ON A THEOREM OF DIXMIER

KUNG-FU NG

A well-known theorem of Alaoglu (cf. [3, p. 84]) tells us that the closed unit ball in the Banach dual space of a normed space is compact with respect to the \(w^* \)-topology. In [1], Dixmier showed that this property is characteristic for Banach dual spaces. In this note, we shall give a short proof of a variant of Dixmier's theorem. This variant appears to be more convenient for applications [2]. Our argument is inspired by Edwards' paper [2] and is strictly elementary (in particular, we do not use the Krein–Smulian theorem).

Theorem 1. Let \((X, \| \cdot \|)\) be a normed space with closed unit ball \(\Sigma \). Suppose there exists a (Hausdorff) locally convex topology \(\tau \) for \(X \) such that \(\Sigma \) is \(\tau \)-compact. Then \(X \) itself is a Banach dual space, that is, there exists a Banach space \(V \) such that \(X \) is isometrically isomorphic to the dual space \(V' \) of \(V \) (in particular, \(X \) is complete).

Proof. Let \((X, \tau)'\) and \((X, \| \cdot \|)'\) denote the dual spaces of \(X \) under \(\tau \) and \(\| \cdot \| \) respectively. Let \(V \) be the space of all linear functionals \(f \) on \(X \) such that \(f \) is \(\tau \)-continuous on \(\Sigma \). Then

\[
(1) \quad (X, \tau)' \subseteq V \subseteq (X, \| \cdot \|)' .
\]

The first inequality is obvious, and to see the second, let \(f \in V \). Then \(f(\Sigma) \) is the continuous image of the \(\tau \)-compact set \(\Sigma \), so is compact and hence bounded. Therefore \(f \) is continuous on \((X, \| \cdot \|)\), and (1) is proved. Now it is easily seen that \(V \) is a closed subspace of the Banach space \((X, \| \cdot \|)'\). Thus, \(V \) may be regarded as a Banach space in its own right.

For each \(x \) in \(X \), define \(\varphi(x) \) by the rule

\[
(\varphi(x))(v) = v(x), \quad v \in V .
\]

Then it is easy to see that \(\varphi \) is a 1-1 continuous (in fact norm-reducing) map from \(X \) into the Banach dual space \(V' \) of \(V \). Also, since each \(v \) in \(V \) is \(\tau \)-continuous on \(\Sigma \), the restriction \(\varphi|\Sigma \) of \(\varphi \) to \(\Sigma \) is continuous with respect to the relative \(\tau \)-topology and the \(w^* \)-topology \(\sigma(V', V) \). Since

Received October 8, 1970.
Σ is τ-compact, it follows that $\varphi(\Sigma)$ is $\sigma(V', V)$-compact. Also, this set $\varphi(\Sigma)$ is convex. By the bipolar theorem (cf. [3, 126]), it is precisely its bipolar $[\varphi(\Sigma)]^{\text{ba}}$ with respect to the duality (V', V). Note that

$$[\varphi(\Sigma)]^{\text{ba}} = \{ v \in V : (\varphi(x))(v) \leq 1, \forall x \in \Sigma \} = \{ v \in V : v(x) \leq 1, \forall x \in \Sigma \},$$

which is just the unit ball in V, and hence $[\varphi(\Sigma)]^{\text{ba}}$ (that is, $\varphi(\Sigma)$) is the unit ball in V'. In other words, φ maps Σ onto the unit ball in V'. Therefore φ is an isometry and onto the space V'. The proof of theorem 1 is thus completed.

This theorem implies immediately the theorem of Dixmier referred to at the beginning:

Theorem 2. Let $(X, \| \cdot \|)$ be a Banach space with closed unit ball Σ. Suppose there exists a total subspace V of $(X, \| \cdot \|)'$ such that Σ is $\sigma(X, V)$-compact. Then X itself is a Banach dual space.

REFERENCES

UNITED COLLEGE, THE CHINESE UNIVERSITY OF HONG KONG, HONG KONG