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BOREL STRUCTURES AND A TOPOLOGICAL
ZERO-ONE LAW

JENS PETER REUS CHRISTENSEN

This paper deals with miscellaneous results about Borel structures
and some applications. Among other things we shall see that a finitely
additive Borel measure on a Polish space is countably additive if it does
not behave very irregularly on the closed sets. Furthermore we prove
that a sequence of probability measures on a complete separable metric
space is weakly convergent if its limit exists for every bounded uni-
formly continuous function. (Of course, completeness of the metric is
necessary for this statement to hold.)

First we prove a result which we consider as a topological analogue
of the zero-one law in probability theory. Although a weaker statement
would suffice for later purposes, the result may be of independent inter-
est.

Let (M, 0,) be a sequence of Polish spaces. Consider the space

M=11,M,.

With the product topology M is a Polish space. We define the equiv-
alence relation ~ in M by
x ~y <> {n]| z(n)+yn)} is finite .

The BP o-field on M is the system of all sets A <M with the Baire
property. By definition, 4 has the Baire property if there exists an
open set O such that (4\0)uU(O\ 4) is of the first category (contained
in a countable union of closed sets with empty interior). A real-valued
function f on M is BP measurable if and only if there exists a dense
G, set A<M such that the restriction of f to 4 is continuous on 4.
(For f to be continuous it is sufficient that f-1(0,) is open for all pe N
where O, is a countable base for the topology of R; therefore, if f is BP
measurable, we can remove a countable union of first category sets such
that f is continuous on the remaining set.) The function f respects ~ if

x~y = f@)=f(y)
is satisfied. Let [x] denote the equivalence class of x € M.
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THEOREM 1. Let A<M be a dense Gy set. Then there exists an x € A
such that [x]nA is dense. Therefore, if a function f on M respects ~ and
18 BP measurable, then f is constant on a dense G set.

Proor. We consider the space
M=1IM7,

where M =M, for all ¢,j € N (the product is taken over all 4,j from 1
to infinity). With the product topology M is a Polish space, and ~ can
be defined in M similarly. We consider the projection P: M — M
defined by

P(x)(n) = x(n,1) .

The set A=P-1(A) is a dense G, set in M. Let T be the group of all
homeomorphisms of M which are determined by permutations of the
indexes (¢,j) such that only finitely many indexes are permuted. The
group 7' is countable. Therefore

B = nleTt(fI)

is a dense G, set contained in 4 and 7' invariant. Let C< M be the set
defined by
C ={xeM| T(x)is dense in M}.

We easily see that
C = np UleTt(Op) >

where {0,} is a countable base for the topology of M.

From this it follows that C is a dense G, set. Hence BnC is non
empty. Let y e BnC. For z=P(y) we see that [x]nA is dense. This
finishes the proof of theorem 1.

In the sequel, measurable (without specification) means measurable
with respect to the Borel field of the topology under consideration.

Let K={0,1}". With the usual product topology and group struc-
ture K is a compact metrizable abelian group. An element x € K may
be considered as the characteristic function of a subset of N and con-
versely. Let ¢ be a real-valued finitely additive set function defined on
the subsets of the natural numbers N.

THEOREM 2. Consider ¢ above as a function on K, and suppose one of
the following conditions s fulfilled:
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i) @ s non-negative and BP measurable.
ii) @ s measurable.
Then ¢ is countably additive.

Proor. This requires some steps. First we prove the case i). By
subtraction we can assume that ¢({n})=0 for every n € N. The zero-one
law implies that there exist an « € R and a dense G, set A< K such
that ¢(x) =« for every x € A (¢ is considered as a function on K). Let
u € K be the sequence u=(1,1,1,...). The set u+A={u+z|recd}is
a dense G4 set, and hence An(u+ A4) is non empty. Therefore there ex-
ist #,y € 4 such that -y =0 (the sequences are ““‘disjoint”’) and x+y=1.
This implies

p(w) = @(N) = p(x+y) = @) +¢(y) = 2,
o« = $@(N).

