NONEXISTENCE OF A CONTINUOUS RIGHT INVERSE FOR LINEAR PARTIAL DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS

D. K. COHOON

In this paper P(D) will denote a linear partial differential operator of degree m with constant coefficients and $n \ge 2$ independent variables. We let $P_m(D)$ denote the principal part of P(D). We suppose that P(D) acts on the Fréchet space $C^{\infty}(\Omega)$ of infinitely differentiable functions defined on the nonempty open subset Ω of \mathbb{R}^n .

A theorem has evolved from the work of B. Malgrange [1] which states that P(D) maps $C^{\infty}(\Omega)$ onto itself whenever Ω is P(D)-convex (Hörmander [2, Corollary 3.5.2]). Thus, it is meaningful to ask whether or not there is a continuous linear transformation R of $C^{\infty}(\Omega)$ into itself such that P(D)Rf = f for all f in $C^{\infty}(\Omega)$.

If P(D) is hyperbolic in the direction N, then by Theorem 5.6.4 of Hörmander [2], there does exist a continuous right inverse of P(D) on the space $C^{\infty}(\mathbb{R}^n)$. In fact, for any f in $C^{\infty}(\mathbb{R}^n)$, we let Rf = u denote that unique member of $C^{\infty}(\mathbb{R}^n)$ which satisfies P(D)u(x) = f(x) for all x in \mathbb{R}^n and $\langle N, D \rangle^k u(x) = 0$ for all x in \mathbb{R}^n satisfying $\langle x, N \rangle = 0$ for $k = 0, 1, \ldots, m-1$, where m is the degree of P(D).

On the other hand, if P(D) were elliptic and nonconstant, a result of A. Grothendieck (Trèves [3, Theorem C.1]) shows that P(D) has no continuous right inverse on the space $C^{\infty}(\Omega)$ for any nonempty open subset Ω of \mathbb{R}^n . Also the result in [4] shows that if P(D) were parabolic, it could have no continuous right inverse in $C^{\infty}(\Omega)$ for any nonempty open subset Ω of \mathbb{R}^n .

It is the objective of this paper to extend the results of the previous paragraph to a wider class of partial differential operators. The author's original proof used the involved techniques of [4]. The much simpler proofs given here are due to L. Hörmander.

In what follows, we assume that there is some vector N in $\mathbb{R}^n - \{0\}$ satisfying the condition that $\langle N, \xi \rangle = 0$ for all ξ in \mathbb{R}^n for which $P_m(\xi) = 0$.

Received December 15, 1968; in revised form March 29, 1971.

This property is clearly invariant under a change of coordinates of the form

$$x = yA + y^{(0)},$$

where A is a nonsingular n by n matrix and $y^{(0)}$ is a member of \mathbb{R}^n . Also, assume that the partial differential operators we consider have the property that for some open subset Ω of \mathbb{R}^n , there is a continuous linear transformation R of $C^{\infty}(\Omega)$ into itself such that P(D)Rf = f for all f in $C^{\infty}(\Omega)$.

Lemma 1. For every relatively compact open subset V of Ω , there is a compact subset K of Ω such that Rf = 0 in V if f vanishes identically in K.

PROOF. This is an immediate consequence of the continuity of R.

LEMMA 2. Let us suppose that W is an open subset of Ω and u is a member of $C^{\infty}(W)$ such that P(D)u=0 in W. Suppose that u=0 in an open subset V of W. Then u=0 in the open subset V' of Ω defined to be the set of all x' in W such that $\xi \in \mathbb{R}^n$ and $P_m(\xi)=0$ implies $\langle x'-x,\xi\rangle=0$, and

$$\{tx + (1-t)x' : 0 \le t \le 1\} \subset W$$

for some x in V.

PROOF. This follows from Theorem 5.3.3 of Hörmander [2].

Now choose the set V in Lemma 1 as an open ball

$$V = \{x: |x-x^{(0)}| < r\} \subset \subset \Omega.$$

Let N be a vector in \mathbb{R}^n such that $\langle N, \xi \rangle = 0$ whenever $P_m(\xi) = 0$. Let

$$\bar{t} = \sup\{t : 0 \le s < t \text{ implies } x^{(0)} + sN \in \Omega\}$$
.

