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IDEALS IN ORDERED LOCALLY CONVEX SPACES

RAINER J. NAGEL

Ideals in Banach lattices have proved very useful in investigating the
structure of such spaces (Lotz [8]) and the spectral properties of positive
operators (Schaefer [14], [15]). So it is quite natural to ask for a gener-
alization of the notion of ideal for an arbitrary ordered locally convex
space. This has already been done for some special spaces, like simplex
spaces (Effros [5]) and C*-algebras (Stermer [16]). Developing a concept
of A. J. Ellis [6] we define fully perfect ideals in an ordered locally convex
space, which seem to have all of the properties one can reasonably ex-
pect in the general case, and which, in a locally convex vector lattice,
coincide with the closed lattice ideals. In this paper we study the struc-
ture theory of these ideals. Applications of these results to operator
theory will follow later.

Section 1 of the paper is concerned with terminology and notation.

In section 2 the class of fully perfect ideals of an ordered locally convex
space F is defined. After studying the elementary properties we prove
the main theorem (2.8) which gives a dual characterization for fully
perfect ideals. Moreover, we get a complete symmetry for fully perfect
ideals in E and E,’, in which their positive part is total (2.10). In a
locally convex vector lattice, finally, the fully perfect ideals coincide
with the closed lattice ideals.

The third section is devoted to the more special situation of an ordered
Banach space E. We prove a new characterization of support points of
the positive cone in £ and show that the fully perfect ideals in £ separate
points (trivial cases excluded) (3.2). The final theorem states that if
the dual norm is additive on the dual positive cone, then every proper
fully perfect ideal in E is contained in a maximal fully perfect ideal.

I am very grateful to Professor Dr. H. H. Schaefer for drawing my
attention to this subject and for his helpful comments.

1. Preliminaries.

In what follows, E is a vector space over R and (#,11,C) denotes the
ordered locally convex space (0.l.c.s.) B with 0-neighbourhood base U

Received January 29, 1970.



260 RAINER J. NAGEL

and ordered by the cone C. For a subset M of E, [M]=(M +C)n(M -C)
is the C-saturated hull of M and [11] denotes the set of all [U] for U e 1.
Moreover, the polar of M is

M° = {feE': f(x)<1,YreM}.
On E’ we consider the topology o(Z£’,E) and the order defined by
C'={fek: f(x)20,VzeC}.

Finally, if 4 is a (linear) subspace of K, we write M for the canonical
image of M in B=FE |A. For further terminology see [13] and [11].

(1.1) DeFINITION. Let (H,C) be an ordered vector space. A subspace
A of E is called an order ideal if one of the following equivalent condi-
tions is satisfied:

(a) Forallze 4, [0,2]={ye E:05y=x}<A.
(b) A=[4].
(¢) AnC is an extreme subset of C, that is, if

= A, +(1—A)zeAnC for 0<i<l and z,x,€C,

then z,,z,€ 4.
(d) E:E/A is an ordered vector space for the cone C.

REMARK. A subspace 4 in F is a maximal order ideal if and only if
A=f-1(0) for some positive linear form f on E. Moreover, every sub-
space B in E with BnC=(0) is an order ideal.

(1.2) DeFINITION. A subspace 4 in an ordered vector space (X,C) is
positively generated if 4 =A4+—A+ for A+=A4AnC.

(1.3) DeriNtTION. (Ellis [6]). A subspace 4 in an o.ls.c. (E,1,0) is
called perfect, if for every 0O-neighborhood U e Ul and for every z € 4
there exist y € 4 and u,» € U such that —u—y<z=y+v.

2. Fully perfect ideals in ordered locally convex spaces.

The main purpose of this section is to find an appropriate notion of
ideals in an o.lc.s. (E,1,0). It is clear that both the topology and the
order structure of E have to be involved. This is the case for closed
order ideals, but the remark in (1.1) already shows that this relation-
ship is not strong enough to ensure a relevant theory. So we define the
following hull-operation which relates the topology and the order struc-
ture of K.
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(2.1) DEFINITION. For any subspace 4 in B, G(4)=Ngyy[4+ Ul
A is called a full ideal it A=G(4).

LemMmA. For any subspace A in E, ZCQ(A):Q(Z):(EC():Q(Q(A)).

The proof is an easy computation using the fact that

GA)={xeE: VUeW,3u,ve U and y,z€ A such that
—pu—ysxsv+z}.

