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A LARGE BI-INVARIANT NUCLEAR FUNCTION SPACE
ON A LOCALLY COMPACT GROUP

JOHAN F. AARNES

1. Introduction.

In a fundamental work on representations of p-adic groups [1],
F. Bruhat introduces a space D(G) of ‘‘differentiable” functions on a
general locally compact group G. This construction is based on Yamabe’s
approximation theorem which says that a connected locally compact
group is the projective limit of Lie groups. If G is separable, Bruhat
shows in [1] that D(G) can be made into a nuclear complete LF-space,
invariant with respect to translations and dense in the space L(G) of
all continuous complex functions on @ with compact support.

It is natural to ask whether a space of functions on G with the proper-
ties of D(G@) may be constructed without the intervention of Lie-groups.
There have been attempts in this direction by several authors, but it
seems that not until recently has anyone obtained a space with the
right properties which is also nuclear. This last requirement is essential
for representation theory, as shown in [1]. However, in [5], T. Pytlik
gives a very elegant construction of a nuclear space @ of functions on a
locally compact group G' which is assumed to be metrizable and ¢-com-
pact. Now this space @, while being left-invariant, need not be right
invariant, and it may also be very small. In this paper we will show
that it is possible to use Pytlik’s construction as a basis for a construc-
tion-process that eventually leads to a bi-invariant nuclear LF-space Y,
which is dense in L(@). We also show that the left (and right) regular
representation of @ on Y is continuous.

We shall assume that the group @ is second countable. Integration
on G will always be with respect to a fixed left Haar measure, which we
denote by u. By 4 we denote the modular function on G, and e is the
identity element in G. If f is a function on @, then fl@)=Fx7), ze@.
If C is a subset of G, and if F(@) is a class of functions on G, then F (@)
denotes the class of functions in F(G) which vanish outside C. If f is
a function on @, and z,y € G, then f.(y)=f(xy), f*(y) =f(yx).
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Standard results from abstract harmonic analysis will be used with-
out explicit quotation. The general reference is [3].

We express our thanks to O. B. Bekken for helpful remarks in con-
nection with the theory of tensor products and nuclear spaces.

2. Construction of the spaces EJ,FJ,

Let G be a locally compact group, satisfying the second axiom of
countability. Once and for all we choose a basis of relatively compact
symmetric neighbourhoods {U,};._, of the identity element e in @, such

that WU) 1 and Ui,cU,,
n=0,1,.... A sequence of functions {y,}< L(G) is an approximative
identity on @ if

v = O, f y, = lforallk, and supp(y,)!{e}.

An approximate identity {y,} is subordinate the basis {U,} if supp (y;) <=
Uy; k=1,2,... . In [5] an approximative identity {y,}, subordinate to
a basis {U,}, with the following additional properties, is constructed:
¥, =, for all n, and if f € L) satisfies f*y, =0 for some n, then f=0.
Let C be a relatively compact subset of G.

Lemma 2.1. If fe LA (@) and y, xf=0 for some n, then f=0.
Proor. Suppose fe Lo*@) and y,*xf=0. Then 0=(y,*f)" =fxy,.
Since f has compact support, f € L%(G). Hence f=0, so f=0.

For any function f on G, let f () =f (). The map f - f is' linear and
(f*g)” =g; * f whenever convolution is defined. Let C be a relatively
compact subset of G. We identify L3(C) and L *(G). If fe L¥C), then

Il < supued@) Ifls,
80 ~ is a bicontinuous map of L(C) onto L%C-1). In [5] the linear maps
T,:L¥G) - L¥G), =n=1.2,...,
are defined by 7, f=f*vy,. Now define
S,: L¥G) > L¥ @), n=12,...,
by S,.f=vn*f.
LeMMaA 2.2. Let V be a relatively compact subset of Q. Then
(8) Tp: LXVU,) ~ L¥ VU, ),
(b) S,: L¥U,V) > L¥U, _,V)
are Hilbert—Schmidt.
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Proor. (a) is proved in [5], lemma 2. That S, maps L*U,V) into
L*U,_,V) is clear since v, has support in U,, and U,2cU,_,. If
feL¥U,V), then

Spf = ypxf = (T'n,f)v .

Since ~ is continuous, (b) follows from (a).