Now it only remains to show that «=0. This is an immediate conse-
quence of the following

LeMMmA. Let A< K be a dense Ga set. Then there are x,y,z€ A such
that y-2=0 and x=y+=z.

To see this we consider the mappings ¢,h: K2 — K defined by

9((a,b)) = a\b = a—(a-b),
h((a,b)) = a-b.

These mappings are surjective, open, and continuous. Hence g-1(4)
and h-1(A4) are dense G, sets in K2. We choose

(@,b) € g7(4)nh4) n (4 x K),

and put x=a, y=g((a,b)), and z=h((a,b)).

In the case ii) we first show that ¢ is uniformly bounded. Suppose
this is not true. Then there is a sequence x, € K of disjoint elements
(@, 2, =0 if n+m) such that |p(x,)|>1 for all » e N. The mapping
0: K — K defined by

0(y) = Zpy(k)z;
is continuous. Therefore pof is a measurable function on K, in partic-
ular BP measurable. Let 4 < K be a dense G, set such that po0 is con-

tinuous on A. We may assume that 4 is invariant under translations
by elements in

K, = {x € K| z(n)=1 for at most finitely many n}.
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We choose y € 4. Let y, be the element in K which differs from y only
at the Ath place. Then y, € 4 and y, -y but

lpo0(y) — o b(y,)| = g(x;) > 1.

This contradiction shows that ¢ is uniformly bounded. Let us also con-
sider the positive part ¢+ of ¢ as a function on K. Then we get

g*(x) = sup{p(y) | ye K ny-z=y}.
Let D<= K be the set
D={xeK| ptx)>n},

where « is a fixed number. D is the projection on the second coordinate
of the set

{(.y) e K2 | y-x=y} n {(x,y) | ¢ly)>«}.

Now this set is measurable in K2, hence D is analytic in K. Therefore
D is BP measurable (see [4, Chap. 1, § 11, p. 62-63]. An application of
the first case finishes the proof. (This argument showing that ¢* is BP
measurable is due to J. Hoffmann-Jargensen.)

Let X be an arbitrary set equipped with a o-field &#. Let ¢, be a se-
quence of countably additive set functions defined on &. Suppose
limg, (4)=¢(4) exists for every A € #. Then ¢ is countably additive.
This well-known result of Nikodym can now be proved as an applica-
tion of theorem 2. It is an immediate consequence of the following

THEOREM 3. Let € be the Borel field on F generated by the topology on
F induced by all countably additive real-valued set functions. Let ¢ be a
€ measurable finitely additive realvalued set function on F. Then ¢ is
countably additive.

Proor. Let F, be a sequence of disjoint & sets. We define the map-
ping 0: K -~ F by
O(x) = Syx(k)F,, (1-F,=F, and 0-F;=0).
This mapping is continuous with respect to the above mentioned topo-
logy (use Lebesgue’s dominated convergence theorem). Hence @of is a

measurable function on K. An application of theorem 2 finishes the
proof of theorem 3.

The following application of theorem 2 was pointed out to the author
by J. Hoffmann-Jergensen.
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THEOREM 4. Let (S,2,u) be a positive measure space with u o-finite.
Consider L (8,2, u) with the weak topology o(L,L,). Let L be a linear
functional on L, which is measurable in the Borel structure generated by
the weak topology. Then L is induced by a L-function.

Proor. We define a finitely additive signed measure [ on X by

UA) = L(y.a) -

Of course [(N)=0 if u(N)=0. An argument similar to the proof of
theorem 3 shows that ! is countably additive. An application of the
Radon-Nikodym theorem finishes the proof of theorem 4.

Let (M,0) be a Polish space. We shall always tacitly assume that
“metrics on M generate the topology of M. Let M* be the set of closed
subsets of M. For each bounded metric d on M we define the metric
d* on M* by

d*(4,B) = sup{d(a,B),d(4,b) | acA AbeB}.