As a consequence of the lemma we remark: G(4) is always a full
ideal, and each full ideal is a closed order ideal. Examples of full ideals
are provided by the intersection of kernels of continuous positive linear
forms on E. (2.3) below will show that, conversely, any full ideal is of
this type.

(2.2) ProposiTioN. 4 subspace A in E is a full ideal if and only if
(E:E/A,[ll],@) is an o.l.c.s.

Proor. € is a proper cone in £ if and only if 4 is an order ideal.

Hence it remains to prove that the topology on £ generated by [ﬁ] is
separated if and only if A4 is a full ideal. But

(G(4))" = Npeyld+U]" = Npu[(4+U)"] = nUeu[ﬁl
shows that Ny, [0]=(0) is equivalent to A=G(4).
Remagk. The following properties of B=E[A, where A is a full
ideal, are immediate: C is a normal cone in (B,[1]) and consequently
B, = 4°nC'—4°nC".

Moreover, the closure in (E,[ﬁ]) of C is a proper cone.

(2.3) TuEoREM. A subspace A in E is a full ideal if and only if A is
the intersection of all maximal closed order ideals in E containing A:

A=(A°nC"-4A°nC")°.
Proor. We show that G(4)=(4°nC"'—A°nC")° for any subspace 4
in E. Observe, that fe A°nC’ implies G(4) <f-1(0) and hence
G(4) = (4°nC'-4°nC")°.
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For the converse inclusion, it is enough to show that 4°nC’'— A°nC" is
o(E',E)-dense in (@(A4))°. Consider B=E/QA). We get (B,1)=
(G(4))°, and by the remark in (2.2), (£,[1]) =F’ where

F' = (G(A)° nC' —(A4))° nC" .

But @(4) is a full ideal. Hence (&, F'y and (#,(G(4))°) are dual pairs,
which implies that F' is a((Q(A))°,E) -dense in (G(4))°. By [13, IV, 4.1,
Cor. 1], F' is also ¢(E’,E)-dense in (G(4))°. The assertion follows now
from (G(4))° <= A°.

(2.4) In a Banach lattice, f-1(0) is far from being a lattice ideal for
every continuous positive linear form f. Hence, the above character-
ization shows that the class of full ideals is too large for our purpose.
In the following definition, which is also valid for arbitrary cones and
locally convex topologies, we combine (1.3) and (2.1).

DeriniTION. For any subspace 4 in E,
Hy o(4) = HA) = Nyey[(A+T)n (C+ V)= (A+TU)n (C+D)].
A is called a fully perfect ideal if A=H(A).

Let e [(A+U)Nn(C+U)—(4+U)n(C+U)] for U € N. This is equiv-
alent to x=(y,+u,)—(y,+u,) and a similar inequality for —x, where
y, €A, ;€U and (y;+u;)eC+U for i=1,2. Hence there exist
;' € U such that (y;+wu;+u;) € C. By adding the appropriate positive
elements at the right side of the above inequalities we finally get
zsy+vand —xsy+uforye d and u,» € 3U. Conversely, if —u—y=
x<v+y for ye A and u,»e U, then 0=<y+3}(u+v). Hence (u+y),
(v+y) e U+C and we have proved

(* HA)={xecE: YUel,IuveU,yec A such that
—p—ysTr=v+y}.

Hence every fully perfect ideal (fp-ideal) is ““almost’ positively generated,
that is, perfect. It is a full ideal by the following lemma.

Lemma. If A<H(A), then A< H(A)=H(A)=H(A)=H(H(A))=G(4).

Proor. For any subspace 4 in E, H(4) is again a subspace and hence
H(A)=G(H(A)). For the reverse inclusion assume e G(H(A4)) and
U € U. This means
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(1) —M—Y =% =V +2
(2) —Up—F S Y S vty
(3) —Ms—Z =2 = v3+2Z,

where u;,v; € U, y,2z € H(4) and 3,Z € A. Using (2) and (3) we get from (1)
—p1—va—F—(Hus+73)+2) = & < vy +v3+Z+(3(ua+72) +7) -

Since U was arbitrary, this shows x € H(4) and hence H(A4)=G(H(4)).
By a similar computation one proves H(H(A))<=H(A). Suppose now
A<H(A). Then H(A)< H(H(A))< H(4) and G(4)<G(H(4))=H(4)=
G(4). This shows H(A)=H(H(4))=G(4). The remaining statements
follow from (2.1).

