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1. Introduction.

For 0<m<1 let & (m) be the collection of all continuous, strictly
decreasing functions f: [0,1] — [0,1] with [f=m. (Here and throughout
this article [g= [} g(x)dx.) We consider the problem of finding

I(m) = sup {[ff-1: feF (m)}.

We shall obtain the desired maximization by solving a more general
problem involving the class

F(m) = {f:[0,1] - [0,1] : f measurable, [f=m}

and a generalization of the notion of inverse. These changes were made
because first, there are no ‘“maximal functions” in & ,, while there are
such in the class of step functions, and second, we shall use step func-
tions in proving the main inequalities.

For fe #(m) and 4 the Lebesgue measure define

f*(x) = A{te[0,1]: f(t) =} .

I(m) = sup {[ff*: feF(m)}.

If fe #,, then f*=f-1 and hence the problem of finding I(m) is a na-
tural generalization of that of finding I (m) (which will be shown to be
equal to I(m)).

There is considerable symmetry between f and f* in our problem: the
functions occur in the same way in the integral and, asis shown in Lemma
1, if f is decreasing, f**=f a.e. Let % (m) be the subset of % (m) con-
sisting of non increasing functions f with f=f* a.e. These functions will
be called symmetric, a term motivated by the fact that a function in
F.NF, has a graph symmetric with respect to the line y=x in the
(#,y)-plane. It will be shown that I(m) is realized in the class &  (m).

and set
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This work is a generalization of a discrete problem involving certain
matrices with integer entries [2].

Before stating the main result, we give some more definitions. We
denote by % ;(m) the subset of % (m) consisting of monotone non increas-
ing (henceforth called “‘decreasing’’) functions. The symbols I; and I,
will denote the corresponding maxima in &; and &, respectively. For
0<m <1, we define the functions ¢,, and @, on [0,1] by setting

(1) Pm(®) = 1, 0z 1—(1—-m),
=1-(1-mp}, 1-(1-mi <zsl,
(2) @m(.’l)) = m%) 0<z< mt ,
=0, m*<x§ 1.

THEOREM 1. For O0<m <1,

I(m) = Im) = I(m) = I(m) = [¢,2 = 2m—1+(1-m)}, oO0<m<},
= [o = [22 = (W}, m=},
=j'q5m2=m%, t<m<1.

These functions are essentially (i.e. up to an equivalence in L(0,1)) the only

ones in F(m) which realize I(m).

Starting with fe % (m) we show that there exists a g € #4(m) such
that [gg* = [ff*. Then we show that g may be replaced by an h € & (m)
with [A22 [gg*. This is proved in Section 3 by a general integral identity
which is to our knowledge new. Next, by means of some geometrical
lemmas we pass to symmetric step functions having at most three steps.
Finally, by a standard maximization procedure, we obtain our phi
functions.

2. Reduction to %;.

We begin by giving some properties of ‘‘star functions”, each of which
is obviously true for functions in & .

LemmA 1. Let fe F(m) and ge Fg(m). Then
(A) f* e Fy(m),
(B) g**=g a.e. Moreover, if g is left continuous, then g** =g everywhere.

Proor. It is easy to see that f* is decreasing. The definition of the
Lebesgue integral and integration by parts give

m = [f = —[*edf*¢) = [f*,

and thus (A) is proved.
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A decreasing function may be made continuous from the left by
changing its values only on a set of measure zero. We assume then that
g is left continuous. For any ¢ e [0,1] we have

g* @) = My g(y)za} 2t < g(t) 2 =

Applying the same reasoning to g* and then to g, we obtain the relations
gHHa) 2t <= g*tH) 22 = gla) 2 ¢.

We therefore conclude that g**=g.

The following result is a special case of Theorem 378 in [1]. For this
case the proof is very simple.

LeMMA 2. Let fe F(m) and let g=f**. Then g € F 4(m) and satisfies
T9g* z [ff*.

