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ON VARIATIONS OF METRICS

HALLDOR I. ELIASSON

Introduction.

In 1960 Yamabe [7] published the following theorem: “Any compact
C* Riemannian manifold of dimension » > 3 can be deformed conformally
to a C® Riemannian manifold of constant scalar curvature”. In 1966
Aubin [1] used Yamabe’s result to prove the following theorem: “Any
compact C* Riemannian manifold of dimension >3 carries a metric
with constant negative scalar curvature”, thus demonstrating a topo-
logical insignificance of the scalar curvature. In 1968 Trudinger [6]
showed an error in Yamabe’s proof, but proved his theorem under a
condition on the original Riemannian manifold, which is satisfied e.g.
if the integral of the scalar curvature is negative. In his paper [1] Aubin
proved that a metric with a negative integral of the corresponding
scalar curvature can be constructed on a Riemannian manifold with
constant nonnegative scalar curvature. Thus Trudinger was able to
obtain Aubin’s theorem in the case of a Riemannian manifold with con-
stant nonnegative curvature. In 1968 Aubin [2] published a proof of
Yamabe’s theorem, using a different method. Unfortunately however,
his proof is also incomplete, as already noticed by others. So, Yamabe’s
theorem is still in doubt and as we shall have an opportunity to observe,
probably is false.

In this paper we give a complete proof of Aubin’s theorem. Moreover,
we think it worthwhile to discuss the variation of metrics in a general
setting. In the first section we introduce the variation integrals involved
and investigate their critical points. In the second section we compute
the variation integrals for special variations and prove the existence of
a metric with negative total scalar curvature. This result, together
with Trudingers result, which we prove by a different method and with
a more precisely stated condition in the third section, proves Aubin’s
theorem.

1. Variational problems.
Let M denote a compact C*° manifold. The space of Riemannian

Received October 10, 1970.



318 HALLDOR 1. ELIASSON

metrics on M is an open convex subset of the linear space C®(L T M, R))
of symmetric bilinear forms on M. Given a function F on the space of
metrics, we denote the variational derivative of F at a point g and in
the direction of a symmetric bilinear form %, by

DyF(g) = (@[dt)F(x(t))ls=o »

where «(t) is a curve in the space of metrics with «(0)=g and «'(0)=5,
for example «(¢)=g+th. The problem is to construct functions F such
that the critical points g of F, that is where D,F(g)=0 for all A, are
interesting metrics and then if possible, to prove the existence of such
metrics. We consider first the volume and the total scalar curvature:

V(g) = Juo(g), J@g) = [xK(9) olg),

where w(g) denotes the volume element of M and K(g) the scalar cur-
vature with respect to the metric g. Theorems 1 and 2 are more or less
well-known. The references [3], [5] were pointed out by the referee.

THEOREM 1. Let M be of dimension n =3 and suppose J has zero varia-
ttonal derivative for all conformal variations of the metric g, keeping the
volume V(g) constant. Then the mean curvature K(g) is constant on M.
If J has zero variational derivative for all variations of g, keeping V(g)
constant, then K(g) is constant and g ts an Einstein metric, t.e. Ricci cur-
vature S(g)=n"1K(g)g.

REMARK. For n=2 we have S(g)=n"1K(g)g for all metrics g, J(g) is
independent of g, and in fact by the Gauss-Bonnet Theorem we have
J(g) =2ny(M), where y(M) is the Euler characteristic of M.

Proor or THEOREM 1. Let g+th be a variation of g, such that
D,V(9)=0. Let h; and g, be the components of 2 and ¢ in some co-
ordinate system. We have the following formulas for the components
of the Christoffel Symbols, the curvature tensor and the Ricci tensor:

% = 39"(DiGr,+ Digs,— D,9u1) 5
Ry = DIy — D I'5p + I Iy — I, Ty

J w

Sy = Bly, K =g%8y, .