We observe that because of lemma 2.1 and the preceding remark,
the linear operators 7', and S, are injective for all n. Clearly

Tiyr.. . To(LXVU,)) < LAV U,)
81 S LAU,YV)) € LAU; V).
For j=0,1,... we define for n>j

Ejl:’,n = T]'+1 R T'n(LZ(VUn)) )
Fyp=81...8,(L2U,V)).
The elements of E’Vn (resp. Ff;,’n) belong to L(G@) and have their support
in VU; (resp. U;V). We define, for j=0,1,...,

By = Oy By By = Ny Fy

n>j n>j

and

Let L and R denote the left and right regular representations of G on
L3@G), respectively. I.e., for fe L¥G)

Lof)y) = f(zly), =xyed,
(Bof)y) = flyx), =2yeC.

We observe that L, and T, (resp. R, and §,,) commute for all x and n.
Indeed:

R 8of = (Suf P = Watf)® = puxf® = pux(Bof) = SR, ,
where f e L%(@). A similar argument works for L, and T, .
Lemma 2.3. If V,c V, are relatively compact subsets of G, then
(a) E{,l_;_E{,-z and F@lgF’;,Z Jor all 5= 0.
If x e G, then
(b) Ei,=L,E',) and F’, =R, (F}) for all j=0.

Proor. This is a straight forward verification, and the proof is
omitted.

LremMma 2.4, For any relatively compact set V<G and 20 we have
f € Ei, if and only if fe Fi,_..
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Proor. Suppose f € B, and let n > j be arbitrary. Thereis h € L¥VU,)
such that

f=Tq.. . Toh = hryp,x ..o xp;y, .

Hence | =y;1*...*xp,xh, and ke LXU,V-1) since U, is symmetric.
Consequently f =8;41...8,h belongs to Fi,_, ,. Since this is true for
all n>j it follows that fe F},_,. By symmetry and the fact that f~~ =f
the lemma follows.

Next we want to show that if V@, then all the spaces EY ,Ffi,, 7>0,
are non-zero. In [5] this is done for the space K} . Since we are dealing
with several spaces at the same time, and also want to obtain some extra
information, we give a complete proof, based on the argument of [5].

PropoSITION 2.5. There is a sequence {p;};so such that ¢; € B, , ¢;20,
supp(p;) s U; and [@;=1. Moreover, if ©>520, then ¢;=T;,,...T ;.

Proor. We define the double sequence

Pi e = Tivr-o Typsrs
j=0,1,..., k=j+1,5+2,.... We obtain

lles, xlloo = 8UPzeq | Tj41 - - - Ty ()]

= SUPgeq f Tiize o Typs (W) 92y %) dy

IA

sl [ Tpan - Tipina®) dy = Ippsals »

where we have used the properties of the functions y; and the fact that
the Haar-integral is a multiplicative linear functional on L(G). Now
supp (¢; ;) € U; for all k>j, so

”‘Pj, e = ”‘Pju”oo H(U;f)* .

Hence, for each j2 0, the sequence {g; ;}x-; is bounded in L*U;). We
observe that

(*) P,k = Tj+1(pj+1,k

for all 20 and k2>j+2. Each of the operators T'; is Hilbert—Schmidt,
hence compact. So in particular the sequence @, ;=T ¢; 5, k=2,3,...,
contains a norm-convergent sub-sequence {p, ;} in L*U,). Let @,=
lim, @y ;.. For any fixed j=1 let {g; ;-},~ be a convergent subsequence
of the sequence @i, =T, 1¢;41 1> ¥ 2j+2. We put g;=lim. ¢; ;.. We
now assert that ¢, € By, and that ¢,=T;,,¢;,, for all 20. Indeed,
using (*) one obtains
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(**) Tl “oe T,-wj = limku Tl cee Tj(pj,k"
= limy. @o, 1 = @o

Since @, € L*(U,) it follows that ¢, € B, ; for all j21, hence ¢, € EY,.
Now all T'; are invertible so (**) implies that T;,,...T;p,=¢; for all
¢>j. Hence ¢; € B, for all j=0.

By construction ¢; ;20 for all j,k, and since ¢; ;- @; in L¥U;), a
subsequence will converge pointwise almost everywhere. Hence, by
continuity ¢;20. Next, u(U;)<o so convergence in L%U;) implies
convergence in LY(U;), so that

f (pj = limk”‘f ¢f. |7

f‘Pf,k = ij+1' c Typn = f’l’kn =1.