Proor. Lemma 1(A) implies f* and g belong to & 4(m), and g*=f*
by Lemma 1(B). Since g is decreasing, for each @ and y in [0,1] we have

Mzel0,a]: g(xr) 2y} = min{a,g*(y)} .
Thus

AMzel0,a]: f(x) 2y} < Afwe[0,a]: g(2) 2y}
and consequently

Fa) € [3f@)dz < [3g(x)dz = G(a) .
Finally we have

[sg=N)1f* = [GHG-F)f* = [fHE@-F)(-df*) 2z 0.

Remarr. We would have liked to assert that [gg* > [ff* if f was not
(equal a.e. to) a decreasing function. This is, however, false as shown
by the following function:

f(x)=%: O§x§i,
=1, i<z,
=0, %i<xz=1.

We shall have to return to this point in the course of the uniqueness
argument (cf. Section 5).

Let fe & 3(m) for m € (0,1). There is a unique number & such that
f(x)>x for x< & and f(x) <z for x> & We call & the crossing point of f,
since, at least in the case fe & ,, the graph of f meets the line y=z at
the point (4,£). The symbol £=&(f) will be reserved for the crossing
point of f, and

F3(m, &) = {feF 4(m): f has crossing point £} .
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The class & (m, ) is defined analogously. We note that a function f € #,
with crossing point & is uniquely defined up to a set of measure zero
by its values on [0,£].

3. An integral identity and reduction to %,
For every fe % 4(m,£), define g, the symmetrization of f, by
gl@) = Hf(@)+/*(@)), Osx=k,
= (3(f+f*)*@), &s<zsl.

One verifies easily that g € & (m,&). Since g is symmetric we have
fg=m=2[g-¢.
THEOREM 2. Let f e F 4(m,&) and let g be its symmetrization. Then
(3) 169% = LIf*+ 1 [l f =f*P+ 3 e 1f =12
ReEMARES. 1. In our original draft, (3) was given as an inequality
with the last term missing and the proof was effected via step functions
and approximations. We are indebted to the referee for the present form
of Theorem 2.
2. The theorem implies that if f is not symmetric, then its symmetriza-
tion g satisfies [g2> [ff*.
3. The inequality “g2=ff*’ is not valid pointwise, as is shown by
taking f@) =1, 0ses}
=} i<esl.

Then ff*>g2 in a neighborhood of %.

CoroLrLArY (for functions in &,). Let f be a continuous, strictly de-
creasing function from [0,1] onto [0,1] with inverse f-1. Let & be the point
such that f(&)=f-1(&)=&. Let the symmetrization g be defined by

g(x) = }f(@)+f =), O=z=é,
= (J(f+f)) ), E<z=1.
1697 = BRI+ =P+ -1
Proor. We have [¢2=[5g%+ [3g2. The first term equals
BQU+N)R = I+ G0 -/) -
For the second term we use the following formula, which is an easy
consequence of the definition of the Lebesgue integral. Let he #;, n

be a positive integer and @ <b be points for which % is not constant in
any neighborhood of a or b. Then

Then
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(4) John = RO indh¥(t) .

We assume, without loss of generality, that the given function f is con-
tinuous from the left, and hence f=f** everywhere. We shall apply
identity (4) to [3g%. We note first that either g(1—) >0 and g is constant
on [0,9(1—)) or g(1—)=0. Next we note that either g({+)<¢& and g
is constant on (g(& + ),5) or g(§+)=¢&. These facts and the symmetry of
g imply that

J39% = [§GEa.t2 dg*(t) = [L e dg(t) = } [ df(t)+} [t df*(0) .

If we apply (4) to each of the last integrals, again handling the end
points with care, we find that

9% = a2+ [2f? = [ + 3 (f-1%)2.
Putting the two parts together we obtain the desired identity.