(2 T

The volume element is w=(detg)*dx, where detg denotes the determi-
nant of g;;. Then we compute the following formulas for variational
derivatives:
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Dhgik = _givhw‘g,uk’ Dh(detg)} = %(detg)‘}gikhik )
DyRfy, = VD I'%) — Vi(Dpl'%)
DIy = 39™(Vilyy + Vi, — V) -

Now we obtain for J(g)=[,,(detg)* K(g)dx:

Dy J(9) = [y(detg)[4g**hy K —gi*h,,g#5 Sy +
+ g (VD7) — Vi DyI'7p))] d
= [u(detg) (3K — ggrkSy )b, , dx

and for V(g)= [, (detg)}:
DnV(9) = [a}(detg)tg™hy.da .

Now let D,J(g)=0 for all conformal deformations of g such that
D,V(g)=0. Then h=n"1g"*h,g, so

D, J(g) = [y (detg)t(} —n=1)Kg*hy dz,

which implies that K is constant for n > 2. If the variational derivative
of J vanishes for all variations of g, keeping V(g) constant, then we ob-
tain

1" K —gg#* Sy, = g™,

with some constant 4. Contraction with g,, gives A=(}—n"1)K, so K
is constant for n>2 and S;=n"1Kg,. If n=2, a direct computation
shows that this equation for the Ricei tensor holds for all ¢ (with K
variable in general) and then we obtain D,J(g)=0 for all g, or J is
independent of g.

The question, whether a given manifold carries an Einstein metric is
by Theorem 1 reduced to a variational problem, aithough certainly a
difficult one. In fact we shall see that J takes all real values, so that a
minimum or a maximum does not exist, but of course, critical values of
J may still exist. The product of spheres S! x §% does not admit an Ein-
stein metric, but it is not known, whether there is a simply connected
compact manifold, which does not carry an Einstein metric (see problem
4 (Eells-Sampson) in [4]). For the existence of an Einstein metric we
need at least some topological condition, but are such conditions suffi-
cient ?

We mention here another variational integral taking nonnegative
values only, but having critical points of the same kind as J:

9) = Ju| K@) o(g) -
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THEOREM 2. Theorem 1 holds with J replaced by I, where the volume
may either be kept constant or mot.

Proor. Using our previous results, we have

DyI(g) = [y (detg)t|K[in-2((}g"K — ing"*g»* S ) Kh,, +
+ dng*(V, D, Iy — V; Dy I )K) dx
= 3y (detg)t((¢" K —nggr 8y)K|K[in-2 4
+n(grgke — g™ g*) V,d (K | K |1*-2))h,, de .

For conformal deformations we obtain

D,I(g) = 3(1—n)[y(detg)tg™ v,d (K |K[}"~2)g*h;, dx
= H(1-n)[ A(K|K|i"-2) trh (g) ,

where A4 denotes the Laplacian with respect to the metric g. Thus
D;I(g)=0, for conformal deformations, implies

AK |K|in-2) = 2

with some constant 4 and A=0, if we do not keep the volume fixed.
However, in any case we obtain A=0 and K =constant. Now, if
D, I(g)=0 for all variations, possibly keeping the volume fixed, then we
obtain:

9K = nggrt Sy,

and ¢ is an Einstein metric.

Aubin uses the variational integral I in his attempt to prove Yamabe’s
theorem. However, he uses strong constraints on the variations, which
affect the Euler-Lagrange equation. It is Aubin’s treatment of the Euler—
Lagrange equation and subsequently his proof of the constancy of K,
which is incomplete.

2. Special variations.

We wish to investigate the values of the variation integral J, which
are taken under special variations of the metric, starting from a given
metric {+,+) on M. Thus M is now a Riemannian manifold and we
denote the covariant differentiation by V, the curvature tensor by R,
the Ricci tensor by S and the volume element by w, all corresponding
to the fixed metric {-,+). Any metric g can be written as

galv,p) = {Av,uy, AeC®(LTM,TM))
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with A(x) : T, M — T, M positive and self-adjoint for all z in M. Then
we have for the covariant derivative of a vector field X in the direction
of another vector field ¥ with respect to the new metric

VXY = VXY+T(X,Y)
with
I y(u,v) = 34 (VA(u)v+ VA(v)u —V*A(u,v)) ,
(V¥4 (u,v),w) = {u, VA(w)w) = (v, VA(w)u) .

For the volume element and the curvature tensor corresponding to the
new metric, we get
w,y = (detd)w
R (v, u)w = Rv,uw)w+ VI (v,u,w)— VI (u,v,w)+
+ L 4(0, T g(w,w)) = Iy (w, I y(v,w)) .

