A LARGE BI-INVARIANT NUCLEAR FUNCTION SPACE ON A LOCALLY COMPACT GROUP

JOHAN F. AARNES

1. Introduction.

In a fundamental work on representations of p-adic groups [1], F. Bruhat introduces a space D(G) of "differentiable" functions on a general locally compact group G. This construction is based on Yamabe's approximation theorem which says that a connected locally compact group is the projective limit of Lie groups. If G is separable, Bruhat shows in [1] that D(G) can be made into a nuclear complete LF-space, invariant with respect to translations and dense in the space L(G) of all continuous complex functions on G with compact support.

It is natural to ask whether a space of functions on G with the properties of D(G) may be constructed without the intervention of Lie-groups. There have been attempts in this direction by several authors, but it seems that not until recently has anyone obtained a space with the right properties which is also nuclear. This last requirement is essential for representation theory, as shown in [1]. However, in [5], T. Pytlik gives a very elegant construction of a nuclear space Φ of functions on a locally compact group G which is assumed to be metrizable and σ -compact. Now this space Φ , while being left-invariant, need not be right invariant, and it may also be very small. In this paper we will show that it is possible to use Pytlik's construction as a basis for a construction-process that eventually leads to a bi-invariant nuclear LF-space Y, which is dense in L(G). We also show that the left (and right) regular representation of G on Y is continuous.

We shall assume that the group G is second countable. Integration on G will always be with respect to a fixed left Haar measure, which we denote by μ . By Δ we denote the modular function on G, and e is the identity element in G. If f is a function on G, then $\tilde{f}(x) = \overline{f(x^{-1})}$, $x \in G$. If G is a subset of G, and if G is a class of functions on G, then G is a function on G, and G is a function on G, which vanish outside G. If G is a function on G, and G is a function on G, then G is a function on G, and G is a function on G, and G is a function on G.

Received February 4, 1970; in revised form February 2, 1971.

Standard results from abstract harmonic analysis will be used without explicit quotation. The general reference is [3].

We express our thanks to O. B. Bekken for helpful remarks in connection with the theory of tensor products and nuclear spaces.

2. Construction of the spaces E^{j} , F^{j} .

Let G be a locally compact group, satisfying the second axiom of countability. Once and for all we choose a basis of relatively compact symmetric neighbourhoods $\{U_n\}_{n=0}^{\infty}$ of the identity element e in G, such that

 $\mu(\boldsymbol{U_0}) \, \leqq \, 1 \quad \text{ and } \quad \boldsymbol{U}_{n+1}^2 \! \subseteq \! \boldsymbol{U_n} \, ,$

 $n=0,1,\ldots$ A sequence of functions $\{\psi_k\}\subseteq L(G)$ is an approximative identity on G if

$$\psi_k \, \geqq \, 0, \quad \int \psi_k \, = \, 1 \text{ for all } k, \quad \text{ and } \quad \operatorname{supp} \left(\psi_k \right) \downarrow \left\{ e \right\} \, .$$

An approximate identity $\{\psi_k\}$ is subordinate the basis $\{U_n\}$ if $\mathrm{supp}\,(\psi_k)\subseteq U_k;\ k=1,2,\ldots$. In [5] an approximative identity $\{\psi_n\}$, subordinate to a basis $\{U_n\}$, with the following additional properties, is constructed: $\psi_n=\tilde{\psi}_n$ for all n, and if $f\in L^2(G)$ satisfies $f*\psi_n=0$ for some n, then f=0. Let C be a relatively compact subset of G.

LEMMA 2.1. If $f \in L_C^2(G)$ and $\psi_n * f = 0$ for some n, then f = 0.

PROOF. Suppose $f \in L_C^2(G)$ and $\psi_n * f = 0$. Then $0 = (\psi_n * f)^- = \tilde{f} * \psi_n$. Since f has compact support, $\tilde{f} \in L^2(G)$. Hence $\tilde{f} = 0$, so f = 0.

For any function f on G, let $\check{f}(x) = f(x^{-1})$. The map $f \to \check{f}$ is linear and $(f*g) = \check{g} * \check{f}$ whenever convolution is defined. Let C be a relatively compact subset of G. We identify $L^2(C)$ and $L_C^2(G)$. If $f \in L^2(C)$, then

$$\|\check{f}\|_{2} \leq \sup_{u \in C} \Delta(u^{-1}) \|f\|_{2}$$
,

so $\check{}$ is a bicontinuous map of $L^2(C)$ onto $L^2(C^{-1})$. In [5] the linear maps

$$T_n: L^2(G) \to L^2(G), \quad n=1,2,\ldots,$$

are defined by $T_n f = f * \psi_n$. Now define

$$S_n: L^2(G) \to L^2(G), \quad n=1,2,\ldots,$$

by $S_n f = \psi_n * f$.

LEMMA 2.2. Let V be a relatively compact subset of G. Then

- (a) $T_n \colon L^2(VU_n) \to L^2(VU_{n-1})$,
- (b) $S_n \colon L^2(U_n V) \to L^2(U_{n-1} V)$

are Hilbert-Schmidt.

PROOF. (a) is proved in [5], lemma 2. That S_n maps $L^2(U_nV)$ into $L^2(U_{n-1}V)$ is clear since ψ_n has support in U_n , and $U_n{}^2 \subseteq U_{n-1}$. If $f \in L^2(U_nV)$, then

$$S_n f = \psi_n * f = (T_n f)^{\check{}}.$$

Since is continuous, (b) follows from (a).

We observe that because of lemma 2.1 and the preceding remark, the linear operators T_n and S_n are injective for all n. Clearly

$$T_{j+1} \dots T_n (L^2(VU_n)) \subseteq L^2(VU_j)$$

$$S_{j+1} \dots S_n (L^2(U_n V)) \subseteq L^2(U_j V),$$

and

For $j = 0, 1, \ldots$ we define for n > j

$$E_{V,n}^{j} = T_{j+1} \dots T_{n}(L^{2}(V U_{n})),$$

 $F_{V,n}^{j} = S_{j+1} \dots S_{n}(L^{2}(U_{n} V)).$

The elements of $E^{j}_{V,n}$ (resp. $F^{j}_{V,n}$) belong to L(G) and have their support in VU_{j} (resp. $U_{j}V$). We define, for $j=0,1,\ldots$,

$$E_V^j = \bigcap_{n>j} E_{V,n}^j, \quad F_V^j = \bigcap_{n>j} F_{V,n}^j.$$

Let L and R denote the left and right regular representations of G on $L^2(G)$, respectively. I.e., for $f \in L^2(G)$

$$\begin{split} (L_x f)(y) &= f(x^{-1}y), \quad x,y \in G \;, \\ (R_x f)(y) &= f(yx), \quad x,y \in G \;. \end{split}$$

We observe that L_x and T_n (resp. R_x and S_n) commute for all x and n. Indeed:

$$R_x S_n f = (S_n f)^x = (\psi_n * f)^x = \psi_n * f^x = \psi_n * (R_x f) = S_n R_x f,$$

where $f \in L^2(G)$. A similar argument works for L_x and T_n .