It follows that [p;=1 for all > 0. The proof is complete.

But

By lemma 2.4 and the result above it immediately follows that F{e}
is non-zero for each j20. In fact ¢, € F/,,, and the sequence {@,} has
exactly the same properties as the sequence {@;}. The only thing which
perhaps isn’t obvious is that [¢;=1. But clearly

f@j = 1imk"f¢j,k"9 f¢1,k = f'l’;iﬂ* ¥ P =1,
so this is also true.

CoROLLARY 2.6. If V +0, then E, and F%, are non-zero for all j = 0.

Proor. Immediate from lemma 2.3, prop. 2.5 and the preceding
remark.

To topologize the spaces E% and FY, we introduce the maps
Tj,n = (Tf+1 “e Tn)_l, O']"n = (Sj.ﬂ_ “ee Sn)_l
for 0<j<n. Then 7;, (resp. o;,) is a bijection of Ej, , (resp. FY ,)
onto LVU,) (resp. LXU,V)). We define families of norms on E’J;,,n
and Fi, . by: . .
" wlulf) = Ity nlf e B,
g, nlf) = logalflles  FEFy,

for n>j. We give £, (resp. FY%,) the locally convex topology determined
by the family of norms {z% ,},-; (resp. {#p, n}nss)-

LemMA 2.7. The map f— f is an anti-linear homeomorphism of Ef,
onto F%,_, (j20).
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Proor. The algebraic property is clear from lemma 2.4. Let fe Ej,
and let n>j be given. Put h=1; ,(f)soh e LAVU,). Thenk e L¥U,V-1)
and o ,(f)= h. Hence

s, )2 = 1B = [ (w2 du = [ () 24w du.
G

vU,
Let m=inf, yy, 4(u™?), M =sup,.yy,4(v~1). Then
mllhly < IR < MIRIG

80
m*n’i,’ n(f) = ”4’-1, n(f~) = M}“].V, n(f) .

The proof is complete.

ProposiTiON 2.8. For each non-void relatively compact set V<@, and
each j = 0, the space Ei, (resp. F¥) is a locally convex nuclear Frechet space.
The linear map t; ,, (resp. o;,,) 8 @ homeomorphism of Ei, onto E% (resp.
F%, onto F%), when n>j.

Proor. In [5], lemma 4 it is proved that E} (=) is nuclear. ES,
is a countably normed space, hence metrizable. To see that it is com-
plete, let {f,} be a Cauchy-sequence in EY. Then {f,} is Cauchy with
respect to each of the norms =%, , for each n21, and EY, , is a Hilbert-
space, in particular complete, in the norm =% ,. Hence, for n>1 there
is a function h» € EY , such that % ,(h"—f;) > 0 as k — co. Suppose
n>m and let i,, , be the inclusion map of EY, , into EY, ,,. Then

im,n = TE)-,lmo (Tm+1 oo Tn)° To,n >
To,m and 7, , are isometries and
Twir-- - Tn: LXVU,) > L¥VU,,)

is continuous by lemma 2.2. Hence i, , : E}, , - EY ,, is continuous.
Since f, - k" in EY , it follows that f, — & also in EY, ,. But then
h*=hm™. Since n and m were arbitrary, we obtain

R=mR=.."Mm=...=h

with % € B}, ,, for all n21. Hence h € E} and f, - h in EY. This shows
that EY is complete, and therefore a nuclear Frechet space.

Next, we show that 7, , is a linear homeomorphism of £, onto E%.
(The argument for o; ,, is similar and is omitted.) It is routine to check
that 7; ,(B)=E%. Now let f € E'; and let 0<j<n<k. Then

2, (%5, F) = 170,170, = 73, 1(Plla = 7%, 1) -
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Hence 7; , is continuous as this equality holds for all k> n. It also shows
that 7;, is an isometry of E , onto K, ; for k>n. If nzk>j we may
regard 7;’, as the isometry T,...T, of Ey ,,, onto B ,,, followed
by the injection of E% ,,, into B, ;. The latter is continuous by an argu-
ment similar to the one used to show that ¢, ,, is continuous. It follows
that 7; , is a homeomorphism. This fact and lemma 2.7 now yields the
proposition.

