ON DOMINATED EXTENSION OF CONTINUOUS AFFINE FUNCTIONS ON SPLIT FACES

TAGE BAI ANDERSEN

The purpose of this note is to prove a theorem on dominated extension of continuous affine functions from split faces of compact convex sets (Theorem 1) which improves the result in [2, Th. 3.3]. From this theorem we are able to derive a result of J.-E. Bjørk [5] on interpolation of closed subspaces of $C_{R}(X)$ (Theorem 3) which generalizes the Bishop-Carleson-Rudin theorem [4], [6], [7] in the real case.

We want to thank E. Alfsen and B. Hirsberg who helped the author clarify the relationship between split faces and Bjørk's condition.

In this note K denotes a compact convex subset of a real locally convex vector space and A(K) the Banach space of real-valued continuous affine functions on K. If F is a closed face of K, we denote by F' the union of all faces disjoint from F. Then F' is a G_{δ} [2, Cor. 1.3]. If F is a closed face of K, we call F a split face, if F' is a face and each point in $K \setminus (F \cup F')$ admits a unique representation as a convex combination of a point in F and a point in F'.

The following proposition is proved analogously to Theorem 3.3 of [2], so we shall just give a sketch of proof. It is also proved in slightly different form in [3].

PROPOSITION 1. Let F be a proper closed split face of a compact convex set K. Let $a_1, \ldots, a_n, b \in A(K)$ and $a_0 \in A(F)$ such that

(1)
$$a_i \leq b, \quad a_i|_F \leq a_0 \leq b|_F, \quad i=1,\ldots,n.$$

Then for every $\varepsilon > 0$ there is a $c \in A(K)$ such that

(2)
$$a_i - \varepsilon \leq c \leq b, \quad c|_F = a_0.$$

PROOF. Let $a = a_1 \vee \ldots \vee a_n$, where the supremum is formed pointwise.

By Lemma 3.2 of [2] we can choose $c_1 \in A(K)$ such that

$$a \, < \, c_1 \, < \, b + \varepsilon, \qquad a_0 + \varepsilon \, 2^{-1} \, < \, c_1|_F \, < \, a_0 + \varepsilon \; .$$

By induction and application of the dual version of Lemma 3.2 of [2] we construct $\{c_m\}_{m=1}^{\infty} \subseteq A(K)$ such that

$$\begin{array}{l} c_m - \varepsilon \, 2^{-m} \, < \, c_{m+1} \, < \, c_m \, \wedge \, (b + \varepsilon \, 2^{-m}) \; , \\ a_0 + \varepsilon \, 2^{-(m+1)} \, < \, c_{m+1}|_F \, < \, a_0 + \varepsilon \, 2^{-m} \; . \end{array}$$

Then $c = \lim c_m \in A(K)$ will satisfy the requirements.

COROLLARY 1. Let F be a proper closed split face of a compact convex set K. Let g be a real continuous concave function on K, $b \in A(K)$ and $a_0 \in A(F)$ such that

$$b < g, \quad b|_F \le a_0 < g|_F$$
.

Then there is a $c \in A(K)$ such that

$$b \le c < g, \quad c|_F = a_0.$$

PROOF. By continuity and compactness we can choose $\varepsilon > 0$ such that

$$b \, < \, g - \varepsilon, \quad \, a_0 \, < \, g - \varepsilon|_F \; .$$

By the Hahn-Banach theorem

$$g(x) = \inf \{a(x) \mid g < a, a \in A(K)\}$$

and hence

$$g(x) = \inf \{(a_1 \land \dots \land a_n)(x) \mid g < a_i, a_i \in A(K)\}$$

for all x in K. By Dini's theorem for decreasing nets we can choose $b_1, \ldots, b_n \in A(K)$, $g < b_i$ such that

$$(b_1 \wedge \ldots \wedge b_n)(x) - g(x) < \frac{1}{2}\varepsilon$$
, all x in K .