LEMMA 2.3. If $V_1 \subseteq V_2$ are relatively compact subsets of G, then

(a)
$$E_{V_1}^j \subseteq E_{V_2}^j$$
 and $F_{V_1}^j \subseteq F_{V_2}^j$ for all $j \ge 0$.

If $x \in G$, then

(b)
$$E_{xV}^{j} = L_{x}(E_{V}^{j})$$
 and $F_{Vx-1}^{j} = R_{x}(F_{V}^{j})$ for all $j \ge 0$.

PROOF. This is a straight forward verification, and the proof is omitted.

LEMMA 2.4. For any relatively compact set $V \subseteq G$ and $j \ge 0$ we have $f \in E^j_V$ if and only if $\tilde{f} \in F^j_{V-1}$.

PROOF. Suppose $f \in E^j_V$ and let n > j be arbitrary. There is $h \in L^2(VU_n)$ such that

$$f = T_{j+1} \dots T_n h = h * \psi_n * \dots * \psi_{j+1}.$$

Hence $\tilde{f} = \psi_{j+1} * \dots * \psi_n * \tilde{h}$, and $\tilde{h} \in L^2(U_n V^{-1})$ since U_n is symmetric. Consequently $\tilde{f} = S_{j+1} \dots S_n \tilde{h}$ belongs to $F^j_{V^{-1},n}$. Since this is true for all n > j it follows that $\tilde{f} \in F^j_{V^{-1}}$. By symmetry and the fact that $f^{\tilde{\ }} = f$ the lemma follows.

Next we want to show that if $V \neq \emptyset$, then all the spaces $E_V^j, F_V^j, j > 0$, are non-zero. In [5] this is done for the space E_V^0 . Since we are dealing with several spaces at the same time, and also want to obtain some extra information, we give a complete proof, based on the argument of [5].

PROPOSITION 2.5. There is a sequence $\{\varphi_j\}_{j\geq 0}$ such that $\varphi_j \in E^j_{\{e\}}$, $\varphi_j \geq 0$, $\sup p(\varphi_j) \subseteq U_j$ and $f \varphi_j = 1$. Moreover, if $i > j \geq 0$, then $\varphi_j = T_{j+1} \dots T_i \varphi_i$.

PROOF. We define the double sequence

$$\begin{split} \varphi_{j,\,k} &= T_{j+1} \dots T_k \psi_{k+1} \,, \\ j &= 0, 1, \dots, \ k = j+1, j+2, \dots \quad \text{We obtain} \\ \|\varphi_{j,\,k}\|_{\infty} &= \sup_{x \in G} |T_{j+1} \dots T_k \psi_{k+1}(x)| \\ &= \sup_{x \in G} \left| \int T_{j+2} \dots T_k \psi_{k+1}(y) \psi_{j+1}(y^{-1}x) \ dy \, \right| \\ &\leq \|\psi_{j+1}\|_{\infty} \int T_{j+2} \dots T_k \psi_{k+1}(y) \ dy = \|\psi_{j+1}\|_{\infty} \,, \end{split}$$

where we have used the properties of the functions ψ_i and the fact that the Haar-integral is a multiplicative linear functional on L(G). Now $\sup (\varphi_{j,k}) \subseteq U_j$ for all k > j, so

$$\|\varphi_{j,k}\|_2 \leq \|\psi_{j+1}\|_{\infty} \mu(U_j)^{\frac{1}{2}}.$$

Hence, for each $j \ge 0$, the sequence $\{\varphi_{j,\,k}\}_{k>j}$ is bounded in $L^2(U_j)$. We observe that

$$\varphi_{j,k} = T_{j+1}\varphi_{j+1,k}$$

for all $j \ge 0$ and $k \ge j+2$. Each of the operators T_j is Hilbert–Schmidt, hence compact. So in particular the sequence $\varphi_{0,\,k} = T_1 \varphi_{1,\,k}$, $k=2,3,\ldots$, contains a norm-convergent sub-sequence $\{\varphi_{0,\,k'}\}$ in $L^2(U_0)$. Let $\varphi_0 = \lim_{k'} \varphi_{0,\,k'}$. For any fixed $j \ge 1$ let $\{\varphi_{j,\,k''}\}_{k''}$ be a convergent subsequence of the sequence $\varphi_{k'}^j = T_{j+1} \varphi_{j+1,\,k'}$, $k' \ge j+2$. We put $\varphi_j = \lim_{k''} \varphi_{j,\,k''}$. We now assert that $\varphi_j \in E_{\{e\}}^j$ and that $\varphi_j = T_{j+1} \varphi_{j+1}$ for all $j \ge 0$. Indeed, using (*) one obtains

$$T_1 \dots T_j \varphi_j = \lim_{k''} T_1 \dots T_j \varphi_{j, k''}$$

$$= \lim_{k''} \varphi_{0, k''} = \varphi_0$$

Since $\varphi_j \in L^2(U_j)$ it follows that $\varphi_0 \in E^0_{\{e\},j}$ for all $j \ge 1$, hence $\varphi_0 \in E^0_{\{e\}}$. Now all T_j are invertible so (**) implies that $T_{j+1} \dots T_i \varphi_i = \varphi_j$ for all i > j. Hence $\varphi_j \in E^j_{\{e\}}$ for all $j \ge 0$.

By construction $\varphi_{j,k} \ge 0$ for all j,k, and since $\varphi_{j,k''} \to \varphi_j$ in $L^2(U_j)$, a subsequence will converge pointwise almost everywhere. Hence, by continuity $\varphi_j \ge 0$. Next, $\mu(U_j) < \infty$ so convergence in $L^2(U_j)$ implies convergence in $L^1(U_j)$, so that

$$\int \varphi_{j} = \lim_{k''} \int \varphi_{j,k''}.$$

But

$$\int \varphi_{j,k} = \int T_{j+1} \dots T_k \psi_{k+1} = \int \psi_{k+1} = 1.$$

It follows that $\int \varphi_j = 1$ for all $j \ge 0$. The proof is complete.