Let € be the family of relatively compact subsets of @. We define
Ei = UVE%EiV’ Fi= UVG%F]%/

for all j20. If V,cV, with V;,V,€%, the injection of B, into £,
is easily seen to be a homeomorphism. Hence, with the inductive topo-
logy, B/ is the inductive limit of the spaces E%,; V € 4. Similarly F7 is
the inductive limit of the F¥’s.

Since @ is second countable, there is a sequence {V,} of open relatively
compact sets, V,, <V, ,,, such that

LeMMA 2.9. For each j=0, Ei (resp. F7) is the strict inductive limit of
the sequence {E, } (resp. {F'; }).

Proor. Let G=lim ind {#%, }. Clearly G/=Ei as linear spaces. G is
a strict inductive limit since each B/, is complete and the injection
Ej, - E’{VM , is a homeomorphism. It is clear that the topology of £/ is
weaker than the topology of G7. Conversely, let W be any convex,
circled neighborhood of 0 in G%. Let V be any relatively compact subset
of @. There is V,, 2V, hence K, E; and the injection is continuous.
So WnEj is a neighborhood of 0 in E}. Hence W is a neighborhood
of 0in BJ. A similar argument works for ¥4, The proof is complete.

We say that a linear space G is an LF-space (resp. strict LF-space)
if @ is the inductive limit (resp. strict inductive limit) of a sequence

Gec...ec@,cG,,< ...
of Frechet-spaces.

CoROLLARY 2.10. For each j= 0, E/ and Fi are nuclear strict LF-spaces.

In particular it is clear that E’, (vesp. F;) for each V € ¥ carries the
relative topology of £’ (resp. F7).

We may also note that all B/, F/ are contained in L(G), in fact, if
f € B, say, then supp(f)<VU;. By prop. 2, the spaces E7, and spaces
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Fi, are all linearly homeomorphic. By lemma 2.7 f - f is an anti-linear
homeomorphism of E?/ onto FJ.

It will be convenient to express the topology on E/ and F/ somewhat
differently. For V € %; j=0 and n>j, let

Pralf) = ltm(Nlos  fEEY,u,
where 7;(f) = f, and let
qJV,n(f) = den(f)”oo; fE F];’,n )

where oy(f)=f. I claim that the system of norms {pj, ,}, (resp.
{@%, n}n) determine the topology of Ej (resp. F%,). Indeed; we have
7;,(f) € L(@) and supp(7;,(f)) s VU, for all n>j, fe EY,. Hence

lsm(HIE = flm(f)(ﬂv)lzdf'c < wsnH (V)

VU,
()
On the other hand, for n>j;
2%,a(f) = 170l

80

IIA

#(V U p%,(f) -

”Tj,n+1(f) *'pn+1”oo
”Tj n1(F)lz Wnsalloo #(Unsa)
nJV, n+1(f) ”'/’n+l”oo .

IA 1A I

So the two norm-systems {P%. }n and {n .}, are equivalent. Analog-
ously, the family {¢% ,}, will determine the topology of F%,. On ac-
count of this fact, we will refer to the topology of E’ (resp. F7) as the
inductive topology of uniform convergence with respect to the operators
Tjn (TESP. 0y,); M2J.

Levma 2.11. Let h € LoMG) with supp (h)c K. In this case:

(a) if f € B, then hxf € By and

pJKV,n(h*f) = ij,n(f) ”h”p ngj .
(b) if g € FY,, then gxh € Fip and
@k, nlg*h) £ ¢¥,.(9) 1472R];, nzj.

Proor. We prove (a), the proof of (b) is similar. First, let n>j, and
observe that 7;,(f) is continuous with support in VU,. Hence h*7,,(f)
belongs to LXK VU,), and

Tioreo Tolbxtu(f)) = Tpar- - Tultpulbxf)) = haf,
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80 hxfe By , for all n>j. Hence hxf e El,. Next for n2j,

[Zm )l = R%Tjn(Flloe = 175n(flleo IRl 5

from which (a) follows.

LemMmaA 2.12. For fe Ei (resp. g€ Fi); j=0, the map = —f, (resp.
x — g%) is continuous of G into B (resp. FY).