Now let t_1 be a positive number less than \bar{t} such that if $t_1 \le s < \bar{t}$, then $x^{(0)} + sN \in \Omega - K$. Let t_2 be a member of (t_1, \bar{t}) . For sufficiently small δ with $0 < 3\delta < r$, the 3δ -neighborhoods of the compact sets

$$I = \{x = x^{(0)} + tN : 0 \le t \le t_2\}, \quad J = \{x = x^{(0)} + tN : t_1 \le t \le t_2\}$$

belong to Ω and $\Omega-K$, respectively. Let f denote an arbitrary member of $C_c^{\infty}(\mathbb{R}^n)$ such that

$$\begin{split} f(x) &= 0 & \text{if } \langle x - x^{(0)}, N \rangle \leqq t_1 \;, \\ f(x) &= 0 & \text{if } |x - (x^{(0)} + tN)| \geqq \delta \text{ for all real } t \;, \end{split}$$

and such that the support of f is contained in a compact subset of the 3δ -neighborhood of J. Let H be the halfspace defined by

$$H \, = \, \{ x \in \mathbb{R}^n : \langle x - x^{(0)}, N \rangle < t_2 \} \; .$$

Assume that $\langle N, N \rangle = 1$. Define u(x) = Rf(x) if x is in Ω , $\langle x - x^{(0)}, N \rangle \ge 0$, and $|x - x^{(0)} - tN| \le 2\delta$ for some t in $(0, t_2)$. Define u(x) = 0 otherwise. Let W be the set,

$$\begin{split} W \, = \, \big\{ x \in \varOmega : \langle x - x^{(0)}, N \rangle & \geqq \, 0, \ \delta < |x - x^{(0)} - tN| < 2\delta \\ & \text{for some } t \! \in \! (0, t_2), \text{ and } \langle x - x^{(0)}, N \rangle < t_2 \big\} \; . \end{split}$$

Then Lemma 2 implies that u(x) vanishes in W. Thus u(x) is in $C^{\infty}(H)$ and P(D)u(x)=f(x) for all x in H. Change coordinates so that $N=(0,\ldots,0,1)$ and so that $x_n=0$ in the new coordinate system is equivalent to $\langle x-x^{(0)},N\rangle=t_1$ in the old coordinate system. Then what we have shown is that for every $x^{(0)}$ with $x_n^{(0)}=0$ and for every f in $C_c^{\infty}(\mathbb{R}^n)$ which vanishes for $x_n\leq 0$ and for x whose distance from the line through $x^{(0)}$ parallel to the x_n -axis is $\geq \delta$, there is a u in $C^{\infty}(H_T)$ which satisfies Q(D)u(x)=f(x) for all x in $H_T=\{x:x_n< T\}$ and which also vanishes when $x_n\leq 0$ and when the distance from x to the line through $x^{(0)}$ parallel to the x_n -axis is $\geq \delta$, where Q(D) is the representation of P(D) in the new coordinate system. Now we can prove easily the following.

LEMMA 3. Let $H_T = \{x \in \mathbb{R}^n : x_n < T\}$. Then for every f in $C^\infty(\mathbb{R}^n)$ vanishing for $x_n \leq 0$, there is a u in $C^\infty(H_T)$ such that u(x) = 0 for $x_n \leq 0$ and Q(D)u(x) = f(x) for every x in H_T .

PROOF. Let $\{\psi_{\alpha}: \alpha \in \mathfrak{A}\}$ be a partition of unity of the hyperplane $x_n = 0$ such that for each $\alpha \in \mathfrak{A}$ there is an $x^{(\alpha)}$ in \mathbb{R}^{n-1} and a $\delta > 0$ such that

$${\rm supp}\, \psi_{\scriptscriptstyle \alpha} \ \subset \ \{ x' \! \in \! \mathbb{R}^{n-1} : \! \sum_{k=1}^{n-1} (x_k{'} - x_k{^{(\alpha)}})^2 \! \leqq \! \delta^2 \} \ = \ U_{\scriptscriptstyle \alpha} \, .$$

Assume that $\{U_{\alpha}, \alpha \in \mathfrak{A}\}$ is a locally finite covering of $x_n = 0$. Let f be an arbitrary member of $C^{\infty}(\mathbb{R}^n)$ vanishing for $x_n \leq 0$. Write

$$f(x) = \sum_{\alpha \in \mathcal{I}} f_{\alpha}(x)$$
, where $f_{\alpha}(x) = \psi_{\alpha}(x') f(x'; x_n)$.