By lemma 2.4 and the result above it immediately follows that $F^j_{\{e\}}$ is non-zero for each $j \ge 0$. In fact $\tilde{\varphi}_j \in F^j_{\{e\}}$, and the sequence $\{\tilde{\varphi}_j\}$ has exactly the same properties as the sequence $\{\varphi_j\}$. The only thing which perhaps isn't obvious is that $\int \tilde{\varphi}_j = 1$. But clearly

$$\int \tilde{\varphi}_{j} = \lim_{k''} \int \tilde{\varphi}_{j,\,k''}, \quad \int \tilde{\varphi}_{j,\,k} = \int \psi_{j+1} * \ldots * \psi_{k+1} = 1 ,$$

so this is also true.

COROLLARY 2.6. If $V \neq \emptyset$, then E_V^j and F_V^j are non-zero for all $j \geq 0$.

PROOF. Immediate from lemma 2.3, prop. 2.5 and the preceding remark.

To topologize the spaces E_V^j and F_V^j we introduce the maps

$$\tau_{j,n} = (T_{j+1} \dots T_n)^{-1}, \quad \sigma_{j,n} = (S_{j+1} \dots S_n)^{-1}$$

for $0 \le j < n$. Then $\tau_{j,n}$ (resp. $\sigma_{j,n}$) is a bijection of $E^j_{V,n}$ (resp. $F^j_{V,n}$) onto $L^2(VU_n)$ (resp. $L^2(U_nV)$). We define families of norms on $E^j_{V,n}$ and $F^j_{V,n}$ by:

 $\pi^{j}_{V,n}(f) = \|\tau_{j,n}(f)\|_{2}, \quad f \in E^{j}_{V},$ $\kappa^{j}_{V,n}(f) = \|\sigma_{j,n}(f)\|_{2}, \quad f \in F^{j}_{V},$

for n > j. We give E_V^j (resp. F_V^j) the locally convex topology determined by the family of norms $\{\pi^j_{V,n}\}_{n>j}$ (resp. $\{\varkappa_{V,n}\}_{n>j}$).

Lemma 2.7. The map $f \to \tilde{f}$ is an anti-linear homeomorphism of E^j_V onto F^j_{V-1} $(j \ge 0)$.

PROOF. The algebraic property is clear from lemma 2.4. Let $f \in E^j_V$ and let n > j be given. Put $h = \tau_{j, n}(f)$ so $h \in L^2(VU_n)$. Then $\tilde{h} \in L^2(U_nV^{-1})$ and $\sigma_{i, n}(f) = \tilde{h}$. Hence

$$\varkappa_{V^{-1},\,n}^{j}(\tilde{f})^{2}\,=\,\|\tilde{h}\|_{2}^{2}\,=\,\int\limits_{G}|h(u^{-1})|^{2}\,du\,=\,\int\limits_{VU_{n}}|h(u)|^{2}\varDelta(u^{-1})\;du\;.$$

Let $m = \inf_{u \in VU_n} \Delta(u^{-1})$, $M = \sup_{u \in VU_n} \Delta(u^{-1})$. Then

$$m \|h\|_2^2 \leq \|\tilde{h}\|_2^2 \leq M \|h\|_2^2$$
,

so

$$m^{\frac{1}{2}}\pi^{j}_{V,n}(f) \leq \kappa^{j}_{V-1,n}(\tilde{f}) \leq M^{\frac{1}{2}}\pi^{j}_{V,n}(f)$$
.

The proof is complete.

PROPOSITION 2.8. For each non-void relatively compact set $V \subseteq G$, and each $j \ge 0$, the space E^j_V (resp. F^j_V) is a locally convex nuclear Frechet space. The linear map $\tau_{j,n}$ (resp. $\sigma_{j,n}$) is a homeomorphism of E^j_V onto E^n_V (resp. F^j_V onto F^n_V), when n > j.

PROOF. In [5], lemma 4 it is proved that E_V^0 (= Φ_V) is nuclear. E_V^0 is a countably normed space, hence metrizable. To see that it is complete, let $\{f_k\}$ be a Cauchy-sequence in E_V^0 . Then $\{f_k\}$ is Cauchy with respect to each of the norms $\pi_{V,n}^0$ for each $n \ge 1$, and $E_{V,n}^0$ is a Hilbert-space, in particular complete, in the norm $\pi_{V,n}^0$. Hence, for $n \ge 1$ there is a function $h^n \in E_{V,n}^0$ such that $\pi_{V,n}^0(h^n - f_k) \to 0$ as $k \to \infty$. Suppose n > m and let $i_{m,n}$ be the inclusion map of $E_{V,n}^0$ into $E_{V,n}^0$. Then

$$i_{m,n} = \tau_{0,m}^{-1} \circ (T_{m+1} \dots T_n) \circ \tau_{0,n};$$

 $\tau_{0,m}$ and $\tau_{0,n}$ are isometries and

$$T_{m+1} \dots T_n : L^2(VU_n) \rightarrow L^2(VU_m)$$

is continuous by lemma 2.2. Hence $i_{m,n}: E^0_{V,n} \to E^0_{V,m}$ is continuous. Since $f_k \to h^n$ in $E^0_{V,n}$ it follows that $f_k \to h^n$ also in $E^0_{V,m}$. But then $h^n = h^m$. Since n and m were arbitrary, we obtain

$$h^1 = h^2 = \ldots h^n = \ldots = h$$

with $h \in E^0_{V,n}$ for all $n \ge 1$. Hence $h \in E^0_V$ and $f_k \to h$ in E^0_V . This shows that E^0_V is complete, and therefore a nuclear Frechet space.

Next, we show that $\tau_{j,n}$ is a linear homeomorphism of E_V^j onto E_V^n . (The argument for $\sigma_{j,n}$ is similar and is omitted.) It is routine to check that $\tau_{i,n}(E_V^i) = E_V^n$. Now let $f \in E_V^i$; and let $0 \le j < n < k$. Then

$$\pi_{V,k}^n(\tau_{j,n}(f)) = \|\tau_{n,k}(\tau_{j,n}(f))\|_2 = \|\tau_{j,k}(f)\|_2 = \pi_{V,k}^j(f).$$

Hence $\tau_{j,n}$ is continuous as this equality holds for all k > n. It also shows that $\tau_{j,n}^{-1}$ is an isometry of $E_{V,k}^n$ onto $E_{V,k}^j$ for k > n. If $n \ge k > j$ we may regard $\tau_{j,n}^{-1}$ as the isometry $T_{j+1} \dots T_n$ of $E_{V,n+1}^n$ onto $E_{V,n+1}^j$ followed by the injection of $E_{V,n+1}^j$ into $E_{V,k}^j$. The latter is continuous by an argument similar to the one used to show that $i_{n,m}$ is continuous. It follows that $\tau_{j,n}$ is a homeomorphism. This fact and lemma 2.7 now yields the proposition.