Using an orthonormal basis e,,...,e, of TM at some point to contract
R, we obtain the following formulas for the Ricci tensor and the scalar
curvature:

8 4(u,v) = zj<RA(ej,u)v:"'j> s
K, =3;8,4(e;,47%,)
= 3;8(e;, A7) + 3 ((VdA(ey, 5, A7 Ne;), A ey +
+ (I 4(e;,¢;), AT 4(A~e;, A~ley)y —
— (I 4(e;,A2e;), AT (A~ %e 5¢,))) s

with dA4(u,v)= VA(u,v)— VA(v,u).
We now consider the special case 4=y+dpRd*p, that is

Av = yw+de(v)d*e, d*¢ = grade,

where y and ¢ are O functions on M and y>0. This includes in par-
ticular the conformal deformations of the original Riemannian mani-
fold (p=0). We have

A7 = p(1-adp@d*p), « = (p+|dg®),
A(d*p) = a~ld*p, detd = a~lyp*l, w, = a~ipln-ly
VA(u)y = dy(u)v+ Vde(u,v)d*p +de(v) Vd*e(u) ,
V*A(u,0) = Cu,v)d*p -+ dg(n) Vd*ep(o) +dp(v) Vd*e(u)
AT y(u,v) = }(dyp(u)v+dyp(v)u —(u,v)d*yp) + Vde(u,v)d*p ,
VdA(w,u)y = Vdy(w,u)v — Vdp(w,v)u + Vde(w,v) Vd*e(u) +
+dp(v) Vid*e(w,u) — Vdp(w,u) Vd*@(v) — de(u) VEd*p(w,v) .

Math. Scand. 29 — 21
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Using these formulas we can easily compute the scalar curvature K , and
then the variation integral J(4)=[,, K 4w 4. For conformal deformations
(p=0), we get

LemMa 1. For conformal deformations of the Riemannian manifold M,
{+,*) by a C*™ positive function p, we have

—-1
Kv, = yP (uzK—th——uAu)
n—2

with p=2n/(n—2), u=y®-2 and we have

-1
Jw) = [y K, o, = SM (u2K+4Z—_—2||du“2) w,
V) = far o, = far w20

Moreover J s bounded below for conformal deformations with V = constant.

The formulas in the Lemma follow easily from the more general for-
mula for K, and previous formulas for the special variation 4, putting
@=0 there. J is easily seen to be bounded below for any scalar curva-
ture K, as we shall have an opportunity to demonstrate in Section 3.
We shall now see that for more general deformations J can take arbi-
trary large negative values.

Lremma 2. We have for variations of the type A =y +dpQRd*p, v>0:

K, =y K —ap 18(d*p,d*p) — a2y~ 1 Ap{dp, dp) +

+ 3y ~3(20%2 — 2(n — B)ay — (n — 2)(n— 7)) ldy|* +

+ toyp~3(2(2 —n)ay+ (n—2)(n—17))y%+

+ $oyp=2 (20 — m + 2)<dB, dy) + $aPy1||dB| |2 —

— 3aPy=3(n — 2)p<dB,dp) — aP*p~lydp — (n — 2)p~2Ay

+ op~2(n — 2) Div (yde) + sy~ Div (dedp — 3df —dy) ,
with o= (p+|ldg|?), B=|del? y={dy,dp).

For variations of the type B=04"-2(y + dpQ@d*p) with 0 =or-tyu-tn-3)

for some v and u, we have

: -1
TB) = uKyop = { (0K +47— 10F) o
It n—2

= S a®lyt-2[y¥(K — aS(d*p,d*p)) +
M



ON VARIATIONS OF METRICS 323

+3((n—1)/(n—2))yll(4r— Dopdf — (4p —n+ 3 — (4 — D)oy dp|[* +

+3(2(1 - )aPy? — (20— 6 — 8u + 4(n— 2)(2v — 1))ap —
—(n—2)(n—8u—3)) |dy|?+

+ }o(n—2)(2(4v — D)oy +n — 3 — 8u){dy,dp)* +

+ $op(2(1 — 3v)ap 4 2u — (n — 2)(4v — 1))KdB,dy) +

+ 3oPy?(1 = 20)[|dBI + &(n — 2)(4v — 1)a®y(dB, dp){dy,dp) +

+ opAe{(2v — V)oydf — (2 — (2v — l)aw)dzp,dq))]w .