ProrosiTION. Let A be a subspace of E such that the positive part
A+=ANC is total in A, that is, A< A+ — A+, Then H(A) is a fp-ideal.

Proor. A+—A+<H(A+—A+)=H(A)=H(H(A)) by the above lemma.
(2.5) ProposiTION. For any subspace A in (E,1,C),

Eu,C(A) H[u] c(4) = u C(A) H[u],é(A) .
Proor. The following inclusions prove the assertion:

[(A+U)n(C+U)—(A4+U)n(C+ V)]
< [(A+[U) n(C+[U)—(A+[U)) n (C+[U])]
< [(A+20)n(C+20)—-(A+2U0)n(C+2U)] foral Uell.

ReMARK. The previous proposition shows that the set of fp-ideals in
(E,1,C0) remains unchanged if we consider the topology generated by
[11] and the closure C of C' with respect to this topology. C is a normal
cone for [11], but need not be a proper cone. Moreover, [11] is not sep-
arated in general.

(2.6) ProposrrioN. Let I, I, y € I', be fp-ideals in E.
(1) I is the intersection of all maximal closed order ideals containing I.
(il) H(0)=Nyey[Ul=I<=C-C.
(iii) H(Z,er1,) is an fp-ideal.

Proor. Since I is a full ideal, (i) follows from (2.3). Definition (2.4)
shows that I=H(I)cG(C—C)=C- C, hence (ii) holds. Finally,
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ZyeFIy = EVEI’E(I)') < E (ZyGI‘Iy)

implies (iii) by lemma (2.4).

(2.7) The following proposition is fundamental for the dual charac-
terization of fp-ideals. It is a generalization of a theorem of A. J. Ellis
[6] and has been proved independently and by a quite different method
by G. J. O. Jameson [7].

ProrosrTiON. Let A be a subspace of (E,U,C). A<H(A) if and only
if A° is an order ideal in (E',C’).

Proor. Since A°=(4)° and H(A)=H(A), we may assume, without
loss of generality, that A is closed. Moreover, let 11 be a base of closed,
circled, convex 0-neighborhoods and let C' be a closed cone.

Assume now

xedc[A+U)n(C+U)—(4+U)n (C+U)]

for U e I. By the computation in (2.4) there exist u,» € 3U and y € 4
such that —y—y<x=<v+y. Thisimplies0<y+ (v +pu)and 0 <v+ (y —x).
Hence

x=y—(y—2x) € An(C+3U)—-A4An(C+30).

Conversely, if

A<cAn(C+U)—An(C+U)<cAn(C+U)—-An(C+U)+ U,

then also
Ac[(A+20)n(C+2U0)—-(4+2U)n (C+20)]

and we have proved
(i) AcHA) < A <An(C+U)-4An(C+U), VU e

By (1.1), A° is an order ideal iff A°=[4°]=(4°+C")n(4°—C"). Since
Uy U°=E’, the following equivalence is also valid:

(ii) A4°=[4°] < A°>(4°+C'nU°)N(A°~C'nU°), VU e L.

We will prove the equivalence of (i) and (ii) by taking polars with respect
to the dual pair (#,E’). For this, we recall the following properties:
If M,N are closed, convex subsets of £ (or E,) containing (0), then
(a) (M+N)° > HM°nN°®), (b) (MnN)° > }M°+N°),

(¢) (M+N)° < M°nN°, (d) (MNN)° < (M°+N°).
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Using these inclusions, we show:

(i)= (ii): Let A<An(C+U)—An(C+U) for U e . Then

A° > (An(C+20))°n(An(-C+20))
> (4°+C°nBU)°)n(A°+(—0)° n (8U)°)
=(4°-C'"n{0°)n(A4A°+C' n iU,

which proves (ii).

(i) = (i): Let 4°>(4°+C'nU°) N (4°—C'nU°) for U e . Then

A=AOOC(A0+CanO)O+(AO_OInUO)O
cAn(C'nU%°+A4An(=C"nU°
cAn(C+2U0)—-An(C+20),

which proves (i).
ReMARK. The proof is valid for any cone in a locally convex space.

(2.8) THEOREM. Let I be a closed subspace of E. Then I is a fp-ideal if
and only if I° is an order ideal in E' for which the positive part I°nC’
18 o(E', E)-total in I1°.