Let $a_i' = b_i - \frac{1}{2}\varepsilon$. Then

$$a_1' \wedge \ldots \wedge a_n' < g, \quad g - \frac{1}{2}\varepsilon < a_i'.$$

Hence by the choice of ε ,

$$b < a_i', \quad a_0 < a_i'|_F.$$

Let $a_i = a_i' - \frac{1}{2}\varepsilon$. Then

$$b \, < \, g - \varepsilon \, < \, a_i, \quad \, a_0 \, < \, g - \varepsilon|_F \, < \, a_i|_F \; . \label{eq:bound}$$

We apply the dual version of Proposition 1 and find $c \in A(K)$ such that

$$b \leq c \leq a_i + \frac{1}{2}\varepsilon, \quad c|_F = a_0.$$

Then

$$c(x) \leq a_i(x) + \frac{1}{2}\varepsilon = a_i'(x), \quad i=1,\ldots,n,$$

and hence

$$c(x) \leq (a_1' \wedge \ldots \wedge a_n')(x) < g(x)$$
 for all x in K .

Now we shall use a variant of a technique which appeared in Pelczynski's paper [8] to avoid one of the requirements of strict inequality in Corollary 1.

THEOREM 1. Let F be a closed split face of a compact convex set K. Let G be a real continuous concave function on K, K is K and K is K such that

$$b < g$$
, $b|_F \leq a_0 \leq g|_F$.

Then there is an $a \in A(K)$ such that

$$b \leq a \leq g, \quad a|_F = a_0.$$

PROOF. By subtraction of b we may assume b=0, and normalizing we may assume $g \le 1$.

Since 2g > g we may apply Corollary 1 to choose $a_1 \in A(K)$ such that

$$a_1|_F = a_0, \quad 0 \le a_1 < 2g$$
.

Let

$$b_2 = 2^2(g - 2^{-1}a_1)$$

which is a concave and strictly positive continuous function. If $k \in F$ and $a_0(k) = 0$, then

$$b_2(k) = 4g(k) > 0 = a_0(k)$$
.

If $k \in F$ and $a_0(k) > 0$, then

$$b_2(k) \, = \, 4 \big(g(k) - 2^{-1} a_0(k) \big) \, \geqq \, 4 \big(a_0(k) - 2^{-1} a_0(k) \big) \, = \, 2 \, a_0(k) \, > \, a_0(k) \, \; .$$

Hence $b_2|_F > a_0$, and so $b_2 \wedge 2$ is concave and continuous and

$$0 < b_2 \land 2, \quad a_0 < b_2 \land 2|_F$$
.

By Corollary 1 we can choose $a_2 \in A(K)$ such that

$$0 \le a_2 < 2 \land b_2, \quad a_2|_F = a_0$$
.

Assume now by induction that $a_1, \ldots, a_n \in A(K)$ are constructed such that

$$0 \, \leqq \, a_p \, < \, 2 \, \, \mathsf{A} \, \, 2^p (g - \textstyle \sum_{r=1}^{p-1} 2^{-r} a_r), \quad \, a_p|_F \, = \, a_0, \quad \, p = 2, \ldots, n \, \, .$$

Let

$$b_{n+1} = 2^{n+1} (g - \sum_{r=1}^{n} 2^{-r} a_r)$$
.

Then b_{n+1} is concave, continuous and strictly positive by induction hypothesis. Moreover

$$b_{n+1}|_F = 2^{n+1} (g|_F - (1-2^{-n})a_0)$$
.

If $k \in F$ and $a_0(k) = 0$, then

$$b_{n+1}(k) = 2^{n+1}g(k) > 0 = a_0(k)$$
.

If $k \in F$ and $a_0(k) > 0$, then

$$\begin{array}{ll} b_{n+1}(k) \, = \, 2^{n+1} \big(g(k) - (1-2^{-n}) a_0(k) \big) \\ & \geq \, 2^{n+1} \big(a_0(k) - (1-2^{-n}) a_0(k) \big) \, = \, 2 \, a_0(k) \, > \, a_0(k) \; . \end{array}$$

Hence $b_{n+1}|_F > a_0$, and so $b_{n+1} \wedge 2$ is concave, continuous and

$$0 < b_{n+1} \land 2, \quad a_0 < b_{n+1} \land 2|_F$$
 .

Again by Corollary 1: choose $a_{n+1} \in A(K)$ such that

$$0 \le a_{n+1} < b_{n+1} \land 2, \quad a_{n+1}|_F = a_0.$$

The sequence $\{a_n\}_{n=1}^{\infty} \subseteq A(K)$ so constructed satisfies

- $\begin{array}{ll} \text{(i)} & 0 \leq a_n < 2, & n = 1, 2, \dots, \\ \text{(ii)} & 0 \leq \sum_{r=1}^n 2^{-r} a_r < g, & n = 1, 2, \dots, \\ \end{array}$
- (iii) $a_n|_F = a_0$,

By (i): $\sum_{r=1}^{\infty} 2^{-r} a_r$ is uniformly convergent and hence determines an element a of A(K). By (ii): $0 \le \sum_{r=1}^{\infty} 2^{-r} a_r \le g$, and by (iii) we get $a|_{F} =$ $\sum_{r=1}^{\infty} 2^{-r} a_0 = a_0$. This completes the proof.

