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NONEXISTENCE OF A CONTINUOUS RIGHT INVERSE
FOR LINEAR PARTIAL DIFFERENTIAL
OPERATORS WITH CONSTANT COEFFICIENTS

D. K. COHOON

In this paper P(D) will denote a linear partial differential operator
of degree m with constant coefficients and » =2 independent variables.
We let P, (D) denote the principal part of P(D). We suppose that P(D)
acts on the Fréchet space C®(2) of infinitely differentiable functions
defined on the nonempty open subset 2 of R,

A theorem has evolved from the work of B. Malgrange [1] which states
that P(D) maps C®(£2) onto itself whenever 2 is P(D)-convex (Hérman-
der [2, Corollary 3.5.2]). Thus, it is meaningful to ask whether or not
there is a continuous linear transformation R of C*(f2) into itself such
that P(D)Rf=f for all f in C%(Q).

If P(D) is hyperbolic in the direction N, then by Theorem 5.6.4 of
Hormander [2], there does exist a continuous right inverse of P(D) on
the space C*°(R"). In fact, for any f in C°(R"), we let Rf=w denote that
unique member of C*(R") which satisfies P(D)u(x)=f(x) for all £ in R*
and (N,D)cu(x)=0 for all z in R" satisfying (x,N)=0 for k=0,1,...,
m—1, where m is the degree of P(D).

On the other hand, if P(D) were elliptic and nonconstant, a result of
A. Grothendieck (Tréves [3, Theorem C.1]) shows that P(D) has no con-
tinuous right inverse on the space C*(22) for any nonempty open subset
2 of R*, Also the result in [4] shows that if P(D) were parabolic, it
could have no continuous right inverse in C*(£2) for any nonempty open
subset Q2 of R™,

It is the objective of this paper to extend the results of the previous
paragraph to a wider class of partial differential operators. The au-
thor’s original proof used the involved techniques of [4]. The much
simpler proofs given here are due to L. Hormander.

In what follows, we assume that there is some vector N in R™— {0}
satisfying the condition that (N,£)=0 for all £ in R™ for which P, (£)=0.
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This property is clearly invariant under a change of coordinates of the
form
Tr = y A +y(0) ,

where 4 is a nonsingular n by » matrix and y© is a member of R*. Also,
assume that the partial differential operators we consider have the
property that for some open subset 2 of R”, there is a continuous linear
transformation R of C*(Q2) into itself such that P(D)Rf=f for all f in
C=(Q).

LemMA 1. For every relatively compact open subset V of 2, there is a
compact subset K of 2 such that Rf=0 in V if f vanishes identically in K.

Proor. This is an immediate consequence of the continuity of R.

LeMMmA 2. Let us suppose that W is an open subset of 2 and u is a
member of C°(W) such that P(D)u=0 in W. Suppose that u=0 in an
open subset V of W. Then u=0 in the open subset V' of 2 defined to be
the set of all ' in W such that & € R® and P, (&)=0 implies (' —x,&)=0,
and

{te+(1—t)x' : 05tZ1} = W
for some x in V.

Proor. This follows from Theorem 5.3.3 of Hormander [2].

Now choose the set V in Lemma 1 as an open ball
V={:|lt—20<r}cc Q.
Let N be a vector in R® such that (N,£)=0 whenever P, (£)=0. Let
i = sup{t: 0=s<timplies 2@ +sN e 2} .

Now let ¢, be a positive number less than ¢ such that if ¢, <s <%, then
2@ 43N e Q- K. Let t, be a member of (¢,,7). For sufficiently small é
with 0<36<r, the 36-neighborhoods of the compact sets

I ={z=29+tN:02t=t,}, J = {x=2O+IN:¢, <t<t,}

belong to 2 and 2 — K, respectively. Let f denote an arbitrary member
of C,°(R") such that

fl) =0 if (x—2O,N)<t,,
fl@) =0 if |[x—(a@+iN) 26 forallrealt,
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and such that the support of f is contained in a compact subset of the
3d4-neighborhood of J. Let H be the halfspace defined by

H = {xeR": (z—a29,N)<t,}.

Assume that (N,N)=1. Define u(zx)=Rf(x) if z is in 2, (x—2©@,N)=0,
and |x—x©@—tN|<26 for some ¢ in (0,f,). Define u(z)=0 otherwise.
Let W be the set,

W={xeQ:{x—2ON)20, d<|x—2@—tN|<26
for some t€(0,t,), and (x—2O,N)<t,}.

Then Lemma 2 implies that u(x) vanishes in W. Thus u(z) is in C*(H)
and P(D)u(x)=f(x) for all x in H. Change coordinates so that N=
0,...,0,1) and so that z,=0 in the new coordinate system is equiva-
lent to (x—2®,N)=t, in the old coordinate system. Then what we
have shown is that for every ©® with z,®=0 and for every f in C,°(R")
which vanishes for z, <0 and for x whose distance from the line through
z® parallel to the x,-axis is =9, there is a w in C®°(H ;) which satisfies
Q(D)u(x)=f(x) for all z in Hy={x:2,<T} and which also vanishes
when «,, <0 and when the distance from x to the line through «©® parallel
to the z,-axis is =J, where Q(D) is the representation of P(D) in the
new coordinate system. Now we can prove easily the following.

Lemma 3. Let Hp={&xeR":2,<T}. Then for every f in C®(R")
vanishing for xz, <0, there is a u in C°(Hy) such that u(x)=0 for x,<0
and Q(D)u(x)=f(x) for every x in Hp.

