ON A LIMIT THEOREM OF MEASURES

S. T, L. CHOY

Let P(S) be the convolution semigroup of probability measures on the compact semigroup S. Given $\mu \in P(S)$, let $\mu_N = N^{-1} \sum_{k=1}^N \mu^k$ for each positive integer N and let $\Gamma(\mu) = \{\mu^n : n = 1, 2, ...\}^-$, where the bar denotes the closure of the set. It is known that the sequence $\{\mu_N\}$ is convergent to an idempotent measure $L(\mu)$ in P(S) and that

$$\mu L(\mu) = L(\mu)\mu = L(\mu)$$

(see, for example, [2], [4] and [6]). The main purpose of this note is to give some necessary and sufficient conditions such that $L(\mu) \in \Gamma(\mu)$.

Let K(S) be the kernel of the compact semigroup S and let $\operatorname{supp} \mu$ denote the support of μ for μ in P(S). In a previous paper [1] we gave a sufficient condition such that $L(\mu\nu) = L(\mu)L(\nu)$ for μ,ν in P(S) and showed that $L(\mu^2)$ might not be $L(\mu)$ even in the case of Abelian groups (as can be seen immediately by taking a measure μ on the additive group of positive integers modulo 2 with one point support different from the identity). However we have the next result in the case of compact groups.

THEOREM 1. Let S be a compact group with identity e and let $\mu \in P(S)$ such that $e \in \text{supp }\mu$. Then

$$L(\mu^n) = L(\mu), \quad n = 1, 2, \dots$$

Proof. Suppose $N^{-1}\sum_{k=1}^{N}(\mu^n)^k$ converges to an idempotent λ and supp μ contains e. Then since

$$n[(nN)^{-1}\sum_{k=n}^{nN+n-1}\mu^k] \rightarrow \lambda + \mu\lambda + \ldots + \mu^{n-1}\lambda$$
,

we have

$$nL(\mu) = \lambda + \mu\lambda + \ldots + \mu^{n-1}\lambda.$$

Hence

$$\operatorname{supp} L(\mu) = (\operatorname{supp} \lambda) \cup (\operatorname{supp} \mu \lambda) \cup \ldots \cup (\operatorname{supp} \mu^{n-1} \lambda).$$

Let δ_x be the unit point mass at $x \in S$. Now since e is the identity of S,

$$\mu^p \lambda = \mu^p \delta_e^{n-p} \lambda$$

for $1 \le p \le (n-1)$. Since $\mu^n \lambda = \lambda$, we have

$$\operatorname{supp}(\mu^p \lambda) = \operatorname{supp}(\mu^p \delta_e^{n-p} \lambda) \subset (\operatorname{supp} \mu)^n \operatorname{supp} \lambda = \operatorname{supp} \lambda$$

for each $1 \leq p \leq (n-1)$. It follows that

$$\operatorname{supp} L(\mu) = \operatorname{supp} \lambda$$
.

Since an idempotent measure on a compact group is the Haar measure on its support, we have $L(\mu^n) = L(\mu)$.

It is well known that there is one and only one idempotent measure in $\Gamma(\mu)$ (see, for example, [3, pp. 98–105]).

THEOREM 2. Let μ be in P(S) and let ν be the idempotent in $\Gamma(\mu)$. Then the following conditions are equivalent:

- (a) $L(\mu) = \nu$;
- (b) $\lim_{n\to\infty}\mu^n \ exists$;
- (c) $K(\Gamma(\mu)) = \{v\};$
- (d) $(\sup \nu)(\sup \mu) = \sup \nu$;
- (e) $\operatorname{supp} L(\mu) = \operatorname{supp} \nu$.

