ON A THEOREM OF DIXMIER

KUNG-FU NG

A well-known theorem of Alaoglu (cf. [3, p. 84]) tells us that the closed unit ball in the Banach dual space of a normed space is compact with respect to the w^* -topology. In [1], Dixmier showed that this property is characteristic for Banach dual spaces. In this note, we shall give a short proof of a variant of Dixmier's theorem. This variant appears to be more convenient for applications [2]. Our argument is inspired by Edwards' paper [2] and is strictly elementary (in particular, we do not use the Krein-Smulian theorem).

THEOREM 1. Let $(X, \|\cdot\|)$ be a normed space with closed unit ball Σ . Suppose there exists a (Hausdorff) locally convex topology τ for X such that Σ is τ -compact. Then X itself is a Banach dual space, that is, there exists a Banach space V such that X is isometrically isomorphic to the dual space V' of V (in particular, X is complete).

PROOF. Let $(X, \tau)'$ and $(X, \|\cdot\|)'$ denote the dual spaces of X under τ and $\|\cdot\|$ respectively. Let V be the space of all linear functionals f on X such that f is τ -continuous on Σ . Then

$$(1) (X,\tau)' \subseteq V \subseteq (X,\|\cdot\|)'.$$

The first inequality is obvious, and to see the second, let $f \in V$. Then $f(\Sigma)$ is the continuous image of the τ -compact set Σ , so is compact and hence bounded. Therefore f is continuous on $(X, \|\cdot\|)$, and (1) is proved. Now it is easily seen that V is a closed subspace of the Banach space $(X, \|\cdot\|)'$. Thus, V may be regarded as a Banach space in its own right.

For each x in X, define $\varphi(x)$ by the rule

$$(\varphi(x))(v) = v(x), \quad v \in V.$$

Then it is easy to see that φ is a 1-1 continuous (in fact norm-reducing) map from X into the Banach dual space V' of V. Also, since each v in V is τ -continuous on Σ , the restriction $\varphi|\Sigma$ of φ to Σ is continuous with respect to the relative τ -topology and the w^* -topology $\sigma(V', V)$. Since

280 KUNG-FU NG

 Σ is τ -compact, it follows that $\varphi(\Sigma)$ is $\sigma(V', V)$ -compact. Also, this set $\varphi(\Sigma)$ is convex. By the bipolar theorem (cf. [3, 126]), it is precisely its bipolar $[\varphi(\Sigma)]^{nr}$ with respect to the duality (V', V). Note that

$$[\varphi(\varSigma)]^n = \{v \in V : (\varphi(x))(v) \leq 1, \forall x \in \varSigma\} = \{v \in V : v(x) \leq 1, \forall x \in \varSigma\},\$$

which is just the unit ball in V, and hence $[\varphi(\Sigma)]^{n\pi}$ (that is, $\varphi(\Sigma)$) is the unit ball in V'. In other words, φ maps Σ onto the unit ball in V'. Therefore φ is an isometry and onto the space V'. The proof of theorem 1 is thus completed.

This theorem implies immediately the theorem of Dixmier referred to at the beginning:

Theorem 2. Let $(X, \|\cdot\|)$ be a Banach space with closed unit ball Σ . Suppose there exists a total subspace V of $(X, \|\cdot\|)'$ such that Σ is $\sigma(X, V)$ -compact. Then X itself is a Banach dual space.

REFERENCES

- 1. J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-71.
- D. A. Edwards, On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology, Proc. London Math. Soc. (3), 14 (1964), 399-414.
- 3. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.

UNITED COLLEGE, THE CHINESE UNIVERSITY OF HONG KONG, HONG KONG