Then there is a u_{α} in $C^{\infty}(H_T)$ such that $u_{\alpha}(x)=0$ if $x_n \leq 0$ or if $x' \notin U_{\alpha}$, and satisfying $Q(D)u_{\alpha}=f_{\alpha}$. Then by the local finiteness of the supports of $\{U_{\alpha}\}$, it follows that $u=\sum_{\alpha\in\mathbb{N}}u_{\alpha}$ is a member of $C^{\infty}(H_T)$, u(x)=0 for $x_n \leq 0$ and Q(D)u=f.

We now proceed to show that Q(D) is hyperbolic in the direction of the x_n -axis which will imply that P(D) is hyperbolic in the direction N. To do so we use the following lemma.

LEMMA 4. Let Q(D) be a linear partial differential operator with constant coefficients in \mathbb{R}^n with principal part $Q_m(D)$. Assume $Q_m(0,\ldots,0,1) \neq 0$. Assume that there is a T>0 such that for every f in $C^\infty(\mathbb{R}^n)$ vanishing for $x_n \leq 0$ there is a u in $C^\infty(H_T)$ such that Q(D)u(x) = f(x) for all x in H_T and u(x) = 0 for $x_n \leq 0$. Then Q(D) is hyperbolic in the direction of the x_n -axis.

PROOF. Let $t = T - \varepsilon$, where $0 < T - 2\varepsilon$. Let $\psi(x_n)$ be a member of $C^{\infty}(\mathsf{R}^1)$ such that $\psi(x_n) = 1$ for $x_n \leq t$ and $\psi(x_n) = 0$ for $x_n \geq T$. Let f be a member of $C^{\infty}(\mathsf{R}^n)$ which vanishes for $x_n \leq 0$. Let u(x) be a member of $C^{\infty}(H_T)$ such that Q(D)u(x) = f(x) for all x in H_T and u(x) = 0 for $x_n \leq 0$. Set $v_0(x) = \psi(x_n)u(x)$. Then v_0 is a member of $C^{\infty}(\mathsf{R}^n)$. Now

$$f(x) - Q(D)v_0(x) = 0$$
 for $x_n \le t$.

Reapplying the assumptions of the lemma after a translation, we deduce that there is a u_1 in $C^{\infty}(H_{t+T})$ such that

$$Q(D)u_1(x) = f(x) - Q(D)v_0(x) \quad \text{ in } H_{t+T}$$

and

$$u_1(x) = 0$$
 for $x_n \leq t$.

Then we set

$$v_1(x) = \psi(x_n - t) u_1(x)$$

and conclude that

$$\begin{split} Q(D)\big(v_0(x)+v_1(x)\big) &= f(x) \quad \text{ for } x_n \leqq 2t \text{ ,} \\ v_0(x) &= 0 \quad \text{ for } x_n \leqq 0 \text{ ,} \\ v_1(x) &= 0 \quad \text{ for } x_n \leqq t \text{ .} \end{split}$$

Thus, assume that we have chosen functions v_0, v_1, \ldots, v_k in $C^{\infty}(\mathbb{R}^n)$ such that

$$Q(D)(v_0 + v_1 + \ldots + v_k)(x) = f(x)$$
 for $x_n \le (k+1)t$,

and $v_j(x) = 0$ for $x_n \leq jt$. Let

$$w_k(x) = v_0(x) + v_1(x) + \ldots + v_k(x)$$
.