Corollary 2. Let F be a closed split face of a compact convex set K. Let $a_0 \in A(F)$. Then a_0 admits an extension a in A(K) such that $||a_0||_F =$ $||a||_{K}$.

To apply the preceding results to function spaces we need more notation. If X is a compact Hausdorff space, M(X) denotes the Banach space of all signed Radon measures on X, $M^+(X)$ denotes the positive measures and $M_1+(X)$ the probability measures. If F is a Borel subset of X and $\mu \in M(X)$, we denote by $\mu|_F \in M(X)$ the measure defined by

$$\mu|_F(S) = \mu(F \cap S)$$
 for all Borel sets S in X .

When $\mu|_F$ is considered as a measure on F, we denote it by μ_F . If F is a

compact subset of X and $\nu \in M(F)$, we denote by $\nu^X \in M(X)$ the measure defined by

$$\nu^X(S) = \nu(S \cap F)$$
 for all Borel sets S in X .

If K is a compact convex subset of a locally convex Hausdorff space, we denote by $\partial_e K$ the set of extreme points of K. A signed measure μ on K is called a boundary measure if the total variation $|\mu|$ is a maximal measure in Choquet's ordering of positive measures [1], [9]. The boundary measures form a normclosed subspace of M(K) [1, Prop. I.4.5]. A boundary measure is supported by $\overline{\partial_e K}$ [1, Prop. I.4.6].

By r we denote the barycenter map from $M_1^+(K)$ to K, that is, for $\mu \in M_1^+(K)$, $r(\mu)$ is the unique point in K satisfying $a(r(\mu)) = \mu(a)$ for all $a \in A(K)$. Choquet's theorem states that each point in K is the barycenter of a maximal (boundary) probability measure.

If $f: K \to \mathbb{R}$ is a bounded function, $\hat{f}: K \to \mathbb{R}$ is defined by

$$\hat{f}(k) = \inf \{a(k) \mid a > f, a \in A(K)\}, \quad \text{all } k \in K.$$

If X is a compact Hausdorff space, we let B be a closed subspace of $C_{\mathbf{R}}(X)$, which separates the points of X and contains the constants. We define

$$B^{\!\perp} = \{ \mu \in M(X) \mid \mu(b) = 0, \, \forall \, b \!\in\! B \}$$
 .

We let

$$S_B = \{ \varphi \in B^* \mid \varphi(1) = 1 = ||\varphi|| \}$$

which is convex and compact in the w^* -topology. Since B separates points in X we have a homeomorphic embedding Φ of X into S_B defined by

$$\Phi(x)(b) = b(x), \quad \text{all } b \in B.$$

Then $\partial_{e}S_{B}\subseteq\Phi(X)$ [9, Lem. 6.1]. We define the Choquet boundary $\partial_{B}X$ as the set

$$\partial_B X = \{x \in X \mid \Phi(x) \in \partial_e S_B\}.$$

If Φ carries a measure μ on X to S_B , we call the carried measure $\mu \circ \Phi^{-1}$. We let

$$M(\partial_B X) = \{ \mu \in M(X) \mid \mu \circ \Phi^{-1} \text{ is a boundary measure on } S_B \}$$
 .

Notice that boundary measures on S_B can be carried to X as $\mu \circ \Phi$ such that $(\mu \circ \Phi) \circ \Phi^{-1} = \mu$, since boundary measures are supported by $\partial_e S_B \subseteq \Phi(X)$.

Finally, the map $\psi \colon B \to A(S_B)$, where

$$\psi(b)(\varphi) = \varphi(b)$$
, all φ in S_B ,

is an order-isomorphism of B onto $A(S_B)$ [1, Th. II. 1.8]. Notice that

$$\psi(b)(\Phi(x)) = b(x)$$
, all $b \in B$ and all $x \in X$.

We shall need the following measure theoretic characterization of split faces due to Alfsen [1, Th. II.6.12].