Let \mathscr{C} be the family of relatively compact subsets of G. We define

$$E^{j} = \bigcup_{V \in \mathscr{C}} E^{j}_{V}, \ F^{j} = \bigcup_{V \in \mathscr{C}} F^{j}_{V}$$

for all $j \ge 0$. If $V_1 \subseteq V_2$ with $V_1, V_2 \in \mathcal{C}$, the injection of $E^j_{V_1}$ into $E^j_{V_2}$ is easily seen to be a homeomorphism. Hence, with the inductive topology, E^j is the inductive limit of the spaces E^j_{V} ; $V \in \mathcal{C}$. Similarly F^j is the inductive limit of the F^j_{V} 's.

Since G is second countable, there is a sequence $\{V_n\}$ of open relatively compact sets, $V_n \subseteq V_{n+1}$, such that

$$G = \bigcup_{n=1}^{\infty} V_n.$$

LEMMA 2.9. For each $j \ge 0$, E^j (resp. F^j) is the strict inductive limit of the sequence $\{E^j_{V_n}\}$ (resp. $\{F^j_{V_n}\}$).

PROOF. Let $G^j = \liminf \{E^j_{V_n}\}$. Clearly $G^j = E^j$ as linear spaces. G^j is a strict inductive limit since each $E^j_{V_n}$ is complete and the injection $E^j_{V_n} \to E^j_{V_{n+1}}$ is a homeomorphism. It is clear that the topology of E^j is weaker than the topology of G^j . Conversely, let W be any convex, circled neighborhood of 0 in G^j . Let V be any relatively compact subset of G. There is $V_n \supseteq V$, hence $E_V \subseteq E_{V_n}$ and the injection is continuous. So $W \cap E_V$ is a neighborhood of 0 in E_V . Hence W is a neighborhood of 0 in E^j . A similar argument works for F^j . The proof is complete.

We say that a linear space G is an LF-space (resp. strict LF-space) if G is the inductive limit (resp. strict inductive limit) of a sequence

$$G_1 \subseteq \ldots \subseteq G_n \subseteq G_{n+1} \subseteq \ldots$$

of Frechet-spaces.

COROLLARY 2.10. For each $j \ge 0$, E^j and F^j are nuclear strict LF-spaces.

In particular it is clear that E_V^j (resp. F_V^i) for each $V \in \mathcal{C}$ carries the relative topology of E^j (resp. F^j).

We may also note that all E^j , F^j are contained in L(G), in fact, if $f \in E^j_V$ say, then supp $(f) \subseteq \overline{VU_j}$. By prop. 2, the spaces E^j , and spaces

 F^{j} , are all linearly homeomorphic. By lemma 2.7 $f \rightarrow \tilde{f}$ is an anti-linear homeomorphism of E^{j} onto F^{j} .

It will be convenient to express the topology on E^j and F^j somewhat differently. For $V \in \mathcal{C}$; $j \ge 0$ and $n \ge j$, let

$$p_{V,n}^{j}(f) = \|\tau_{jn}(f)\|_{\infty}; \quad f \in E_{V,n}^{j},$$

where $\tau_{ij}(f) = f$, and let

$$q_{V,n}^{j}(f) = \|\sigma_{jn}(f)\|_{\infty}; \quad f \in F_{V,n}^{j},$$

where $\sigma_{jj}(f) = f$. I claim that the system of norms $\{p_{V,n}^j\}_n$ (resp. $\{q_{V,n}^j\}_n$) determine the topology of E_V^i (resp. F_V^i). Indeed; we have $\tau_{jn}(f) \in L(G)$ and $\operatorname{supp}(\tau_{jn}(f)) \subseteq \overline{VU_0}$ for all n > j, $f \in E_V^j$. Hence

$$\|\tau_{jn}(f)\|_2^2 = \int\limits_{VU_0} |\tau_{jn}(f)(x)|^2 dx \le \|\tau_{jn}(f)\|_{\infty}^2 \mu(VU_0) ,$$

so

$$\pi^{j}_{V,n}(f) \leq \mu(VU_0)^{\frac{1}{2}} p^{j}_{V,n}(f)$$
.

On the other hand, for $n \ge j$;

$$\begin{split} p^{j}_{V,n}(f) &= \|\tau_{jn}(f)\|_{\infty} = \|\tau_{j,\,n+1}(f) * \psi_{n+1}\|_{\infty} \\ &\leq \|\tau_{j,\,n+1}(f)\|_{2} \, \|\psi_{n+1}\|_{\infty} \, \mu(U_{n+1})^{\frac{1}{2}} \\ &\leq \pi^{j}_{V,\,n+1}(f) \, \|\psi_{n+1}\|_{\infty} \, . \end{split}$$

So the two norm-systems $\{p_{V,n}^j\}_n$ and $\{\pi_{V,n}^j\}_n$ are equivalent. Analogously, the family $\{q_{V,n}^j\}_n$ will determine the topology of F_V^j . On account of this fact, we will refer to the topology of E^j (resp. F^j) as the inductive topology of uniform convergence with respect to the operators τ_{jn} (resp. σ_{jn}); $n \ge j$.

LEMMA 2.11. Let $h \in L_C^{-1}(G)$ with supp $(h) \subseteq K$. In this case:

(a) if $f \in E_V^j$, then $h * f \in E_{KV}^j$ and

$$p_{KV,n}^{j}(h*f) \leq p_{V,n}^{j}(f) ||h||_{1}, \quad n \geq j.$$

(b) if $g \in F_{V}^{j}$, then $g * h \in F_{VK}^{j}$ and

$$q_{VK,n}^{j}(g*h) \leq q_{V,n}^{j}(g) \|\Delta^{-1}h\|_{1}, \quad n \geq j.$$

PROOF. We prove (a), the proof of (b) is similar. First, let n > j, and observe that $\tau_{jn}(f)$ is continuous with support in VU_n . Hence $h * \tau_{jn}(f)$ belongs to $L^2(KVU_n)$, and

$$T_{j+1}\ldots T_n(h*\tau_{jn}(f)) = T_{j+1}\ldots T_n(\tau_{jn}(h*f)) = h*f,$$

so $h * f \in E^j_{KV,n}$ for all n > j. Hence $h * f \in E^j_{KV}$. Next for $n \ge j$,

$$\| au_{jn}(h*f)\|_{\infty} = \|h* au_{jn}(f)\|_{\infty} \le \| au_{jn}(f)\|_{\infty} \|h\|_{1}$$
 ,

from which (a) follows.