Since M is separable, one can choose a precompact metric d on it. If d
is such a metric, (M*,d*) is a precompact metric space and the d*-
topology is Polish. Moreover, the Borel structure of the d*-topology is
independent of the metric d (which is assumed to be precompact).
These results seem to be due to Edward G. Effros (see [3]). From now
on measurable on M* or Effros measurable means measurable with
respect to this canonical Borel structure.

THEOREM 5. Let u be a finitely additive Borel probability measure on
the Polish space (M,0). Suppose u is measurable as a function on M*.
Then u s countably additive.

Proor. Let B(M) be the Borel field and A(M)< B(M) be the field
generated by the open sets. First we show that u is regular on A(M)
with respect to the paving of closed sets. It is enough to show that
each open set G can be approximated in u measure from within by
closed sets.

Let A=M\ @G and let d be a precompact metric on M. For each ¢>0
we define 8,={wxe M |d(x,A)=c}. Let ¢, be a strictly decreasing se-
quence tending to zero, and suppose that u(S, )=0 for all n. Put

en

8§=U,8, . The mapping ¢: K —~ M* defined by
p) = (Upa(n)8,)u 4
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is continuous with respect to the d* topology, thus measurable. The
function 0 on K defined by

0(x) = p(p(x))—un(4),

is measurable and 6(x+y)=0(x)+ 0(y) if x-y=0. Furthermore 6(xr)=0
if #(n)=1 only for finitely many =n. Therefore 6=0 identically (use
theorem 2). This gives u(S)=0. Let now

Rn) = {xeM| ¢, 2d(x,A)2¢,} for nz2,
(1) ={xreM| dx,Ad)Ze}.

In a similar way as before we define

91(2) = (U,z(n)R(n)) U 4

and
0,() = ﬂ(‘l’l(x))_ﬂ(A) .

An application of theorem 2 and the preceding result gives

S u(B(m) = 1-p(4) = (@) .

This means that the open set G can be approximated from within in g
measure by closed sets whose distance from A is non-zero. (In the discus-
sion above we assumed tacitly 4 +£0.) It was sufficient to assume that
4 is measurable with respect to the o¢-field spanned by all sets which
are analytic with respect to the Effros Borel structure. (This ensures
that 6 and 0, are BP measurable.)

Let M denote the completion of the space (M,d). It is a compact
metric space. The measure u is extended to a Borel measure on M by

w(B)=u(MnB) for a Borel set B in M. The mapping 7: 4 -~ AnM
is a mapping from M* onto M*. Since M is G, in M, any open set
OcM is G, in M. Therefore the set of 4 € M* not intersecting O is
coanalytic in M*. This shows that 7' is measurable if M* is considered
with the Effros structure and M* with the o-field spanned by sets
analytic with respect to the Effros structure. (Note that the Effros
structure is spanned by sets of sets not intersecting open sets.)

The above arguments now yield the fact that the extended measure
u is regular with respect to the closed (compact) subsets of M. There-
fore u is countably additive. This finishes the proof of theorem 5.

Let u, be a sequence of countably additive Borel probability meas-
ures on M such that
p(4) = limpu,(A)

exists for every A € M*. Every u, is upper semicontinuous on M*
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(equipped with the d* topology where d is a precompact metric on M).
Hence p is measurable on M*. By theorem 5 we now easily show that
lim p,,(B) = u(B) exists for every Borel set B in M and that u is a measure.
This result is due to Dieudonné [2] and has been generalized by Wells [5].

We call a subset I < M* an ideal if it satisfies

i) M1 al=0,

ii) AeIABeM* = AnBel,

iii) A,Bel = AuBel.
An ideal I is maximal if I is not contained in a strictly bigger ideal.
This is the case if and only if I satisfies

C) AeM* A AeI A A +M = cl(4%el.