Proor. In [5], theorem 2, it is proved that x - f, is continuous”for
feE° (=9). (That f, e E° for all z € @ follows from lemma 2.3.) The
same argument works for all £/ and FY.

Lemma 2.13. Let fe By, g€ Fi,. Then

(a') p:]z;V,n(fo) = ij/.,n(f): n g]
(b) q%’a:—l, n (Ra:g) = q]V,n(g)7 n g]

Proor. We prove (a), the proof of (b) is similar. By lemma 2.3,
L.f € E%; and hence

Doy, Lef) = 1TiaLef oo = LzTin(Hlleo = TPl = P, u(f) -

3. Construction of a large biinvariant nuclear space.

Take B and FJ as defined in section 2. Let Y7 be the linear sub-
space of L(G) consisting of elements with representations

(S) h =‘§ Aifi% s »

t=1
where {1;}, {f;} and {g;} are sequences in C, E7 and F’ respectively, such
that 3, |4;] <1, f; > 0 in B, and g; - 0 in FY, and where the series (S)
converges in L(G). We give L(G) the inductive topology of uniform con-
vergence on compacta.

We are going to show that the linear span Y of U2, Y7 is dense in
L(@), is invariant with respect to left and right translations, and can be
provided with a nuclear topology finer than the topology of L(G) in
such way that it becomes an LF-space.

We shall use the following notation: If £ and F are locally convex
linear spaces, then EQ,F, EQ,F and EQ,F will denote their tensor
product equipped with the topology of bi-equicontinuous convergence:
¢, the projective topology =, or the inductive topology ¢, respectively.
The completion of EQF in the ¢, # and ¢-topology, will be denoted by
EQF, EQF and EQF, respectively. (For general facts about tensor-
products and nuclear spaces, we refer to [2] and [6].)

We shall need the following general result:

Math. Scand. 29 — 19
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ProposiTiON 3.1. Let E and F be strict inductive limits of increasing
sequences {E;}, {F;} respectively, such that for each i, E; and F; are nuclear
Frechet-spaces. Then EQF is strict inductive limit of the sequence {E;QF}.
In particular EQF is a nuclear, strict LF-space.

Proor. Since E,cF, F;cF for all ¢, we may regard E,QF,; as a
linear subspace of ZQF by the canonical injection. Clearly E,QF,<
E,,QF,;,, 1=12,.... By prop. 14 in [2] it follows that EQ F is the
inductive limit of the sequence {£;®, F;}, where (; denotes the inductive
tensor product topology on E,®F;. Hence . restricted to E,QF; is
weaker than ¢;. On the other hand ¢ is stronger than ¢, so the restric-
tion of ¢ to E;®QF, is stronger than the restriction of ¢ to E,QF;. But
the latter topology on E;®F; concides with the ¢-topology of E,QF;
itself [6, Prop. 43.7]. Now E, is nuclear, hence £,®,F, is isomorphic to
E,®,F,; [6, thm. 50.1]. Since E; and F; are Frechet-spaces, we also ob-
tain that the projective and inductive tensor product topologies coin-
cide. So E;®,F; is isomorphic to E;®, F,. Hence we also obtain that
the restriction of ¢ to E;QF; is stronger than ;. Consequently E;® F;
carries the relativized :-topology. Hence E,®F; is simply the closure of
E,®F; in EQF. By what’s been said above:

(*) BQF; = E,QF; = B,QF,,
that is, these spaces are topologically and linearly isomorphic. By the
first equality, the canonical injection

EiéFi - Ei+1®F'i+1
is a topological isomorphism into [6, prop. 43.7]. So

G = lim ind {E;®F}
is a strict inductive limit of Frechet-spaces, hence a strict LF-space,
hence complete. By the second equality in (*)

@ = lim ind {E,QF} .
By the last part of prop. 14 in [2] we therefore know that the inductive
limit topology of G coincides with the relativized :-topology of EQF.
But @ is dense in EQF, and closed since it is complete. Hence G =EQF.
Now E,QF, is nuclear for each i [6, prop. 50.1], and countable inductive

limits of nuclear spaces are nuclear [6, prop. 50.1], so EQF is nuclear.
The proof is complete.

Now let E/,F, j= 0, be as in section 2. For each j > 0 we shall equip
Ei®Fi with the inductive tensor product topology. Let us choose, once
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and for all, a sequence {V,} of open relatively compact subsets of & such
that V,cV,,, for all n and U2 V,=G. Let K,=V, for all n. Then
L(G) is the strict inductive limit of Banach-spaces Lk (&), and is there-
fore complete.