Lemma 2.12. For $f \in E^j$ (resp. $g \in F^j$); $j \ge 0$, the map $x \to f_x$ (resp. $x \to g^x$) is continuous of G into E^j (resp. F^j).

PROOF. In [5], theorem 2, it is proved that $x \to f_x$ is continuous for $f \in E^0$ (= Φ). (That $f_x \in E^0$ for all $x \in G$ follows from lemma 2.3.) The same argument works for all E^j and F^j .

LEMMA 2.13. Let $f \in E_V^j$, $g \in F_V^j$. Then

- (a) $p_{xV,n}^{j}(L_{x}f) = p_{V,n}^{j}(f), \quad n \ge j$
- (b) $q_{Vx^{-1},n}^{j}(R_xg) = q_{V,n}^{j}(g), \quad n \ge j$

PROOF. We prove (a), the proof of (b) is similar. By lemma 2.3, $L_x f \in E^j_{xV}$ and hence

$$p^j_{xV,n}(L_xf) \, = \, \|\tau_{jn}(L_xf)\|_\infty \, = \, \|L_x\tau_{jn}(f)\|_\infty \, = \, \|\tau_{jn}(f)\|_\infty \, = \, p^j_{V,n}(f) \, \, .$$

3. Construction of a large biinvariant nuclear space.

Take E^j and F^j as defined in section 2. Let Y^j be the linear subspace of L(G) consisting of elements with representations

(S)
$$h = \sum_{i=1}^{\infty} \lambda_i f_i * g_i ,$$

where $\{\lambda_i\}$, $\{f_i\}$ and $\{g_i\}$ are sequences in C, E^j and F^j respectively, such that $\sum_{i=1}^{\infty} |\lambda_i| < 1$, $f_i \to 0$ in E^j , and $g_i \to 0$ in F^j , and where the series (S) converges in L(G). We give L(G) the inductive topology of uniform convergence on compacta.

We are going to show that the linear span Y of $\bigcup_{j=1}^{\infty} Y^j$ is dense in L(G), is invariant with respect to left and right translations, and can be provided with a nuclear topology finer than the topology of L(G) in such way that it becomes an LF-space.

We shall use the following notation: If E and F are locally convex linear spaces, then $E \otimes_{\epsilon} F$, $E \otimes_{\pi} F$ and $E \otimes_{\iota} F$ will denote their tensor product equipped with the topology of bi-equicontinuous convergence: ϵ , the projective topology π , or the inductive topology ι , respectively. The completion of $E \otimes F$ in the ϵ , π and ι -topology, will be denoted by $E \otimes F$, $E \otimes F$ and $E \otimes F$, respectively. (For general facts about tensor-products and nuclear spaces, we refer to [2] and [6].)

We shall need the following general result:

PROPOSITION 3.1. Let E and F be strict inductive limits of increasing sequences $\{E_i\}$, $\{F_i\}$ respectively, such that for each i, E_i and F_i are nuclear Frechet-spaces. Then $E \otimes F$ is strict inductive limit of the sequence $\{E_i \otimes F_i\}$. In particular $E \otimes F$ is a nuclear, strict LF-space.

PROOF. Since $E_i \subseteq E$, $F_i \subseteq F$ for all i, we may regard $E_i \otimes F_i$ as a linear subspace of $E \otimes F$ by the canonical injection. Clearly $E_i \otimes F_i \subseteq E_{i+1} \otimes F_{i+1}$, $i=1,2,\ldots$ By prop. 14 in [2] it follows that $E \otimes_{\iota} F$ is the inductive limit of the sequence $\{E_i \otimes_{\iota_i} F_i\}$, where ι_i denotes the inductive tensor product topology on $E_i \otimes F_i$. Hence ι restricted to $E_i \otimes F_i$ is weaker than ι_i . On the other hand ι is stronger than ε , so the restriction of ι to $E_i \otimes F_i$ is stronger than the restriction of ε to $E_i \otimes F_i$. But the latter topology on $E_i \otimes F_i$ concides with the ε -topology of $E_i \otimes F_i$ itself [6, Prop. 43.7]. Now E_i is nuclear, hence $E_i \otimes_{\varepsilon} F_i$ is isomorphic to $E_i \otimes_{\pi} F_i$ [6, thm. 50.1]. Since E_i and F_i are Frechet-spaces, we also obtain that the projective and inductive tensor product topologies coincide. So $E_i \otimes_{\varepsilon} F_i$ is isomorphic to $E_i \otimes_{\iota_i} F_i$. Hence we also obtain that the restriction of ι to $E_i \otimes F_i$ is stronger than ι_i . Consequently $E_i \otimes_{\iota_i} F_i$ carries the relativized ι -topology. Hence $E_i \otimes F_i$ is simply the closure of $E_i \otimes F_i$ in $E \otimes F$. By what's been said above:

$$E_{i} \widetilde{\otimes} F_{i} = E_{i} \widehat{\otimes} F_{i} = E_{i} \overline{\otimes} F_{i},$$

that is, these spaces are topologically and linearly isomorphic. By the first equality, the canonical injection

$$E_{i} \hat{\otimes} F_{i} \to E_{i+1} \hat{\otimes} F_{i+1}$$

is a topological isomorphism into [6, prop. 43.7]. So

$$G = \lim \operatorname{ind} \{ E_i \hat{\otimes} F_i \}$$

is a strict inductive limit of Frechet-spaces, hence a strict LF-space, hence complete. By the second equality in (*)

$$G = \lim \operatorname{ind} \{ E_i \overline{\otimes} F_i \} .$$

By the last part of prop. 14 in [2] we therefore know that the inductive limit topology of G coincides with the relativized ι -topology of $E \overline{\otimes} F$. But G is dense in $E \overline{\otimes} F$, and closed since it is complete. Hence $G = E \overline{\otimes} F$. Now $E_i \widehat{\otimes} F_i$ is nuclear for each i [6, prop. 50.1], and countable inductive limits of nuclear spaces are nuclear [6, prop. 50.1], so $E \overline{\otimes} F$ is nuclear. The proof is complete.

Now let $E^j, F^j, j \ge 0$, be as in section 2. For each $j \ge 0$ we shall equip $E^j \otimes F^j$ with the inductive tensor product topology. Let us choose, once

and for all, a sequence $\{V_n\}$ of open relatively compact subsets of G such that $V_n \subseteq V_{n+1}$ for all n and $\bigcup_{n=1}^{\infty} V_n = G$. Let $K_n = \overline{V}_n$ for all n. Then L(G) is the strict inductive limit of Banach-spaces $L_{K_n}(G)$, and is therefore complete.