THEOREM 2. If F is a closed face of a compact convex set K, then the following conditions are equivalent:

- (i) F is a split face.
- (ii) If $\mu \in A(K)^{\perp}$ and μ is concentrated on $F \cup F'$, then $\mu|_F \in A(K)^{\perp}$.
- (iii) If $\mu \in A(K)^{\perp}$ and μ is a boundary measure, then $\mu|_F \in A(K)^{\perp}$.

LEMMA 1. Let K be a compact convex set.

- (i) If F_0 is a compact subset of $\partial_e K$ and v is a boundary measure on $\overline{\operatorname{co}}(F_0)$, then v^K is a boundary measure on K.
- (ii) If F is a closed convex subset of K and μ is a boundary measure on K, then μ_F is a boundary measure on F.

PROOF. (i) Since ν is a boundary measure on $\overline{\operatorname{co}}(F_0)$, ν is supported by the closure of $\partial_e \, \overline{\operatorname{co}}(F_0)$. But by Milman's theorem $\partial_e \, \overline{\operatorname{co}}(F_0) = F_0$. Hence if $f \in C_R(K)$,

$$|v^K|(\hat{f}-f) = \int_{F_0} (\hat{f}-f) d|v| = 0$$
,

since $\hat{f} = f$ on $\partial_e K$ [9; Prop. 3.1]. From [9; Prop. 9.3] it follows that ν^K is a boundary measure on K.

(ii) It suffices to consider the case where μ is a positive measure. Now

$$\mu = \mu|_F + \mu|_{K \searrow F} .$$

Choose a maximal measure ν on F such that $\mu_F < \nu$.

If f is a convex and continuous real function, then $f|_F$ is convex and continuous and hence

$$\mu(f) = \mu_F(f) + \mu|_{K \searrow F}(f) \leq \nu(f) + \mu|_{K \searrow F}(f) = (\nu^K + \mu|_{K \searrow F})(f).$$

But μ is a maximal measure on K and therefore

$$\mu = \nu^K + \mu|_{K \setminus F} ,$$

that is, $\mu|_F = v^K$. Finally $\mu_F = (v^K)_F = v$, and μ_F is maximal.

Proposition 2. Let K be a compact convex set and F_0 a compact subset of $\partial_e K$. If

$$\mu \in A(K)^{\perp}$$
, μ boundary $\Rightarrow \mu|_{F_0} \in A(K)^{\perp}$,

then $F = \overline{co}(F_0)$ is a split face.

PROOF. First we prove that $\overline{\operatorname{co}}(F_0)$ is a face of K. Let $x \in F$ and let

$$x = \alpha y + (1 - \alpha)z,$$

where $0 < \alpha < 1$ and $y,z \in K$.

Assume $y \notin F$. Let $x = r(\mu_1)$, where $\mu_1 \in M_1^+(F)$ and boundary on F. Then $\mu_1(F_0) = 1$. Let $y = r(\mu_2)$, $z = r(\mu_3)$, where $\mu_2, \mu_3 \in M_1^+(K)$ and boundary on K. Then $\mu_2(F) < 1$, for otherwise $y \in F$.

Now μ_{2F} is a boundary measure on F by Lemma 1 (ii), and since $\partial_e F = F_0$ is compact, μ_{2F} is supported by F_0 , and so

$$\mu_2(F_0) = \mu_{2F}(F_0) = \mu_{2F}(F) = \mu_2(F) < 1$$
.

By definition of barycenters,

$$\mu_1^K - \alpha \mu_2 - (1 - \alpha) \mu_3 \in A(K)^{\perp}$$

and a boundary measure on K, since μ_1^K is a boundary measure on K by Lemma 1 (i). But

$$\big(\mu_1{}^K - \alpha \mu_2 - (1-\alpha) \mu_3 \big)|_{F_0}(1) \; = \; 1 - \alpha \mu_2(F_0) - (1-\alpha) \mu_3(F_0) \; > \; 0 \; , \label{eq:multiple}$$

which is a contradiction. Hence $y \in F$ and analogously $z \in F$, and F is a face.

If $\mu \in A(K)^{\perp}$ and μ is a boundary measure on K, then $\mu|_F = \mu|_{F_0}$ by Lemma 1 (ii), and the conclusion follows from Theorem 2.

Now we are able to state and prove the theorem of Bjørk [5] in the non-metrizable case.