Proor. I is a fp-ideal if and only if I<H(I) and I=G(I). Hence,
(2.7) and (2.3) together imply the above theorem.

CoROLLARY 1. Let I be a subspace of E. There exists a one-to-one
correspondence between the fp-ideals I in E and the extreme subsets 1°nC’
of C' in E'.

CoROLLARY 2. A subspace I is a fp-ideal tn (E,1,C) if and only if it
is a fp-ideal for any locally comvex topology consistent with the duality
<E,(E,1)).

(2.9) THEOREM. Let J be a fp-ideal tn (E,N,0). There exists a one-to-

one correspondence between the fp-ideals in (B=E |7, fl, C) and the fp-ideals
in (E,U,0) containing J.

Proor. Let I be a subspace of E containing J. It is clear that I
corresponds to exactly one subspace I in B. Consider now the dual
pairs (#,E") and (B,J°) and recall that every fp-ideal is characterized
by the intersection of its polar with the dual cone. The dual cone of o}
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coincides with C'nJ° and we get I°nC' = (f)°n(C’nJ°) because (f)° =1I°
Therefore, it remains to show that I°nC” satisfies the characterization
properties of (2.8) for fp-ideals simultaneously for both dual pairs
(E,E"y and (B,J°). The second property follows immediately since
a(E',E) coincides with a(J°,E) on I°cJ°. By hypothesis, J° is an
order ideal in E’. Hence, the following simple lemma proves the first
property.

LeMMA. Let F be an ordered vector space and A an order ideal in F.
The subspace B of A is an order ideal in F if and only if it is an order
ideal in 4.

(2.10) The positive part A+=AnC of a subspace 4 in (£,U,C) is
of special interest. If I is a fp-ideal in E, then I° has o(Z’, E)-total
positive part, that is, I°=1°+—[°+in E/. Hence, by (2.4), H,(I°) is a
fp-ideal in E /. Let C be a closed cone in . Now (£, ,C') =(E,C) and
I°° =1 imply that (H(I°))°=I+— I+, which proves the following theorem.

THEOREM. Let I be a closed subspace of (E,U,C) where C is a closed
cone. I is a fp-ideal with total positive part if and only if I° is a fp-ideal
in B, with o(E', E)-total positive part.

(2.11) ExamPLES.

1.) Let I/ be a locally convex vector lattice. A subspace I in E is a
fp-ideal if and only if I is a closed lattice ideal in E. The proof uses the
existence of a base of solid 0-neighborhoods and the decomposition
property in E.

2.) Let E=C®)(R") be the vector space of all real-valued, infinitely
differentiable functions on R* whose support is compact, endowed with
the topology generated by all semi-norms

[ = Pulf) = suPiepa [FOE)|
and with the natural order. A subspace I in £ is a fp-ideal if and only if
I = {fekl: f(8)=(0) for some closed subset S<Rn"}.
The proof uses (2.5) and results of [8].

3. Fully perfect ideals in ordered Banach spaces.

From now on, (£,U,C) is always an ordered Banach space with unit
ball U and closed cone C. To exclude trivial cases, we assume further
that dim(C -C)>1.
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(3.1) DEFINITION (see [11]). An element x € C' is called a support point
of C if there exists a non-zero positive linear form f € B’ such that f(z) = 0.

PRrOPOSITION. An element x € C is a support point of C if and only if

H(xy) £ E  for {(x) = {Ax: AeR}.

Proor. {x) is positively generated, hence I =H({z)) is a fp-ideal by
(2.4). The dual characterization theorem (2.8) shows that I=FE if and
only if I°nC’'=(0). Thus, the assertion follows from the fact that
I°nC’" = (Kx))°nC".

REeMARK. The proposition gives a characterization of support points
not involving duality which is similar to the definition of ‘“‘quasi-interior
points” (see [11]). It is obvious that all of the above is also valid for
any o.l.c.s.

(3.2) With the aid of the above proposition and a result of R. R. Phelps
[12] we will prove that the fp-ideals in F separate points. This means:
if 0%z € E, then there exists a non-trivial fp-ideal I in E such that
xél.

LemMMA 1. The set 8'={fe C':30<y € E such that f(y)=0} is o(E’, E)-
dense in the B(E', E)-boundary of C'.

Proor. It is clear that 8’ is the set of all support points of C' in K.
Therefore, the lemma is only a weaker formulation of [12, theorem 1].

LemMA 2. The positive cone C is the convex hull of its (topological)
boundary.