For each $j \ge 0$, $(f,g) \to f * g$ is a bilinear map of $E^j \times F^j$ into L(G). It therefore determines a unique linear map

$$A^j: E^j \otimes F^j \to L(G)$$

such that

$$A^{j}(\sum_{i=1}^{k} f_{i} \otimes g_{i}) = \sum_{i=1}^{k} f_{i} * g_{i},$$

where $f_i \in E^j$, $g_i \in F^j$, $i = 1, \ldots, k$.

LEMMA 3.2. For each $j \ge 0$,

$$A^j: E^j \otimes_{_I} F^j \to L(G)$$

is continuous.

PROOF. To simplify notation, let us write $E_n^j = E_{V_n}^j$, $F_n^j = F_{V_n}^j$. By lemma 2.9 we know that E^j (resp. F^j) is the strict inductive limit of the sequence $\{E_n^j\}$ (resp. $\{F_n^j\}$). Since all E_n^j , F_n^j are nuclear Frechet-spaces (prop. 2.8) the assumptions of prop. 3.1 are satisfied. As observed in the proof, we then have

$$E^j \otimes_{\iota} F^j = \lim \operatorname{ind} \{ E_n^j \otimes_n F_n^j \}$$
.

Hence, to prove continuity of A^j we need only show that the restriction A_n^j of A^j to $E_n^j \otimes_n F_n^j$ is continuous into L(G) for each n. Let z be an element of $E_n^j \otimes F_n^j$. Then we have an expression $z = \sum_{i=1}^k f_i \otimes g_i$, with $f_i \in E_n^j$, $g_i \in F_n^j$, $i = 1, \ldots, k$. Then

$$h = A_n^j z = \sum_{i=1}^k f_i * g_i$$

has support in the closure of $V_n U_0^2 V_n$ for any $j \ge 0$, $n \ge 1$, and

$$\begin{split} \|h\|_{\infty} &= \|\sum_{i=1}^{k} f_{i} * g_{i}\|_{\infty} \leq \sum_{i=1}^{k} \|f_{i} * g_{i}\|_{\infty} \\ &\leq \mu(V_{n} U_{0}) \sum_{i=1}^{k} \|f_{i}\|_{\infty} \|g_{i}\|_{\infty} \\ &= \mu(V_{n} U_{0}) \sum_{i=1}^{k} p_{V_{n,i}}^{j}(f_{i}) q_{V_{n,i}}^{j}(g_{i}) \;. \end{split}$$

Hence

$$||h||_{\infty} \leq \mu(V_n U_0)(p^j_{V_{n,j}} \otimes q^j_{V_{n,j}})(z)$$

which proves the assertion.

Since A^j is continuous and L(G) is complete, we may extend A^j to a continuous linear operator of $E^j \otimes F^j$ into L(G). We denote this extension also by A^j , and its restriction to $E^j_n \otimes F^j_n$ by A^j_n .

It will be convenient to characterize the elements of Y^j in an other way. We first make some observations. Let E, F be two Frechet-spaces. Then every element z of $E \hat{\otimes} F$ is the sum of an absolutely convergent series

$$z = \sum_{i=1}^{\infty} \lambda_i x_i \otimes y_i ,$$

where $\{\lambda_i\}$ is a sequence of complex numbers such that $\sum_{i=1}^{\infty} |\lambda_i| < 1$, and $\{x_i\}$ (resp. $\{y_i\}$) is a sequence converging to zero in E (resp. F). [6, thm. 45.1]. Conversely, let $\{\lambda_i\}$, $\{x_i\}$ and $\{y_i\}$ be sequences in C, E and F respectively, such that $\sum_{i=1}^{\infty} |\lambda_i| < 1$, $x_i \to 0$ in E and $y_i \to 0$ in F. We claim that the series $\sum_{i=1}^{\infty} \lambda_i x_i \otimes y_i$ then will converge absolutely in $E \otimes F$ to an element z. Let p,q be arbitrary continuous semi-norms on E, F respectively, and put $r = p \otimes q$. Since $E \otimes F$ is complete, it suffices to show that

$$\sum_{i=1}^{\infty} r(\lambda_i x_i \otimes y_i) < \infty.$$

But

$$\sum_{i=1}^{\infty} r(\lambda_i x_i \otimes y_i) = \sum_{i=1}^{\infty} |\lambda_i| p(x_i) q(x_i) .$$

Since $p(x_i) \to 0$ and $q(x_i) \to 0$ the latter series converges.

Proposition 3.3. For every j we have

$$Y^j = A^j(E^j \overline{\otimes} F^j)$$

and if we provide Y^j with the quotient topology \mathcal{T} , then the series (S) converges in Y^j .

PROOF. Suppose $h \in A^j(E^j \overline{\otimes} F^j)$. There is an $n \ge 1$ and $z \in F_n^j \hat{\otimes} F_n^j$ such that $h = A^j z$. Then z may be written

$$z = \sum_{i=1}^{\infty} \lambda_i f_i \otimes g_i$$
,

 $\sum_{i=1}^{\infty} |\lambda_i| < 1$, $f_i \to 0$ in E^j and $g_i \to 0$ in F^j . The series converges in $E_n^j \hat{\otimes} F_n^j$ and A^j is continuous, so $h = \sum_{i=1}^{\infty} \lambda_i f_i * g_i$. That is, h belongs to Y^j .

Conversely, suppose that h belongs to Y^j , with a series representation $h = \sum_{i=1}^{\infty} \lambda_i f_i * g_i$. Since $\{f_i\}$ and $\{g_i\}$ converges to zero in E^j and F^j respectively, they are in particular bounded. E^j and F^j are strict LF-spaces so there is an n such that $\{f_i\}$ and $\{g_i\}$ are contained in E^j_n and F^j_n respectively, and converges to zero there. By remarks above it now follows that the series $\sum_{i=1}^{\infty} \lambda_i f_i \otimes g_i$ converges to an element z in $E^j_n \hat{\otimes} F^j_n$. By continuity of A^j we get

$$A^j z = \sum_{i=1}^{\infty} \lambda_i f_i * g_i = h,$$

which proves that $A^{j}(E^{j} \overline{\otimes} F^{j}) = Y^{j}$.

