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ON DOMINATED EXTENSION OF CONTINUOUS
AFFINE FUNCTIONS ON SPLIT FACES

TAGE BAI ANDERSEN

The purpose of this note is to prove a theorem on dominated exten-
sion of continuous affine functions from split faces of compact convex
sets (Theorem 1) which improves the result in [2, Th. 3.3]. From this
theorem we are able to derive a result of J.-E. Bjerk [5] on interpolation
of closed subspaces of C'r(X) (Theorem 3) which generalizes the Bishop—
Carleson-Rudin theorem (4], [6], [7] in the real case.

We want to thank E. Alfsen and B. Hirsberg who helped the author
clarify the relationship between split faces and Bjerk’s condition.

In this note K denotes a compact convex subset of a real locally con-
vex vector space and A(K) the Banach space of real-valued continuous
affine functions on K. If F is a closed face of K, we denote by F'’ the
union of all faces disjoint from #. Then F' is a G, [2, Cor. 1.3]. If F is
a closed face of K, we call F' a split face, if F' is a face and each point
in K\ (FUF') admits a unique representation as a convex combination
of a point in F and a point in F".

The following proposition is proved analogously to Theorem 3.3 of [2],
g0 we shall just give a sketch of proof. It is also proved in slightly differ-
ent form in [3].

ProposITION 1. Let F be a proper closed split face of a compact convex
set K. Let a,,...,a,,bec A(K) and a, € A(F) such that
(1) aié b, a,;IFé a0§ blF’ ":=1,...,n.

Then for every ¢> 0 there is a ¢ € A(K) such that

(2) a;—e=2¢c=b clp=a,.
Proor. Let a=a,v...va,, where the supremum is formed pointwise.
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By Lemma 3.2 of [2] we can choose ¢, € 4(K) such that
@ <c <bte ayt+e2l <colp < ayte.

By induction and application of the dual version of Lemma 3.2 of [2]
we construct {c,,}_, < A(K) such that

Cpn—E2™™ < Cppyq < Cp A (D+€27™),
Ao +e2-m) < ¢ lp < @y+e2°m

Then c=limc,, € A(K) will satisfy the requirements.

CoROLLARY 1. Let F be a proper closed split face of a compact convex
set K. Let g be a real continuous concave function on K, be A(K) and
a, € A(F) such that

b<g, blp=a<glp.
Then there is a ¢ € A(K) such that

bsc<g, clp=a,.

Proor. By continuity and compactness we can choose &> 0 such that
b<g—e ay<g—elp.
By the Hahn-Banach theorem

g(x) = inf {a(z) |g<a, acA(K)}
and hence
glz) = inf {(ay. .. AG,)(@) | g <@, ;€ A(K))

for all # in K. By Dini’s theorem for decreasing nets we can choose
by,...,b, € A(K), g <b; such that

(byA ... Aby)(®)—g(x) < 3¢, allzin K .

Let a/=0b;,— }e. Then
a’A...Aa,) <g, g—3i<a.
Hence by the choice of ¢,
b<a', a<alp.

Let a;=a;/ —3c. Then

b<g—e<a;, a <(g—eép<alp.
We apply the dual version of Proposition 1 and find ¢ € A(K) such that

bécéai""%e’ c‘17'=a0'
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Then
c(x) £ ax)+3e = a/(x), i=1,...,m,
and hence
c(x) < (a'A. .. A0, )(x) < g(x) forallzin K .

Now we shall use a variant of a technique which appeared in Pelczyn-
ski’s paper [8] to avoid one of the requirements of strict inequality in
Corollary 1.

THEOREM 1. Let F be a closed split face of a compact convex set™K.
Let g be a real continuous concave function on K, b€ A(K) and ay€ A(F)
such that

b<g, bIFéaO

IIA

9lr -
Then there is an a € A(K) such that

b2a=sg, alp=a,.

Proor. By subtraction of & we may assume =0, and normalizing
we may assume ¢g=<1.
Since 2¢>g we may apply Corollary 1 to choose a, € 4(K) such that

Glg =0y O0=a, <2.
Let
by = 2%(9—27a,)

which is a concave and strictly positive continuous function. If ke F
and ay(k)=0, then
Byk) = 4g(k) > 0 = ay(k) .

If k€ F and ay(k) > 0, then
balk) = 4(g(k)—21a4(k)) Z 4(ag(k) —22ag(k)) = 2a,(k) > ag(k) .
Hence by > a,, and so b,A2 is concave and continuous and
0<byA2, ag<bya2lp.
By Corollary 1 we can choose a, € 4(K) such that
0= a,<2Ab;,, ayp=a.

