,) on WM. MX;; 1), say sy —> 1;, Such that
Nis € @i(u,) holds for all .

Then (u,) converges in M HX; t): u, —,, p and the limit measure can be
wdentified by the formula

(9.2) pd = SuPK_C__AinfieI"?i(‘PiK)’ 4 e%X).

Proor. Let (u,) and (u,~) be convergent subnets of (u,):

’ 143
Hor = U5 Borr o U -

Let K, and K, be disjoint compact subsets of X. Then we can find
t €I’ such that
pKingKy=0.

Since X, is completely regular, we can find E < X, such that

K, s E, ¢K,nE=0, n,0E)=0.

Then we have
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WKy < w(psB) sflimint, (s B)
liminf, 7, ,(E) < limsup,n;,(E)

n(E) = nyE) £ liminf, 5, (E)

lim Sup,,- n‘ia"(E ) § lim SUD e e ((psz )
w (@B < p'((Ky) .

IA IIA A DA

We now easily deduce that u' and u'’ are identical. Since all limit points
of (u,) are identical, (u,) converges, say u, —>,, u.

By Theorem 3.13 we see that #; € p,(u) holds for all ¢ e I'. From this
fact it follows that

pK = inf;epny(p, K)

for all K e #°(X). To prove the reverse inequality, let K, € #°(X) be
given and, to £> 0, choose K, € ' (X) such that

Then choose i, € I’ such that

(P’ioKl n ¢‘ioK2 =0.
Then we have

infye 1 i@ Kq) £ 15)(@3 K1) S 1=1;(95,K2)
é 1‘—"‘LLK2 é ‘U:.Kl’l‘g.

Thus, (9.2) is proved for compact sets, and the general validity of
(9.2) then follows by tightness.

Probably, the hypothesis that the X; be completely regular is super-
fluous.

The result proved can be viewed as an abstract version of Theorem 2
of [8].
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