Since $E^j \overline{\otimes} F^j$ is a strict LF-space by prop. 3.1, Y^j becomes an LF-space with defining sequence

$$Y_n^j = A_n^j (E_n^j \hat{\otimes} F_n^j), \quad n = 1, 2, \ldots,$$

when Y_n^j is given the quotient topology \mathscr{T}_n from $E_n^j \otimes F_n^j$. Indeed, Y_n^j is a Frechet-space for each n, $Y_n^j \subseteq Y_{n+1}^j$, and the injection $Y_n^j \to Y_{n+1}^j$ is continuous by definition of quotient topologies. Also, the injection Γ_n of Y_n^j into Y^j is continuous, and $\bigcup_{n=1}^{\infty} Y_n^j = Y^j$. To see that \mathscr{T} is the inductive topology with respect to $\{\mathscr{T}_n\}$, let B be a linear operator of Y^j into a locally convex space X, such that $B \circ \Gamma_n$ is continuous for each n. Then $B \circ A_n^j = (B \circ \Gamma_n) \circ A_n^j$ is continuous, hence $B \circ A^j$ is continuous. But then B is continuous. So $Y^j = \liminf \{Y_n^j\}$. Moreover Y^j is nuclear by prop. 50.1 in [6]. We have proved

LEMMA 3.4. Y is nuclear LF-space, $j \ge 0$.

Now let $Y = [\bigcup_{j=0}^{\infty} Y^j]$ = the linear span of $\bigcup_{j=0}^{\infty} Y^j$ in L(G). We give Y the inductive topology.

Proposition 3.5. Y is a nuclear LF-space.

PROOF. For $k=1,2,\ldots$, let $H_k=[\bigcup_{j=0}^k Y_k^j]$. We claim that

- 1) $H_k \subseteq H_{k+1}$, $k=1,2,\ldots$,
- $2) \quad Y = \bigcup_{k=1}^{\infty} H_k.$

Indeed,

$$H_k \subseteq [\bigcup_{j=0}^{k+1} Y_k^j] \subseteq [\bigcup_{j=0}^{k+1} Y_{k+1}^j] = H_{k+1}$$
,

which proves 1).

All H_k are linear spaces, and the sequence $\{H_k\}$ is increasing, so to verify 2) it suffices to show that if $h \in Y^j$ for any $j \ge 0$, then $h \in H_k$ for some k. So let $h \in Y^j$. There is n such that $h \in Y^j_n$. Let $k = \max(j, n)$. Then

$$h \in Y_k^j \subseteq [\bigcup_{i=0}^k Y_k^i] = H_k$$
 ,

and 2) is valid. We now give each H_k the (finite) inductive system topology. This makes H_k into a nuclear Frechet space. Let Y_H denote Y with the inductive limit topology defined by the sequence $\{H_k\}$. We show that Y_H and Y are topologically isomorphic.

To see that the identity map of Y_H into Y is continuous, it suffices to show that the injection $H_k \to Y$ is continuous for all k. Since in turn each H_k has an inductive topology, it suffices to show that the injection $Y_k^j \to Y$, $j \leq k$, is continuous. But the injections $Y_k^j \to Y^j \to Y$ are both continuous, so $Y_H \to Y$ is continuous. Conversely, to see that

the identity map $Y \to Y_H$ is continuous, it suffices to show that $Y^j \to Y_H$ is continuous for all $j \ge 0$. Again, this means that it suffices to show that $Y_k^j \to Y_H$ is continuous for all j,k. We have two cases:

- a) $j \le k$. The maps $Y_k^j \to H_k \to Y_H$ are both continuous.
- b) j > k. The maps $Y_k^j \to Y_k^j \to H_i \to Y_H$ are all continuous.

Hence the identity map $Y \to Y_H$ is a homeomorphism. Since Y_H is an inductive limit of an increasing sequence of nuclear Frechet-spaces, the proposition follows.

Proposition 3.6. Y is dense in L(G).

PROOF. Let the sequence $\{\varphi_j\}_{j\geq 0}$ be as in prop. 2.5. Let $\gamma_j = \varphi_j * \tilde{\varphi}_j$, so $\gamma_j \in Y^j$ for all $j \geq 0$. Hence $\{\gamma_j\}_{j\geq 0} \subseteq Y$. Clearly,

$$\gamma_j \ge 0$$
, $\operatorname{supp}(\gamma_j) \subseteq U_{j-1}$, $\int \gamma_j = 1$,

 $j \ge 1$, by prop. 2.5 and the subsequent remarks. So $\{\gamma_j\}$ is an approximative identity for G. Let $f \in L(G)$. Then

$$\gamma_j * f = \varphi_j * (\tilde{\varphi}_j * f)$$

belongs to Y^j since $\tilde{\varphi}_j * f \in F^j$ by lemma 2.11 (b). Hence $\gamma_j * f \in Y$ and $\gamma_j * f$ converges uniformly to f on a compact set containing the support of $\gamma_j * f$ and f for all j. The proof is complete.

Proposition 3.7. Let $h \in Y$. We have:

- (i) if $\varphi \in L^1_C(G)$, then $\varphi *h$ and $h *\varphi$ belong to Y,
- (ii) $\tilde{h} \in Y$,
- (iii) if $x \in G$, then h_x and h^x belong to Y.

Each of the statements above is true with Y^j in place of Y, $j \ge 0$, when $h \in Y^j$.

PROOF. It clearly suffices to prove the proposition for arbitrary Y^j . So let $h \in Y^j$ be given along with $\varphi \in L^1_C(G)$. By definition h has a series representation

(S)
$$h = \sum_{i=1}^{\infty} \lambda_i f_i * g_i$$
, $\sum_{i=1}^{\infty} |\lambda_i| < 1$; $f_i \to 0$ in E^j , $g_i \to 0$ in F^j .

Now convolution to the left or right on L(G) by elements φ in $L^1_C(G)$ is a continuous linear operator on L(G). Hence we have

(1)
$$\varphi * h = \sum_{i=1}^{\infty} \lambda_i (\varphi * f_i) * g_i,$$

(2)
$$h * \varphi = \sum_{i=1}^{\infty} \lambda_i f_i * (g_i * \varphi) ,$$

where the series in (1), (2) converges in L(G). To see that $\varphi *h$ (resp. $h*\varphi$) belongs to Y^j it therefore suffices to show that $\varphi *f_i \to 0$ in E^j (resp. $g_i *\varphi \to 0$ in F^j). But this follows directly from lemma 2.11. So (i) is proved.

Next, recall that $f \to \tilde{f}$ is an anti-linear homeomorphism of E^j onto F^j (lemma 2.7). Hence, with $f = \sum_{i=1}^{\infty} \lambda_i f_i * g_i$ as above, we must have $\tilde{f}_i \to 0$ in F^j , $\tilde{g}_i \to 0$ in E^j . So the function $k = \sum \bar{\lambda}_i \tilde{g}_i * \tilde{f}_i$ belongs to Y^j . By evaluation we verify that $k = \tilde{f}$. This proves (ii).