The formula for K, follows by direct computation from previous re-
sults and J(B) is computed by first using Lemma 1 and then the formula
for K 4 and a rather lengthy but elementary computation involving par-
tial integration. We now want to choose »,u and the functions ¢ and ¢,

such that J(B)<O0.
For a given ¢ and a positive constant ¢, we choose

q=2ul(2v—-1) > 1

and define p by the equation

. - Inc
B = cyl—y, w=eXP(—qu)-
Then

o =cly? and df = (E———l) dy .
Y

The last term under the integral for J(B) in Lemma 2 is then zero and
we obtain:

J(B) = c1—2~S

(K_a S(d*<p,d*<p)+{—w2 (n—2)(20 + n — 3)(dy, dgd* +
‘M

+|lrflwll24—;—2 (:——:; p(n—34+9)%+ 2(1-—q)aw—(n—2)(2q+n—3)>) w
< cS (<|K|+usn>—
‘M

— o (21,; (;q'_p- 1))_2(2(1@—— 1)q—2—%—:—;¢x—1(n—3+q)2) ||dﬂ||2) w.

Now we choose ¢=2 and ¢ such that #<n-1. Then we have for ¢ suffi-
ciently large:
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J(B) = c'~%(const—f,(c)|ldflls) with f.(c) > 0.
Thus J(B) <0 for ||dB|5= [4|ldB|I2w sufficiently large.

TaEOREM 3. Let M be a compact C®° manifold of dimension n>2.
Then there exists a Riemannian metric on M with negative J. Moreover
J can be made to take arbitrary values, keeping the volume of M constant.

Proor. From the last estimate on J(B) it is clear that J can be made
to take arbitrary negative values by a suitable choice of » and |dg]|,,
even if we keep the volume fixed, since it involves only norm conditions
on 8. By Lemma 1, we can obtain arbitrary positive values using con-
formal deformations, if we start with a metric with negative J.

3. Critical points.

We want to investigate the existence of critical points of the varia-
tion integral J under conformal deformations, leaving the volume fixed.
Thus M is now a Riemannian manifold and we keep the notations of

Section 2.
We denote by H¥M), £k=0,1,2,..., the Sobolev spaces of functions

on M. H¥(M) is a Hilbert space with C*°(M) as a dense subset and with
the inner product

Cu, )y = 5o [ (V'u, VoY

We denote the corresponding norm by |-||;, and L«M) denotes the
Lebesgue space of functions on M with the norm

lulg = (farlul?w)te.

We have J(u) =[5 (42K + x||du|?)w by Lemma 1, with x=4(n—1)/(n—2),
so J is a quadratic form on HY(M). With p=2n/(n—2) as in Lemma 1,
we have 2<p =<6 and

1—3n = —(n[p), which implies HYM) < LP(M),
by the Sobolev embedding Theorem. The volume function V(u)=
Jar |1w|P @ = |ul,P is therefore a 2 function on HY(M) and the set 2 < HY(M)
with |u|,=1 is a C? submanifold. We have
€lle = 1€l = cpliélh, &€ HY(M),

where ¢, denotes the smallest constant with this property. Thus |lull,
is bounded by 1 for u € 2 (for convenience we choose M to have volume

=1). Moreover we have



ON VARIATIONS OF METRICS 325

J(w) z 2full,® + (min K —2)[[ullo? ,

so J(u) is bounded below, as stated in Lemma 1. Moreover [[u||, is
bounded on sets where J is bounded. We have

dJ(u) & = [3(2Kué + 2x{du,d&)) o = 2{Ku—kAu,£), ,
AV(w) £ = pfprululr~e .

Now (&,m);=<&,(1—A4)n),, so the gradients of V and J, as functions on
HYM), are

grad V(u) = pT'(u[u|?-?),

gradJ(u) = 2T(Ku—x»Au) = 2xu—2T((x— K)u) ,

with 7'=(1-4)-1. Let —@(u) be the gradient of J,=J,, the restric-
tion of J to the submanifold 2 of HY(M). Then

G(u) = —gradJ(u)+A(u) grad V(u) ,
with
Mu) = (grad J(u), grad V(u)), llgrad V(u)[,~2 .