4. Proof of Theorem 1 for %,

The proof is effected in two stages. First, given fe & (m,§) we find
a step function f in & +(m, &) having at most two steps in (0,£) and such
that [f2> [f2. This is accomplished by use of two lemmas about centers
of mass of regions. Then we vary £ to obtain the supremum.

LemMmaA 3. Let g,h € F ((m) be essentially distinct and let &(g), &(h) be
their respective crossing points. Let ¢ € (0,£(g)) be such that g=h on (0,c)
and hzg on (c,&(g)). Define regions R, and R, in the plane by setting

R, = {(x,y): 0<z<c, h(x)<y<g(x)},
Ry = {(z,y) : c<x<&(h), max(g(z),x) <y <h(zx)} .

Let (x;,y,;) be the mass center of R;, 1=1,2, and let u be the slope of the line
joining the mass centers. Then

sgn(u+1) = sgn(fA2—[g?) .

Proor. R, and R, have the same two-dimensional Lebesgue measure
A>0. Thus

(24)Y[5@ (h2 —g?) dx + fgg;; b2 —a?) da] — (24)1 [5(g% —h?) dx
(AR (B2 —g?) dy + [53) (v2 —g?) dy] - (24) 7 [§Q (g2~ AP dy
Therefore
u+1l = D71[(h*—g?), where D = 2 [[p adxdy—[[pxdxdy > 0.

Now we introduce two special functions in % (m,§), s=s,, having a
single step in (0,&), and ¢=t,, having two steps in (0,£). For notational
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convenience we take h=(m+£2)/(2¢) and d = (m — £2)/(2 — 2&). The func-
tions are defined by setting

Se(x)—:h’ 0§x§§,

=§ §&<x=Zh,
=0, h<z<l,
te(x) =1, 0=2x=d,
= fa d<x§§7
=d, £&<z=Zl1.

We note that every fe & (m,&) except s, satisfies f(0+)>h>f(&—
and every f e F (m,£) except t, satisfies 1>f(d—)=f(d+)>&.

LeMMmA 4. Let f € F (m,&) and assume f+8, f+t; (in L;). Let ¢ be a
number in (0,&) such that f= s, on (0,c) and s;2f on (c,&). Define regions
Ry,...,R, in the plane by setting

R, = {(z,y): 0<x<ec, s(x)<y<f(z)},
R = {(x,y): c<x <&, f(x)<y<s(x)},
3 = {(x,y): 0<x<d, f(x)<y< t(z)},
R, = {(x,y):d<zx<é, tx)<y<f(x)}.
Let (z;,y;) be the mass center of R;, 1<i<4, and let u;; be the slope of the
line joining the i-th and j-th mass centers. Then psy < piys.

Proor. We have

()] s 2 3d, 3 2 (14+f(d-))
(8) 0 S 3Hd+8), y. = HA+)+8),
and so

Hfd+)+8& —3(1+f(d-))

IIA

<
H3a = 3E 5

Indeed, pg,<(£—1)/& This is obvious if f has a discontinuity at d.
In the other case, since f= constant on (0,&), it is not constant on one of
the subintervals (0,d), (d,£). Then we would have strict inequality in
one of (5), (6).

Similar inequalities show that pu,,2>(6—1)/£. (Here, however, the in-
equality need not be strict.) Thus uy,> ug,.

The geometrical lemmas will now be applied to reduce general func-
tions in & (m, &) to functions with at most two steps in (0,§).

LeMMA 5. Let f € F (m,&) be given and assume f+s;, f+t,. Then

max (fs2 [t > [f2.
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Proor. We use the notation of the preceding lemma. If p,> —1,
then by Lemma 3 we have [s.2> [f% If u;,< —1, then Lemma 4 implies
that pz,< —1. Using Lemma 3 again, we see that [{,2>[f2. Thus one
of [s.2, [t is larger than [f2.

We now vary &, considered as a parameter, to maximize the L, norm
of s,. We have

[sg = dmfE+mE— 182 8().
The parameter £ is constrained to satisfy
(7 1-(1-m)t < & < mh.