For each j20, (f,9) >f*g is a bilinear map of Eix Fi into L(Q®).
It therefore determines a unique linear map
Ai: BIQF - L(Q)
such that
ANSY [i®9:) = 31 fixg:

where f,e Bi, g, e Fi, i=1,... k.
Lemma 3.2. For each j20,
A7 : BiQ Fi - L(Q)

18 continuous.

Proor. To simplify notation, let us write E£=Eji/,., Fi=Fj, . By
lemma 2.9 we know that E7 (resp. FY) is the strict inductive limit of the
sequence {EJ} (resp. {FV}). Since all E/, F/, are nuclear Frechet-spaces
(prop. 2.8) the assumptions of prop. 3.1 are satisfied. As observed in
the proof, we then have

EiQ Fi = lim ind {E{®,Fi} .

Hence, to prove continuity of 47 we need only show that the restric-
tion A7 of A7 to ES®,FJ is continuous into L(G) for each n. Let z be
an element of ES®F/. Then we have an expression z=3%  f,®g,,
with f;e BS, g,e Fi, i=1,...,k. Then

h = Az = 3L fi%g;
has support in the closure of V, U3V, for any j=0, n>1, and

Rl = IZ51fixgillo S Zioillfi*gilleo
WV Uo) T I filloo 1910
= uw(V,Uy) 2i=1p Vn,,(ft)QVn j (95) -

Pl < (Vo U@, @, @)

which proves the assertion.

ll/\ IA

Hence

Since A7 is continuous and L(®) is complete, we may extend A7 to a
continuous linear operator of E/Q@Fi into.L(G.). We'denote this ex-
tension also by 47, and its restriction to E,&F) by 4.
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It will be convenient to characterize the elements of Y7 in an other
way. We first make some observations. Let E, F be two Frechet-
spaces. Then every element z of £ @)F is the sum of an absolutely con-
vergent series

2= 2214%8Y;,

where {4;} is a sequence of complex numbers such that >°,|4,/ <1, and
{x;} (resp. {y;}) is a sequence converging to zero in £ (resp. F). [6, thm.
45.1]. Conversely, let {1,}, {x,} and {y;} be sequences in C, E and F
respectively, such that 3|1,/ <1, #; >0 in F and y;,—~ 0 in F. We
claim that the series 3%, 4,%,®y; then will converge absolutely in EQF
to an element z. Let p,q be arbitrary continuous semi-norms on E, F
respectively, and put r=p®q. Since EQF is complete, it suffices to
show that
32 (@ @y) < .
But
3212, ®ys) = 224 |4 pla)g(=,) -

Since p(z;) - 0 and g(x;) — 0 the latter series converges.

ProrosiTioN 3.3. For every j we have
Yi = Ai(BIQF)

and if we provide Y7 with the quotient topology T, then the series (S) con-
verges in Y7,

Proor. Suppose ke Ai(E/@Fi). There is an nx1 and ze FiQF)
such that h=A4%2. Then z may be written

z=22,2fi®g;,

>% .14l <1, fy—>0 in E7 and g; >0 in FJ. The series converges in
EiQF] and A’ is continuous, so h=32,4,f;*g;. That is, h belongs
to Y4.

Conversely, suppose that  belongs to Y7, with a series representation
h=32 Afi*g,. Since {f;} and {g;} converges to zero in E/ and FJ
respectively, they are in particular bounded. E7 and F7 are strict LF-
spaces so there is an n such that {f;} and {g;} are contained in K/ and
F respectively, and converges to zero there. By remarks above it now
follows that the series Y32 ; 4;f;®g, converges to an element z in EZ,@)F{,
By continuity of 47 we get

Aiz = 32, 0fixg; = b,
which proves that 47(E/QF7)=Y1.
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Since E/QF7 is a strict LF-space by prop. 3.1, Y7 becomes an LF-space
with defining sequence

Yi = AL (BLQF), n=1,2,...,

when Y7 is given the quotient topology , from Ei®F7. Indeed, Y7,
is a Frechet-space for each n, ¥4, Y7,,, and the injection ¥/ — Y7,
is continuous by definition of quotient topologies. Also, the injection
T, of Y/ into Y7 is continuous, and U®_, ¥/ = ¥4. To see that J is the
inductive topology with respect to {7,}, let B be a linear operator of Y’
into a locally convex space X, such that Bo I, is continuous for each n.
Then BoAi=(Bol,)oA) is continuous, hence BoA/ is continuous.
But then B is continuous. So Y7=lim ind{¥%}. Moreover Y7 is nuclear
by prop. 50.1 in [6]. We have proved

LemMma 3.4. Y7 is nuclear LF-space, j=0.