PROOF. (a) implies (b). Suppose $L(\mu) = \nu$. Recall that the set of the cluster points of the set $\Gamma(\mu)$ is a closed subgroup and that the identity is the only idempotent in $\Gamma(\mu)$. Let $\{\mu^{\alpha}\}$ be a convergent subnet of $\{\mu^{n}\}$ and let $\{\mu^{\alpha}\}$ be convergent to τ (say). Then, since $\nu = L(\mu)$ is the identity of the set of the cluster points, $L(\mu)\tau = \tau$. On the other hand, since $L(\mu)\mu^{\alpha} = L(\mu)$ for every α , we see $L(\mu)\tau = L(\mu)$. Hence $\tau = L(\mu)$. That is, every convergent subnet of $\{\mu^{n}\}$ is convergent to $L(\mu)$. A routine verification shows that $\lim_{n\to\infty}\mu^{n} = L(\mu)$ and (a) implies (b).

(b) implies (c). Suppose $\lim_{n\to\infty}\mu^n$ exists. Let $\lim_{n\to\infty}\mu^n=\tau$ (say). Then, since

$$\mu^N \tau = \tau \mu^N = \tau, \quad N = 1, 2, \dots,$$

 τ is the zero element of $\Gamma(\mu)$. In particular τ is an idempotent in $\Gamma(\mu)$. Hence $\tau = \nu$ and $\{\nu\}$ is the kernel of $\Gamma(\mu)$.

(c) implies (d). Suppose $K(\Gamma(\mu)) = \{v\}$. Then $\nu \mu = \nu$ implies

$$(\operatorname{supp} \nu)(\operatorname{supp} \mu) = \operatorname{supp} \nu$$
.

(d) implies (e). Suppose $(\sup p\nu)(\sup \mu) = \sup \nu$. We note first that, since $\Gamma(\mu)$ is a compact commutative semigroup, $K(\Gamma(\mu))$ is a group. Therefore the only idempotent ν in $\Gamma(\mu)$ is in $K(\Gamma(\mu))$. Let $S(\mu)$ be the smallest closed subsemigroup of S containing $\sup \mu$. Then

$$\operatorname{supp}\nu \subset K(S(\mu)) = \operatorname{supp} L(\mu)$$

(see Lin [4, Theorem 3]). On the other hand, by the assumption and the continuity of multiplication, we have

$$(\sup v)S(\mu) = \sup v$$
.

With similar argument as before, we have

$$\nu L(\mu) = L(\mu)$$
.

Therefore,

$$\operatorname{supp} L(\mu) = (\operatorname{supp} \nu) K(S(\mu)) \subset (\operatorname{supp} \nu) S(\mu) = \operatorname{supp} \nu.$$

We conclude that $\operatorname{supp} L(\mu) = \operatorname{supp} \nu$.

(e) implies (a). Suppose supp $L(\mu) = \text{supp } \nu$. Thus $L(\mu)$ and ν are idempotent measures supported on the compact simple semigroup supp ν . Suppose first that supp ν is a group. Then we see $L(\mu) = \nu$. Suppose next that supp ν is not a group. The results of Pym [5, C6.3] then give that $L(\mu)$, ν are primitive idempotent measures on supp ν . But

$$L(\mu) = L(\mu)\nu = \nu L(\mu) ,$$

so that $L(\mu) = \nu$ and (e) implies (a).

REFERENCES

- S. T. L. Choy, Idempotent measures on compact semigroups, Proc. London Math. Soc.
 (3) 20 (1970) 717-733.
- 2. I. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.
- 3. E. Hewitt and K. A. Ross, Abstract harmonic analysis I (Grundlehren Math. Wiss. 115), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.
- Y. F. Lin, Not necessarily Abelian convolution semigroups of probability measures, Math. Z. 91 (1966), 300–307.
- 5. J. S. Pym, Idempotent measures on semigroups, Pacific J. Math. 12 (1962), 685-698.
- S. Schwarz, Convolution semigroup of measures on compact non-commutative semigroups, Czechoslovak Math. J. 14 (89) (1964), 95-115.

UNIVERSITY OF HONG KONG, HONG KONG

AND

UNIVERSITY OF SINGAPORE, SINGAPORE 10