Finally, let $x \in G$, and $h = \sum_{i=1}^{\infty} \lambda_i f_i * g_i$ as above. The sequence $\{f_i\}$ is bounded in E^j and therefore belongs to E^j_n for some n, and converges to zero in E^j_n . By lemma 2.13, $(f_i)_x \to 0$ in E^j . The series $\sum_{i=1}^{\infty} \lambda_i (f_i)_x * g_i$ clearly converges to h_x in L(G), so $h_x \in Y^j$. The proof for h^x is similar. This completes the proof of the proposition.

Because of the last result we may define the left and right regular representations λ and ϱ respectively, of G on Y.

Proposition 3.8. The maps

- (i) $(x,h) \rightarrow \lambda_x h$,
- (ii) $(x,h) \rightarrow \varrho_x h$,

with $x \in G$, $h \in Y$, are continuous of $G \times Y$ into Y.

PROOF. We prove (i); (ii) is proved similarly. Prop. 3.5 shows that Y is an LF-space, hence barrelled. By [4, lemma 3, p. 24] it therefore suffices to show that

- a) λ_x is a continuous linear map on Y,
- b) $x \to \lambda_x h$ is continuous of G into Y for all $h \in Y$.

By the definition of Y and the fact that λ leaves each Y^j invariant (prop. 3.7) it suffices to prove (a) and (b) with arbitrary Y^j ($j \ge 0$) instead of Y. As before, let L be the left regular representation of G on E^j . For each $x \in G$, L_x is continuous on E^j (lemma 2.13), so $L_x \otimes I$, with I the identity map on F^j , is continuous on $E^j \otimes F^j$ [2, p. 75]. We claim that

$$A^{j}(L_{x}\otimes I) = \lambda_{x}A^{j}.$$

Let z be an element in $E^j \overline{\otimes} F^j$. There is n such that $z \in E_n^j \widehat{\otimes} F_n^j$, hence $z = \sum_{i=1}^{\infty} \lambda_i f_i \otimes g_i$, with $\{\lambda_i\}$, $\{f_i\}$ and $\{g_i\}$ as before. $L_x \otimes I$ is continuous, so we get:

$$A^{j}(L_{x}\otimes I)z = A^{j}\sum_{i=1}^{\infty}\lambda_{i}(L_{x}f_{i})\otimes g_{i} = \sum_{i=1}^{\infty}\lambda_{i}(L_{x}f_{i})*g_{i}$$

which by the proof of (iii) in prop. 3.7 is equal to

$$\lambda_x(\sum_{i=1}^{\infty}\lambda_i f_i * g_i) = \lambda_x A^j z$$

which proves the claim. Since A^{j} is open, this implies that λ_{x} is continuous on Y^{j} .

For the proof of (b) we first observe that by (*) it suffices to show that $x \to (L_x \otimes I)z$, $x \in G$, is continuous for all $z \in E^j \overline{\otimes} F^j$. Let $0 \neq z \in E^j \overline{\otimes} F^j$ be given. There is n such that $z = \sum_{i=1}^{\infty} \lambda_i f_i \otimes g_i$ with $\{\lambda_i\} \subseteq l^1$, $\{f_i\}$ converges to zero in E_n^j and $\{g_i\}$ converges to zero in F_n^j . We have

$$(L_x \otimes I)z = \sum_{i=1}^{\infty} \lambda_i(L_x f_i) \otimes g_i,$$

so if $x \to y$ in G, we may choose E_n^j large enough to include all $L_x f_i$ and $L_y f_i$, $i=1,2,\ldots$, as $x \to y$. Let $\varepsilon > 0$ and norms $p=p^j_{V_n,m}$, $q=q^j_{V_n,m'}$ on E_n^j, F_n^j , respectively, be given. Let $\varepsilon' = \varepsilon \left(\sum_{i=1}^\infty |\lambda_i| q(g_i)\right)^{-1}$, and choose an integer k such that $p(f_i) < \frac{1}{2}\varepsilon'$ for i > k. Then, by lemma 2.13 we obtain for i > k

(**)
$$p(L_x f_i - L_y f_i) \leq p(L_x f_i) + p(L_y f_i) = 2p(f_i) < \varepsilon'$$
.

By lemma 2.12 there is a neighborhood U of y in G such that

(***)
$$p(L_x f_i - L_y f_i) < \varepsilon' \quad \text{for } i = 1, \dots, k \text{ if } x \in U.$$

Hence, if $x \in U$ we get by (**) and (***):

$$\begin{split} (p \otimes q)[(L_x \otimes I)z - (L_y \otimes I)z] &= (p \otimes q) \; \sum_{i=1}^{\infty} \lambda_i (L_x f_i - L_y f_i) \otimes g_i \\ &\leq \; \sum_{i=1}^{\infty} |\lambda_i| p(L_x f_i - L_y f_i) q(g_i) \\ &< \; \sum_{i=1}^{\infty} |\lambda_i| \, \varepsilon' \, q(g_i) \; = \; \varepsilon \; . \end{split}$$

Since norms of the type $p \otimes q$ determines the topology on $E_n^j \hat{\otimes} F_n^j$ and the injection of $E_n^j \hat{\otimes} F_n^j$ into $E^j \overline{\otimes} F^j$ is continuous, (b) follows. The proof is complete.

Summarizing, we have proved the following

THEOREM 3.9. The space $Y \subseteq L(G)$ is a nuclear LF-space, and is dense in L(G). Y is a two-sided ideal in $L^1_C(G)$ with respect to convolution, and is closed with respect to the operation $\tilde{\ }$. The left and right regular representations of G on Y are well defined and jointly continuous.

ADDED IN PROOF. We have been informed by S. M. Newberger and C. A. Akemann that there is a gap in Lemma 9 in the author's paper: "Physical states on a C^* -algebra", Acta Math. 122 (1969), 161–172. Theorem 1 of this paper must therefore be considered unproved. However, in a forthcoming paper, Akemann, Elliott and Newberger have been able to fill the gap for a large class of C^* -algebras.

REFERENCES

- F. Bruhat, Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques, Bull. Soc. Math. France 89 (1961), 43-75.
- A. Grothendieck, Produit tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, Providence, 1955.
- 3. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I (Grundlehren Math. Wissensch. 115), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.
- R. T. Moore, Measurable, continuous and smooth vectors for semigroups and group representations Mem. Amer. Math. Soc. 78, Providence, 1968.
- T. Pytlik, A nuclear space of functions on a locally compact group, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 161-166.
- F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York · London, 1967.

UNIVERSITY OF OSLO, NORWAY

AND

THE TEACHERS COLLEGE OF NORWAY, TRONDHEIM