Assume now by induction that a,,...,a, € A(K) are constructed such
that

0<a, <2A209-3127"a,), a,lp=a, p=2,...,1n.
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Let
n —_
by = 201 (g-37_,27"a,) .

Then b,,, is concave, continuous and strictly positive by induction
hypothesis. Moreover

bpialp = 2" (glp— (1—-2"")ay) .
If ke F and ay(k)=0, then

bua(k) = 2ntig(k) > 0 = ay(k) .
If ke F and ay(k)>0, then

Bsa(k) = 2741 (g(k) — (1 — 2-M)a,(R))
2m41 (ag(k) — (1 — 2-M)ag(k) = 2ao(k) > ag(k) .

v

Hence b, |z >a,, and so b, ,,A2 is concave, continuous and
0<b,11A2, ay<b, A2p.
Again by Corollary 1: choose a,,_, € A(K) such that
0= Gpyy <bpiaA2, Guulp =a.

The sequence {a,}5_, < A(K) so constructed satisfies

(i) 0<a,<2, n=12,...,
(i) 03 _,27%a,<g, n=12,...,
(iii) a,|p=ay, n=12,...,

By (i): 322 ,2-"a, is uniformly convergent and hence determines an ele-

ment a of 4(K). By (ii): 0232 ,2"a,<g, and by (iii) we get a|p=
3% 12 "ay=a,. This completes the proof.

COROLLARY 2. Let F be a closed split face of a compact convex set K.
Let aye A(F). Then a, admits an extension a in A(K) such that ||a,|z=

ol & -

To apply the preceding results to function spaces we need more nota-
tion. If X is a compact Hausdorff space, M (X) denotes the Banach space
of all signed Radon measures on X, M+(X) denotes the positive measures
and M,+(X) the probability measures. If F is a Borel subset of X and
ue M(X), we denote by u|p € M(X) the measure defined by

ulp(8) = u(Fns8) for all Borel sets S in X .

When |z is considered as a measure on F, we denote it by up. If Fisa
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compact subset of X and » e M(F), we denote by »X € M(X) the measure
defined by
yX(8) = »(SNF) for all Borel sets Sin X .

If K is a compact convex subset of a locally convex Hausdorff space,
we denote by 9, K the set of extreme points of K. A signed measure u
on K is called a boundary measure if the total variation |x| is a maximal
measure in Choquet’s ordering of positive measures [1], [9]. The bound-
ary measures form a normeclosed subspace of M(K) [1, Prop. 1.4.5]. A
boundary measure is supported by 4,K [1, Prop. 1.4.6].

By r we denote the barycenter map from M,*(K) to K, that is,
for u € M,*(K), r(u) is the unique point in K satisfying a(r(u))=u(a) for
all @ € A(K). Choquet’s theorem states that each point in K is the bary-
center of a maximal (boundary) probability measure.

If f: K — R is a bounded function, f: K — R is defined by

f(k) = inf {a(k) |a>f, acA(K)}, all keK.

If X is a compact Hausdorff space, we let B be a closed subspace of
Cr(X), which separates the points of X and contains the constants.
We define

Bt = {ue M(X) | u(d)=0,VbeB}.
We let
Sp = {peB*|p(l)=1=|lp|l}

which is convex and compact in the w*-topology. Since B separates
points in X we have a homeomorphic embedding @ of X into S defined
by

D(x)(b) = b(x), all beB.

Then 0,Spc®P(X) [9, Lem. 6.1]. We define the Choquet boundary
0pX as the set
0pX = {xe X | D(x)€9,Sp} .

If @ carries a measure u on X to Sg, we call the carried measure yo®-1.
We let

M(05X) = {ue M(X) | po®@1 is & boundary measure on Sg} .

Notice that boundary measures on Sz can be carried to X as uo® such
that (uo®)o®P-1 =y, since boundary measures are supported by 9,55 <
D(X).

Finally, the map y: B -~ A(Sp), where

p(b)(p) = @(b), allgpin Sy,



ON DOMINATED EXTENSION OF CONTINUOUS AFFINE FUNCTIONS ... 303

is an order-isomorphism of B onto A(Sg) [1, Th. II. 1.8]. Notice that
p(b)(P(x)) = b(x), all beB and all zeX .

We shall need the following measure theoretic characterization of split
faces due to Alfsen [1, Th. I1.6.12].

THEOREM 2. If F is a closed face of a compact convex set K, then the
following conditions are equivalent:
(i) F s a split face.
(ii) If ue A(K)* and p is concentrated on FUF', then u|p e A(K)*.
(iii) If p € A(K)* and p is a boundary measure, then u|p € A(K)*.