Indeed, since f is decreasing

ezfifshif=m,
and since f is symmetric and bounded by 1,
&z [5f = HE+m),
which implies that £>1— (1 —m)?.
Now 8'(£) is negative for 0< &< (dm)t and positive for (3m)t < &< md.
Thus S(&) achieves its maximum on [1— (1 —m)},m?] at one of the end-
points, which is to say that the maximal value of S is given by the L,

norm of one of ¢, D,,.
Next, we maximize [|{/2. We have

(8) Jte=m = £42d(1-8),
from which we see that d decreases strictly from 1—(1—m) to 0 as &
increases from 1—(1—m)t to mt. Let
T(£) < [t = d+EE—d)+d2(1-8) .

Using the constraint (8) we find that

T'(§) = (§—d)(26—-d-1),
and 7" has zeros when é=d (which occurs at £=1—(1—m)?) and when
&=3(1+d) (which ocours at é=1—(3(1—m))t). Now &=1—(}(1—m))}
might or might not lie in the open interval (1— (1 —m) m?), but in any
case T'(¢) does not attain its maximum on this open interval. This is
so since 7"(£)<0 for 1—(1-m)<é<1—(4(1—m))} and 7T"(£)>0 for
1-(3(1—m))t<&<1. Thus the maximum of 7' on [1—(1—m)t,mt] is
achieved by one of the quantities

.r(pmz = T(l_(l—m)i) or I¢m2 = T(m“) .
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It remains to decide when ¢, gives a maximum and when ®,, does.
This may be done easily by use of Rolle’s Theorem. We have
.r (pm2 = m% .

[pu? = 2m—1+(1-m),
Now [¢,? and [®,2 are functions of m which are equal at m=0, §,
and 1. If these functions agreed elsewhere in [0,1], their second deri-
vatives would agree at two or more points of (0,1). It is easy to see, how-
ever, that the second derivatives agree only at m=1}. By inspection of
first derivatives near 0 and 1 we see that

fon2 > [D,2 for O<m<}
and Jo2 < [D,2 for t<m<]1.
Lemma 5 and the maximization of S and 7' show our maximal func-
tions to be essentially unique in & (m).

5. Completion of the proof of Theorem 1.

The equality of I, I;, I, and I, is a consequence of Lemma 2, Theo-
rem 2, and the fact that ¢,, and @,, can be approximated by functions
in &,.

The essential uniqueness of ¢,, and @, in # ; follows from Theorem 2
and the results of Section 4. Recall that the inequality of Lemma 2
need not be strict for functions which are not in &% 4(m). We shall there-
fore use the known form of the phi functions to show them to be essen-
tially the only maximal functions in & (m).

Let f be a maximal function. By Lemma 2, f** is also a maximal
function, and it is decreasing. Thus f** is a phi function, and since phi
functions are symmetric,

f*** = f* = a phi function .

If m> 4§, f¥*=a,,, and if f were not (equal a.e. to) a decreasing func-
tion, f would vanish on a subset of [0,m}] having positive measure, and
we would have [ff*<[®,2 Thus f=®,, a.e. for m>}.

If m<3, f*=¢, and we define four sets of real numbers

A = {te[0,1-(1—-m)}]: f(t)=1},

B = {te[0,1—(1=m)i: f()=1—(1—m)i},

C = {te(1-(1-m)},1]: f(t)=1},

D = {te(1-(1-m)},1]: f(t)=1—(1—m)i}.
Since the sets are disjoint and

MAUB) = 1—(1—m)t = A(AuC),
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we have A(B)=A(C). An easy calculation gives
[ff* = 2m—1+(1—m)t—(1—m)A(B),
which is strictly smaller than [¢,,2 unless A(B)=0.
Thus, if m <} and f € % (m) is maximal, then f=g¢,,, a.e.

If m=14, then f** is one of the phi functions, and the above reasoning
shows f also to be equal a.e. to a phi function.
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