Proor. Since C is closed, ¥ is archimedean ordered and £+ Cu(—C).
Let 04y € C and choose x € B, x ¢ Cu(—C). If we assume

{fz+y: 0<dleR} <= C,

we get (x+ (y/A)) € C for all 0< A€ R and hence z € C'=0, which contra-
dicts the assumption. The same argument for {A(—z)+y:0<AeR}
proves the existence of 1;,4,20 such that (A,x+y) and (-2, +y) are
in the boundary of C. Since the boundary of a cone is invariant under
multiplication by positive scalars, it is now easy to find a convex com-
bination for y by elements of the boundary of C.
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Lemma 3. If I is a fp-ideal in F=C—C, then I is also a fp-ideal
in K.

Proor. From (2.6), it follows that I =Hpx(I)<Hg(I)<F. Now F’ and
E'[F° are order isomorphic. Hence, each positive continuous linear form
on F which vanishes on I has a positive continuous extension to H,
which also vanishes on I. Therefore, x € Gg(I) implies x € Gx(I) and
Hpll) = HyglD).

THEOREM. The intersection of all non-zero fp-ideals in E is (0).

Proor. Let 02 € E. We have to show that there exists a non-zero
fp-ideal in E not containing x. This is obvious for z ¢ C— C=H(C —-C0).
In the other case, we may assume, by lemma 3, that E=C— C. But
then, C” is a closed proper cone in the Banach space E," and lemmas 1
and 2 apply to C’. This proves that C’ is the o(Z’, E)-closed convex hull
of 8'. Since (' is o(E',E)-total in E’, 8’ is also and, consequently, S’
separates points in K. Therefore, for 0+« € E, there exist 0<fe E’
and 0 <y € F such that f(x)+0 and f(y)=0. This means that y is a sup-
port point of C and generates a non-zero fp-ideal

I=Hp) +E.
Finally, fe I°nC’, but f(x)+0 shows that x ¢ I.

From the proof we conclude the following strengthened version of
the above theorem.

CoroLLARY. Let E be an ordered Banach space with closed cone C such
that dim(C—C)>1. The fp-ideals in E with non-trivial positive part
separate points in E.

RemaRE. The last statement suggests that every fp-ideal in an ordered
Banach space with closed cone has non-trivial positive part. But an
example in [9] shows that this is not true. There even exist maximal
fp-ideals in Banach spaces with order unit which have trivial positive
part.

(3.3) It is well known that in spaces C(X) each proper lattice ideal
is contained in a (proper) maximal lattice ideal [8]. For a generaliza-
tion of this result, we need the following characterization of (proper)
maximal fp-ideals.
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THEOREM. Let I be a subspace in an ordered Banach space E=C—C.
The following assertions are equivalent :
(a) I is @ mazximal fp-ideal.
(b) I is a fp-ideal with dimE[/I=1.
(¢) I=f-10), where f e C' generates an extreme ray of C'.

Proor. (a) => (b): If I is a maximal fp-ideal, then (2.9) shows that
E:E/I has no proper fp-ideals. But £ is an ordered Banach space in
which the positive cone C is total. By (2.2), the closure of C is still a
proper cone. Hence (3.2) applies and shows that dim £ =1.

(b) = (c): From dim# =1, it follows that I=f-1(0) for fe E'. Since
I is a full ideal, f can be chosen positive. Finally,

I°nC = {if: 0<ieR}

must be an extreme ray, since I is a fp-ideal.
(c) = (a) is obvious from (2.8).

(3.4) LEMmmA. Let (E,U,C) be an ordered Banach space such that the
dual norm is additive on C'. A subspace F' is an order ideal in E' if and
only if F'n{0<fe k' :|f||=1} is an extreme subset of U°nC".

Proor. Let F' be an order ideal in E’ and assume fy=Af,+(1—21)f,
for
foe F'ofo<fel’: |fl=1},

fifo€UNC" and 0<A<1. Since 0ZAf;, (1-2)f,£f,, we get fi,fae F'.
Moreover,

1= |lfoll = Alfll+ (A =A)lfell  implies [Ifyll = [Ifell = 1,

which proves the assertion. To prove the converse implication, let
Fa{o<fel : |fil=1}

be an extreme subset of U°NC’ and let 0 <g<f, € F'. Without loss of
generality, we assume that ||fol|=1. From fy=g+(fo—g) and the addi-
tivity of the norm on (', it follows that |lg|l=u+0, ||f—gll=1+0 and
u+A=1. Therefore,

fo = m(uw9) +2(271(fo—9))
is a convex combination in U°nC’. The assumption implies that

utge P n{o<feE : |f|=1}
and hence g € F'.
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TrEOREM. Let (E,U,C) be an ordered Banach space (+R) such that the
dual norm is additive on C'. Every fp-ideal in E 1is the intersection of all
maximal fp-ideals containing it.