Lemma 1. Let K be a compact convex set.

(i) If F, is a compact subset of 0,K and v is a boundary measure on
co (Fy), then vK is a boundary measure on K.

(ii) If F is a closed convex subset of K and u is a boundary measure
on K, then uy 18 a boundary measure on F.

Proor. (i) Since » is a boundary measure on €o(F,), » is supported
by the closure of 9,¢co(F,). But by Milman’s theorem 9, co (Fy)=F,.
Hence if f e Cr(K),

EI(F-1) = [ F=pani =0,
Fo
since f=f on 8,K [9; Prop. 3.1]. From [9; Prop. 9.3] it follows that »&
is a boundary measure on K.
(ii) It suffices to consider the case where y is a positive measure. Now
po= plp+ pleg-

Choose a maximal measure » on F such that up<».
If fis a convex and continuous real function, then f|p is convex and
continuous and hence

w(f) = up(f)+ ol pf) = 2(F)+plens(f) = 0K +plenp)(f) -
But x is a maximal measure on K and therefore
m = ”K+ :u‘K\F ’

that is, u|p=»X. Finally up=(X)p=v, and pp is maximal.

ProposiTiON 2. Let K be a compact convex set and Fy a compact subset
of 9,K. If
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v e AK), p boundary = plp € A(K)*,
then F=co(F,) is a split face.

Proor. First we prove that co(F,) is a face of K. Let x € F and let
z=oy+(l—u),

where 0<x <1 and y,2€ K.

Assume y ¢ F. Let x=r(u,), where u, € M,+(F) and boundary on F.
Then u,(F¢)=1. Let y=r(uy), 2=r(us), where u,,u; € M,+(K) and bound-
ary on K. Then u,(F)<1, for otherwise y € F.

Now u,z is a boundary measure on F' by Lemma 1 (ii), and since 9,F =
F, is compact, .z is supported by F,, and so

pa(Fo) = pop(Fy) = pop(F) = ps(F) < 1.
By definition of barycenters,
S —opy—(1—o)uy € A(K)*

and a boundary measure on K, since u,X is a boundary measure on K
by Lemma 1 (i). But

(l‘1K“0‘/‘2_(1—0‘)/‘3)|F0(1) = 1—ouy(Fo) — (1 —ax)us(Fo) > 0,

which is a contradiction. Hence y € F' and analogously z € F, and F is
a face.

If ue A(K)* and u is a boundary measure on K, then ulyp=pnlp, by
Lemma 1 (ii), and the conclusion follows from Theorem 2.

Now we are able to state and prove the theorem of Bjerk [5] in the
non-metrizable case.

TaEOREM 3. (Bjork). Let X be a compact Hausdorff space and B a
norm-closed linear subspace of Cr(X) such that B contains the constants
and separates the points of X. Let Fy be a compact subset of the Choquet
boundary 05X which satisfies

Then each by € Bly, is the resiriction to Fy of an element be B with

1811 x = 11boll -

Proor. 1. Firstly we prove that F==co(®D(F,)) is a split face of Sp.
Since @(F,) < 9,Sg, it suffices by Proposition 2 to prove that u € 4(Sz)*
and u boundary measure imply u|qz,, € A(Sp)*
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Hence let u e A(Sg)t and boundary. If b € B, then

de(,uodi) - j bod-1 dy = f (b) du = fzp(b) du=0.
X (X) H(X) SB

Hence po® € BY, and it is evident that uo® € M(95zX). By assumption
po®|p, € B-. If a € A(Sp), then p~1(a) € B and so

0= J.tp“l(a) duo® = f pa)oDldu = f adu .
Fo D(Fo) D(Fo)
Hence F=co(PD(F,)) is a split face.
2. Next, let by € B|g,, by=04|p,, Where b, € B. Then y(b,) € A(Sp) and
by Corollary 2 there is a ¢ € A(Sg) such that

clr = v@lr  lellsy = llv@lp -

Now the norm of a continuous affine function is obtained at the extreme
boundary, and so

lpe)llx = lellocxy = llells = [(Ba)lle = Ilp(01)llory
[0:0@Mlgimy = lIballr, »

and if k € F, then

pH(e)(k) = o(P(k)) = p(b,)(D(K)) = by(k) = bo(k) .

Hence b=y1(c) € B will do, and the proof is complete.

ReMARK. With the same assumptions as in Theorem 3 one can get a
stronger version corresponding to Theorem 1 with g a B-concave function.
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