We obtain the following estimates for u,v € Q:

(G(u) = G(v),u—v),

= 2¢l|u — ]|, + 2% — K, (u — v) 2 + p{A(w)u|u[P =2 — A(0)o|v]P 2, u — v},

— 2ulu — 0|2 + 2|k — K|l lu — vlo? + p|A(w) — A(v)] |u—v],+

+ pA) u|uP2—vjv|P2u—v), ,

IKu [u|P=2 —v|p|P=2,u — )| = (p—1){[G|v+s(u—0)[P-2ds, (u—v)2),
(P—1)|u—vl,2 [5((1—8)|v|,+s|ul,)P~2 ds

(P—1cy?llu—vl,?.

IIA

IAIA I

Let w(t) be some gradient curve in 2 of the vector field G(u) such that
J(u(t)) converges to the infimum J, of J, for ¢ > oco. Then [G(u(t))|l,
converges to 0 and |lu(t)||, is bounded, since J(u(t)) is bounded. More-
over, we conclude from the equality

(u,G(u))y = —J(w)+ 3pA(u)

that A(u(t)) converges to 2Jy/p for ¢ > co. Then, choosing a sequence
t; > oo such that u(t;)=wu, converges in H°(M), we obtain convergence
of u, in HY(M) from the estimates for ||u —v||, just given, provided

(p=1)c,2dy < x.

The limit % of u, is then a minimum point of J, and satisfies the equa-
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tion G(u)=0, that is, u is a weak (H') solution of the equation
Ku—nxAu = Jyu|ulP-2.

Since |u| is also a H! function with the same J and V values as u, |u| is
also a minimum point for J, and satisfies the same differential equation
(although G(u)=0 does not imply G(|u|)=0 at a nonminimal critical
point ).

THEOREM 4. Suppose the infimum J, of J, satisfies the inequality

n -2

Jy < 4 2,

n—2
where 1[c, is the infimum of |jull, with |u|,=1. Then J, takes its minimal
value at a C* positive function u, satisfying

n—1

Ku—4—— Au = Jyup-1.
n—2

Moreover, a multiplication of the metric on M by u¥®-D 4s a conformal

deformation of M to a Riemannian manifold with constant scalar curvature

equal to J, (and volume equal to 1).

Proor. We have already proved that the minimal value is taken at a
function #=0 in HY(M) satisfying G(u)=0. Then u is of class C* by
well-known regularity results [4, Theorem 3] and u is positive by the
maximum principle for elliptic equations (du=<cu, in a domain with
u=1).

CoroLLARY. Let M be a compact C* Riemannian manifold of dimen-
sion n 2 3 and with negative total scalar curvature, [y Kw <0. Then M can
be conformally deformed to a Riemannian manifold with constant negative
scalar curvature.

Proor. We have J,<J(1)= [ Kw <0, so Theorem 4 can be applied.

THEOREM 5. Let M be a compact C* manifold of dimension n= 3. Then
there exists a C® metric on M with constant negative scalar curvature.

Proor. By Theorem 3, there is a metric with negative total scalar
curvature and then we can apply the Corollary of Theorem 4.

The question is still open, whether it is in general possible to deform
a compact Riemannian manifold conformally to a manifold with con-
stant scalar curvature. For example if K =%, then for u € Q:
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J(u) 2 #|ull,® 2 xc,72|ul,? = xc,"?,

so the condition in Theorem 4 is not satisfied. Moreover it follows that
J(u) does not take its minimum if |jul; does not take its minimum c,*
and if there is a minimizing sequence u; for the variational problem of
minimizing |lu||;, keeping |u|, constant, such that ||, converges to zero.
I think this holds, due to the fact that the inclusion LP(M)< HY(M) is
not compact, but I have not made a serious attempt of proving it. In
the absence of a minimum point, one could try to look for another
critical point. However, a nonminimal critical point is possibly a function
taking both signs and moreover probably so, because of the similarity
to the problem of finding critical points of |/dul||,2 on |ju|,2=1, which are
the eigenfunctions of the Laplacian: du= —Au.
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