Now we again reapply the assumptions of the lemma after a translation to deduce that there is a u_{k+1} in $C^{\infty}(H_{(k+1)t+T})$ such that $u_{k+1}(x) = 0$ for $x_n \leq (k+1)t$ and

$$Q(D)u_{k+1}(x) = f(x) - Q(D)w_k(x) \quad \text{ for } x_n \leq (k+1)t + T .$$

Set $v_{k+1}(x) = \psi(x_n - (k+1)t)u_{k+1}(x)$. Then $v_{k+1}(x) \in C^{\infty}(\mathbb{R}^n)$, $v_{k+1}(x) = 0$ for $x_n \le (k+1)t$ and

$$Q(D)\big(w_k(x)+v_{k+1}(x)\big)\,=\,f(x)\quad \text{ for } x_n \leqq (k+2)t \ .$$

Set

$$u(x) = v_0(x) + v_1(x) + \dots$$

and note that $u(x) \in C^{\infty}(\mathbb{R}^n)$, u(x) = 0 for $x_n \leq 0$, and Q(D)u(x) = f(x). Thus, it follows by Lemma 5.4.1 of Hörmander [2] that Q(D) is hyperbolic in the direction $(0, \ldots, 0, 1)$.

But $Q_m(\xi) = 0$ implies $\xi_n = 0$, since $(0, \ldots, 0, 1)$ is orthogonal to every characteristic. Now $Q_m(D)$ is hyperbolic, since Q(D) is hyperbolic by Theorem 5.5.2 of Hörmander [2]. Thus, Theorem 5.5.3 of Hörmander [2]. implies that if $Q_m(D)$ were not equal to $c\xi_n{}^m$, $c \neq 0$, then there would exist a nontrivial real solution τ of the equation

$$Q_m(\xi_1,\ldots,\xi_{n-1},\tau)=0$$

for some (ξ_1,\ldots,ξ_{n-1}) in \mathbb{R}^{n-1} . This is impossible. Hence $Q_m(\xi)=c\xi_n{}^m$ for some $c\in \mathbb{C}-\{0\}$. Now Theorem 5.5.8 of Hörmander [2] tells us that the degree of $Q(\tau\xi+\eta)$ with respect to τ for a fixed real ξ and indeterminate η never exceeds that of $Q_m(\tau\xi+N)$. One would thus easily obtain a contradiction unless $Q(\xi)$ were a polynomial in ξ_n . Going back to our original coordinate system, we deduce the following.

THEOREM 1. If P(D) had a continuous right inverse in $C^{\infty}(\Omega)$, and if there were a real vector $N \neq 0$ such that $\langle N, \xi \rangle = 0$ for all ξ in \mathbb{R}^n with $P_m(\xi) = 0$, then $P(D) = \theta(\langle N, D \rangle)$ for some suitable polynomial θ in one variable.

Since $P(D) \neq c$ cannot satisfy the conclusions of Theorem 1 for two linearly independent vectors N_1 and N_2 , we obtain the following.

COROLLARY 1. If V is a two-dimensional subspace of \mathbb{R}^n which is contained in every real characteristic plane of P(D), then P(D) has no continuous right inverse in $C^{\infty}(\Omega)$ for any nonempty open subset Ω of \mathbb{R}^n unless P(D) is a constant.

REMARK 1. The above arguments can also be applied to show that if H is an open half space with a boundary whose normal N is not a characteristic of a nonconstant partial differential operator P(D), then P(D)

has a continuous right inverse in $C^{\infty}(H)$ if and only if P(D) is hyperbolic in the direction N.

REMARK 2. Theorem 1 shows that $\partial^2/\partial x^2 - i(\partial/\partial t)$ has no continuous right inverse on $C^{\infty}(\mathbb{R}_x \times \mathbb{R}_t)$, and its corollary shows that

$$\partial^2/\partial x_1^2 + \partial^2/\partial x_2^2 - i(\partial/\partial t)$$

has no continuous right inverse on $C^{\infty}(\mathbb{R}_x^2 \times \mathbb{R}_t)$.

ACKNOWLEDGEMENT. The author gratefully acknowledges the very considerable assistance of Lars Hörmander in improving the statement and proofs of these results.

REFERENCES

- B. Malgrange, Existence et approximation des solutions des équations aux derivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-56), 271-355.
- L. Hörmander, Linear partial differential operators (Grundlehren Math. Wissensch. 116),
 Springer-Verlag, Berlin · Göttingen · New York, 1963.
- F. Trèves, Locally convex spaces and linear partial differential equations (Grundlehren Math. Wissensch. 146), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1967.
- D. Cohoon, Nonexistence of a continuous right inverse for parabolic differential operators,
 J. Differential Equations 6 (1969), 503-511.

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINN., U.S.A.