Proor. By (3.3) and the above lemma, the maximal fp-ideals in E
correspond biunivoquely to the non-zero extreme points of U°nC’.
Let I be a proper fp-ideal in E. Then I is determined by I°n(U°nC")
and also, by the Krein—-Milman theorem, by the set of extreme points of
I°n(U°nC"). But, since I°n(U°NnC") is an extreme subset of U°nC(’,
every extreme point f of I°n(U°nC") is also an extreme point of U°nC".
Hence, f-1(0) is a maximal fp-ideal in £ containing I and the inter-
section of all these maximal fp-ideals is I.

CorOLLARY. Under the same assumptions, the maximal fp-ideals sep-
arate points in K.

Proor. By the previous considerations, the assertion is equivalent to
the fact that the set of extreme points of U°nC’ is o(E’', E)-total in E'.

ReMark. Examples of ordered Banach spaces with additive norm on
C’ are provided by ordered Banach spaces whose open unit ball is di-
rected upwards, especially by ordered Banach spaces whose positive
cone has interior points. For more information about such spaces, see
[10].

(3.5) ExampPLES.

1.) If E is the subspace of all hermitean elements of a C*-algebra 4,
we have the following one-to-one correspondence between the fp-ideals
I in E and the closed left ideals N in 4:

I*+=NnC and N=A4-I*+={xcd: x*zelt}
(see [4]).
2.) If F is a simplex space, then a subspace of E is a fp-ideal if and
only if it is a closed and positively generated order ideal. Moreover,

the sum and the intersection of two fp-ideals in E are again fp-ideals
(see [5]).

REFERENCES

1. E. Alfsen, Facial structure of compact sets, Proc. London Math. Soc. 18 (1967), 385-404.
2. F. F. Bonsall, Extreme mazimal ideals of partially ordered vector space, Proc. Amer.
Math. Soc. 7 (1956), 831-837.



S O w

©

10

IDEALS IN ORDERED LOCALLY CONVEX SPACES 271

. F. Combes et F. Perdrizet, Certains idéaux dans les espaces vectoriels ordonnés, C. R.
Acad. Sci. Paris Sér. A-B 268 (1969), A1552-A1555.

. E. Effros, Order ideals in a C*-algebra and its dual, Duke Math. J. 30 (1963), 391—412.

. E. Effros, Structure in simplexes, Acta Math. 117 (1967), 103-121.

. A. J. Ellis, Perfect order ideals, J. London Math. Soc. 40 (1965), 288-294.

. G. J. O. Jameson, Nearly directed subspaces of partially ordered linear spaces, Proc.
Edinburgh Math. Soc. 16 (1968), 135-144.

. H. P. Lotz, Zur Idealstruktur von Banachverbinden, Tiibingen, 1969, preprint.

. R. J. Nagel, Idealtheorie in geordneten lokal konvexen Vektorrdumen, Dissertation,
Universitat Tiibingen, 1969. 3

. K. F. Ng, The duality of partially ordered Banach spaces, Proc. London Math. Soc.
19 (1969), 269-288.

. A. L. Peressini, Ordered topological vector spaces, Harper and Row, New York, 1967.

. R. R. Phelps, Weak* support points of convex sets in E*, Israel J. Math. 2 (1964),
177-182.

. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.

. H. H. Schaefer, Invariant ideals of positive operators in C(X) I, Illinois, J. Math. 11
(1967), 703-715.

. H. H. Schaefer, Invariant ideals of positive operators in C(X) II, Illinois J. Math. 12
(1968), 525-538.

. E. Stermer, On partially ordered vector spaces and their duals, with applications to sim-
plexes and C*-algebras, Proc. London Math. Soc. 18 (1967), 245-265.

MATHEMATISCHES INSTITUT DER UNIVERSITAT TUBINGEN, GERMANY
AND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND,
COLLEGE PARK, MARYLAND, U.S.A.