Now let ¥ =[UX,, Y7]=the linear span of U2 Y7 in L(G). We give
Y the inductive topology.

ProrosiTiON 3.5. Y is a nuclear LF-space.

Proor. For k=1,2,..., let H,=[U*_ ¥%]. We claim that
1) H,cH,,, k=12, ..
9) Y=UP H,.

Indeed,
I'Ci(l> Yil s [U}C:(I) Yl = Hyyq s

which proves 1).

All H, are linear spaces, and the sequence {H,} is increasing, so to
verify 2) it suffices to show that if » € Y7 for any j=0, then h € H,, for
some k. So let & € Y4, There is n such that h € ¥/,. Let k=max(j,n).
Then

he Y]I;: = [U:'c=0 ;c] = ch’

and 2) is valid. We now give each H, the (finite) inductive system
topology. This makes H, into a nuclear Frechet space. Let Y, denote
Y with the inductive limit topology defined by the sequence {H,}.
We show that Y5 and Y are topologically isomorphic.

To see that the identity map of Y into Y is continuous, it suffices
to show that the injection H, — Y is continuous for all k. Since in
turn each H, has an inductive topology, it suffices to show that the
injection Y% — ¥, j<k, is continuous. But the injections Y% - ¥4 > Y
are both continuous, so Y5 — Y is continuous. Conversely, to see that
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the identity map ¥ — Y is continuous, it suffices to show that ¥/ - Y5
is continuous for all = 0. Again, this means that it suffices to show that
Y/, - Y g is continuous for all j,k. We have two cases:

a) j<k. The maps Y}, -~ H; - Yz are both continuous.

b) j>k. The maps Y} — Y}, - H, » Y are all continuous.

Hence the identity map Y — Y, is a homeomorphism. Since Y is

an inductive limit of an increasing sequence of nuclear Frechet-spaces,
the proposition follows.

ProposiTION 3.6. Y 18 dense in L(Q).

Proor. Let the sequence {g;};~, be as in prop. 2.5. Let y;=¢;*@;,
so y; € Y7 for all =2 0. Hence {y;};.o< Y. Clearly,

vi2 0, supp(y;) € Ujy, fVi =1,

j21, by prop. 2.5 and the subsequent remarks. So {y;} isan approxima-
tive identity for G. Let fe L(G). Then

Vj*f = ‘Pj*(@*f)

belongs to Y7 since @;xfe F/ by lemma 2.11 (b). Hence y;*+fe ¥ and
y;*f converges uniformly to f on a compact set containing the support
of y,+f and f for all j. The proof is complete.

ProrosiTioN 3.7. Let he Y. We have:

(i) if p € LY(@), then ¢ xh and hxg belong to Y,
(i) ke Y,
(iii) if = € G, then h, and h* belong to Y.

Each of the statements above is true with Y7 in place of Y, j =0, when
he Yi.

Proor. It clearly suffices to prove the proposition for arbitrary Y7.
So let & € Y7 be given along with ¢ € L,(G). By definition & has a series
representation
() k=32 Mfixg; Z2lAl < 1; f;>0in B, g; >0 in F7.

Now convolution to the left or right on L(@) by elements ¢ in L}(G)
is a continuous linear operator on L(G). Hence we have

(1) pxh = 32, A(@*f)*g:
(2) haxp = 320 fi%(g:%9)
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where the series in (1), (2) converges in L(G). To see that @k (resp.
hxg@) belongs to Y7 it therefore suffices to show that g*f; - 0 in EJ
(resp. g;x@ — 0 in F9), But this follows directly from lemma 2.11.
So (i) is proved.