Proor. Let {y,:«xcU} be a partition of unity of the hyperplane
z, =0 such that for each x € U there is an «® in R*-1 and a ¢ > 0 such
that

n—1
suppy, < {g'eR*1: 3 (v -, )2 =6% = U,.
k=1
Assume that {U,,«eU} is a locally finite covering of x,=0. Let f be
an arbitrary member of C*(R") vanishing for x, <0. Write

f(@) = Z.cuful@), where [ (x) = y,(¢')f(2"; @) .

Then there is a u, in C°(H ;) such that u (z)=0if x,<0orif 2'¢ U,,
and satisfying Q(D)u,=f,. Then by the local finiteness of the supports
of {U,}, it follows that u=3, yu, is a member of C*(H), u(x)=0 for
z, <0 and Q(D)u=f.
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“We now proceed to show that Q(D) is hyperbolic in the direction of
the z,,-axis which will imply that P(D) is hyperbolic in the direction N.
To do so we use the following lemma.

LemMA 4. Let Q(D) be a linear partial differential operator with constant
coefficients in R™ with principal part @, (D). Assume @,(0,...,0,1)50.
Assume that there is a T > 0 such that for every f in C*°(R") vanishing for
x, <0 there is a w in C®(Hy) such that Q(D)u(x)=f(x) for all z in Hy
and w(x)=0 for ,<0. Then Q(D) is hyperbolic in the direction of the
Z,-axis.

Proor. Let t=T—¢, where 0<T —2¢. Let y(x,) be a member of
C*(R!) such that p(z,)=1 for x, <¢ and y(x,)=0 for x,>7. Let f be a
member of C*°(R*) which vanishes for x, <0. Let u(x) be a member of
C*>(H y) such that Q(D)u(x)=f(x) for all x in H, and u(x)=0 for z, < 0.
Set vy(x) =y(x,)u(x). Then v, is a member of C°(R"). Now

f(x) —Q(D)vy(x)=0 for x,=<t.

Reapplying the assumptions of the lemma after a translation, we de-
duce that there is a u, in C*°(H,,,) such that

Q(D)u,(z) = f(x) —Q(D)vo(x) in Hyp
and
u(x)=0 for x,=t.
Then we set
V(%) = p(x, —b)uy (@)
and conclude that

QD)(vo(2) +v,(2)) = f(e) for @, =2¢,

V() = 0 for 2, =<0,
vy(x) =0 for x,<t8.

Thus, assume that we have chosen functions vy,vy,...,v, in C®(R")
such that

QD)+ 01+ .. . +v)(@) = f(®) for m, < (k+1),
and v;(x)=0 for x, <jt. Let
we(x) = V(@) +vy() + . .. +vi()

Now we again reapply the assumptions of the lemma after a translation
to deduce that there is a wu;,; in C®(H 1) such that u,,(x)=0 for
z2,<(k+1)t and
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QD)uy11(2) = f(@)—Q(Dwy(x) for @, < (k+1)t+T .

Set 0.1(2) = p(n — (b + Dt)tg1(2). Then vy,4(x) € C¥(RY), vy,4(x) =0 for
xz, 2 (k+1)t and

QD) (wi(x) + v ia(2)) = f(2) for z, < (k+2)t.
Set

u(x) = vo(x) +v(x)+ ...

and note that wu(x) e O°(R"), u(x)=0 for z,<0, and Q(D)u(x)=f(x).
Thus, it follows by Lemma 5.4.1 of Hormander [2] that Q(D) is hyper-
bolic in the direction (0,...,0,1).

But @,(£)=0 implies &,=0, since (0,...,0,1) is orthogonal to every
characteristic. Now @, (D) is hyperbolic, since @(D) is hyperbolic by
Theorem 5.5.2 of Hormander [2]. Thus, Theorem 5.5.3 of Hérmander [2].
implies that if @,,(D) were not equal to c¢£,™, ¢+ 0, then there would
exist a nontrivial real solution v of the equation

Qm(fb' .. ’511,_1, T) =0

for some (&y,...,&,-;) in R*-1, This is impossible. Hence @,,(&)=c&,™
for some ¢ e C—{0}. Now Theorem 5.5.8 of Hormander [2] tells us
that the degree of Q(v£&+%) with respect to v for a fixed real & and in-
determinate 7 never exceeds that of @,(vé+XN). One would thus easily
obtain a contradiction unless @(£) were a polynomial in &,. Going back
to our original coordinate system, we deduce the following.

THEOREM 1. If P(D) had a continuous right inverse in C*(Q), and if there
were a real vector N =0 such that (N,£)=0 for all & tn R™ with P, (&)=0,
then P(D)=0((N,D)) for some suitable polynomial 0 in one variable.

Since P(D)#+c cannot satisfy the conclusions of Theorem 1 for two
linearly independent vectors N, and N,, we obtain the following.

CoROLLARY 1. If V 18 a two-dimensional subspace of R™ which is con-
tained in every real characteristic plane of P(D), then P(D) has no continu-
ous right inverse in C°(Q) for any nonempty open subset 2 of R™ unless
P(D) is a constant.

REMARK 1. The above arguments can also be applied to show that if
H is an open half space with a boundary whose normal N is not a char-
acteristic of a nonconstant partial differential operator P(D), then P(D)
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has a continuous right inverse in C*(H) if and only if P(D) is hyper-
bolic in the direction N.

REMARK 2. Theorem 1 shows that 0%/0x*—1i(9/0t) has no continuous
right inverse on C*°(R, x Ry), and its corollary shows that

0%/ 0,2 + 02| 0,2 — i (0] 01)

has no continuous right inverse on C*(R,2x R)).
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