Theorem 3. (Bjørk). Let X be a compact Hausdorff space and B a norm-closed linear subspace of $C_R(X)$ such that B contains the constants and separates the points of X. Let F_0 be a compact subset of the Choquet boundary $\partial_B X$ which satisfies

$$\mu \in M(\partial_B X) \cap B^1 \Rightarrow \mu|_{F_0} \in B^1$$
.

Then each $b_0 \in B|_{F_0}$ is the restriction to F_0 of an element $b \in B$ with $||b||_X = ||b_0||_{F_0}$.

PROOF. 1. Firstly we prove that $F = \overline{\operatorname{co}}(\Phi(F_0))$ is a split face of S_B . Since $\Phi(F_0) \subseteq \partial_e S_B$, it suffices by Proposition 2 to prove that $\mu \in A(S_B)^{\perp}$ and μ boundary measure imply $\mu|_{\Phi(F_0)} \in A(S_B)^{\perp}$.

Hence let $\mu \in A(S_B)^{\perp}$ and boundary. If $b \in B$, then

$$\int\limits_X b \; d(\mu \circ \Phi) \; = \int\limits_{\Phi(X)} b \circ \Phi^{-1} \; d\mu \; = \int\limits_{\Phi(X)} \psi(b) \; d\mu \; = \int\limits_{S_B} \psi(b) \; d\mu \; = \; 0 \; .$$

Hence $\mu \circ \Phi \in B^1$, and it is evident that $\mu \circ \Phi \in M(\partial_B X)$. By assumption $\mu \circ \Phi|_{F_0} \in B^1$. If $a \in A(S_B)$, then $\psi^{-1}(a) \in B$ and so

$$0 \, = \, \int\limits_{F_0} \psi^{-1}(a) \, d\mu \circ \varPhi \, = \, \int\limits_{\varPhi(F_0)} \psi^{-1}(a) \circ \varPhi^{-1} \, d\mu \, = \, \int\limits_{\varPhi(F_0)} a \, d\mu \, \, .$$

Hence $F = \overline{\operatorname{co}}(\Phi(F_0))$ is a split face.

2. Next, let $b_0 \in B|_{F_0}$, $b_0 = b_1|_{F_0}$, where $b_1 \in B$. Then $\psi(b_1) \in A(S_B)$ and by Corollary 2 there is a $c \in A(S_B)$ such that

$$c|_F = \psi(b_1)|_F, \quad ||c||_{S_R} = ||\psi(b_1)||_F.$$

Now the norm of a continuous affine function is obtained at the extreme boundary, and so

$$\begin{split} ||\psi^{-1}(c)||_X &= ||c||_{\varPhi(X)} = ||c||_{S_B} = ||\psi(b_1)||_F = ||\psi(b_1)||_{\varPhi(F_0)} \\ &= ||b_1 \circ \varPhi^{-1}||_{\varPhi(F_0)} = ||b_1||_{F_0} \;, \end{split}$$

and if $k \in F_0$, then

$$\psi^{-1}(c)(k) = c(\Phi(k)) = \psi(b_1)(\Phi(k)) = b_1(k) = b_0(k)$$
.

Hence $b = \psi^{-1}(c) \in B$ will do, and the proof is complete.

Remark. With the same assumptions as in Theorem 3 one can get a stronger version corresponding to Theorem 1 with g a B-concave function.

REFERENCES

- E. M. Alfsen, Compact convex sets and boundary integrals (Ergebnisse der Mathematik 57)
 Springer-Verlag, Berlin, 1971.
- E. M. Alfsen and T. B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. 21 (1970), 415-442.
- L. Asimov, Extensions of continuous affine functions, Preprint, University of California, Los Angeles.
- E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143
- 5. J.-E. Bjørk, Interpolation on closed subspaces of C(X), to appear.
- T. W. Gamelin, Restrictions of subspaces of C(X), Trans. Amer. Math. Soc. 112 (1964), 278–286.
- I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415-435.

- A. Pelczynski, Supplement to my paper "On simultaneous extensions of continuous functions", Studia Math. 25 (1964), 157-161.
- R. R. Phelps, Lectures on Choquet's theorem (Van Nostrand Mathematical Studies 7),
 D. Van Nostrand Co., New York, 1966.

UNIVERSITY OF OSLO, NORWAY

AND

UNIVERSITY OF AARHUS, DENMARK