Next, recall that f - fis an anti-linear homeomorphism of E7 onto Fi
(lemma 2.7). Hence, with f=3% 1,f,*g; as above, we must have f; > 0
in F4, §; -~ 0in Ei. So the function k=3 1,§,*f; belongs to ¥i. By eva-
luation we verify that k=f. This proves (ii).

Finally, let x € G, and h=33,4,f;*g; as above. The sequence {f;} is
bounded in E/ and therefore belongs to E’ for some n, and converges to
zero in Ef. By lemma 2.13, (f;), - 0 in Ei. The series 3, 4;(f)*9:
clearly converges to A, in L((), so h, e Y7. The proof for h* is similar.
This completes the proof of the proposition.

Because of the last result we may define the left and right regular
representations A and p respectively, of G on Y.

ProrposiTioN 3.8. The maps
() (x,h) - Ah,
(ii) (k) > o5h,
with x € G, he Y, are continuous of @ x Y into Y.

Proor. We prove (i); (ii) is proved similarly. Prop. 3.5 shows that ¥
is an LF-space, hence barrelled. By [4, lemma 3, p. 24] it therefore
suffices to show that

a) A, is a continuous linear map on ¥,
b) x — A,k is continuous of G into Y for all ke Y.

By the definition of ¥ and the fact that A leaves each Y/ invariant
(prop. 3.7) it suffices to prove (a) and (b) with arbitrary Y7 (5= 0) in-
stead of Y. As before, let L be the left regular representation of G on
Ei. For each x € G, L, is continuous on E/ (lemma 2.13), so L,®I, with
I the identity map on F/, is continuous on E/QF7 [2, p. 75]. We claim
that
(*) A(L,RI) = 1,47
Let z be an element in E/@F7. There is n such that z € EL®FY, hence
2=32 1,fi®g;, with {4}, {f;} and {g,} as before. L,®1I is continuous,
80 we get:

AI(L,@I)z = A7 32, 24(Lof)®9s = T A (Lafi) *9s
which by the proof of (iii) in prop. 3.7 is equal to

Ao(ZAifi%9:) = A A%z
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which proves the claim. Since A7 is open, this implies that 4, is continu-
ous on Y.

For the proof of (b) we first observe that by (*) it suffices to show
that z - (L,QI)2, x €@, is continuous for all ze€ B/QFi. Let 0%z¢€
EiQFi be given. There is n such that =3 1,f,®g; with {3,}<l, {f;}
converges to zero in Y, and {g,} converges to zero in F’. We have

(Ly®I)z = T2, 2 (L f;) @Y »
so if # - y in @, we may choose EJ large enough to include all L,f; and
L,f;,©=1,2,..., a8 x > y. Let ¢>0 and norms p= pvnm,q % pyme OD

E., Fi, respectlvely, be given. Let &¢'=¢(Z,]4:q(g;))~, and choose an
integer k such that p(f;) <3¢’ for ¢>%. Then, by lemma 2.13 we obtain
fori>k

(**) D(Lpfi—Lyfy) = p(Lofi)+p(Lyfy) = 2p(f;) < &
By lemma 2.12 there is a neighborhood U of y in @ such that

(***) P(Lyf;—L,f;) < & for i=1,...,k if zeU .
Hence, if xeU we get by (**) and (***):

(PRPL,R1)2 — (L, ®I)2] = (p®q) 2521 A(Lpfs— Ly f1) R,
< X2 1Alp(Lefs— Ly f3) 9(95)
< 22114l €'q(g:) = €.

Since norms of the type p®q determines the topology on E/&F and
the injection of E;@F{, into EiIQF! is continuous, (b) follows. The
proof is complete.

Summarizing, we have proved the following

THEOREM 3.9. The space Y < L(G) ¢s a nuclear LF-space, and is dense
in L(@). Y is a two-sided ideal in L{(G) with respect to convolution, and
18 closed with respect to the operation ~. The left and right regular represen-
tations of G on Y are well defined and jointly continuous.

ADpDED IN PROOF. We have been informed by S. M. Newberger and
C. A. Akemann that there is a gap in Lemma 9 in the author’s paper:
“Physical states on a C*-algebra’, Acta Math. 122 (1969), 161-172.
Theorem 1 of this paper must therefore be considered unproved. How-
ever, in a forthcoming paper, Akemann, Elliott and Newberger have
been able to fill the gap for a large class of C*-algebras.
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