THEOREM 6. 4 maximal ideal I is measurable as a subset of M* if and
only if there exists an isolated point m € M such that I ={A € M* | m ¢ A}.
An ultrafilter U intersects M* in a measurable set if and only if it is trivial.

Proor. Let I be a maximal ideal. The set {4¢| A4 € I} is a filter base
consisting of open sets. Let % be an ultrafilter extending it. Put u(B)=1
if Be% and zero otherwise. If 4 e M*, but 4 ¢ I, then cl(4°) el
hence 4 € % and therefore u(A4)=1 (of course u(4)=0if A eI). Now u
is a finitely additive Borel probability measure and the above remarks
show that u is a measurable function on M* (because I is measurable).
Therefore there exists an m € M such that u(B)=1 if and only if m € B.
In particular,

I={AdeM| mé¢d}.

Because I is maximal, m is isolated. The remaining part of theorem 6
is proved similarly.

We do not use the preceding results in the sequel, but our use of
K ={0,1}™ will be analogous.

Let now (M,d) be a separable metric space. Let S(M) be a space of

bounded continuous functions which satisfy:

1) S(M) is a linear space and an algebra.

2) If A,B are disjoint closed sets in M, there exists an f e S(M) with
values in [0,1] such that f(4)={0} and f(B)={1}.

3) If g is a bounded continuous function such that for all xe M
there exists a neighbourhood U of z and an feS(M) with
g|U=f|U, then g e S(M).

In the following measures on M are assumed to be non-negative count-

ably additive bounded Borel measures if not explicitly stated otherwise.
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THEOREM 7. Let # be a uniformly bounded set of measures on M. Then
% 1s conditionally compact in the space of measures (equipped with the weak
topology) if and only if S(M) equipped with the seminorm

Ifllg = sup{lu(f)l | ueB}

18 separable.

Proor. The only if part follows from the fact that a weakly compact
set is a compact metric space with the weak topology.

Let now A4, be a strictly decreasing sequence of sets with empty
intersection. Let f, be a function in S(M) with values in the interval
[0,1] and assuming the value 1 on 4, and 0 on the set

fxeM| dx,A,)z2"}.

Then g¢,=f;...f, is a decreasing sequence of functions in S(M), and
for each particular x € M, g,, is zero in a neighbourhood of x from a
certain stage. The mapping 0: K — S(M) defined by

e(x) = Znsn(x) x(n)gn s

where s,(x) is —1 to the power Y7x(7), is continuous with respect to the
topology on S(M) induced by all measures (and the usual product
topology on K).

Let B,={feS(M) ||/flg<e} and choose a countable covering

S(M) = U, (f,+B,) .

The sets 6-1(f,+ B,) form a countable covering of K by closed sets.
Hence there exists p such that 6-1(f, + B,) has non-empty interior. This
shows that g, € f, + B;, for n sufficiently great (and p fixed). Because
this is true for every particular ¢ > 0, we see that g, is a Cauchy sequence
with respect to the || ||z metric. But u(g,) tends to zero pointwise on %,
and hence it tends to zero uniformly on #. Therefore u(4,) tends to
zero uniformly on %. Since this is true for every decreasing sequence
of closed sets with empty intersection, # is weakly conditionally com-
pact. This finishes the proof of theorem 7.

CorOLLARY. Let u, be a sequence of measures and suppose that for each
feS(M) there exists a number u(f) such that limpu,(f)=pu(f). Then u is
a measure and u, — u weakly.

Proor. The criterion in theorem 7 shows that {u,} is conditionally
compact in the space of measures with the weak topology. Therefore the
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sequence has exactly one weak accumulation point. This proves the
corollary.

It is a well-known result due to A. D. Alexandroff that convergence on
the bounded continuous functions implies that the limit is a measure.
In the special case where the metric is complete the above results can be
improved substantially.

THEOREM 8. Let (M,d) be a complete separable metric space. Let
BU (M) be the space of bounded uniformly continuous functions on M.
A uniformly bounded set of measures B is conditionally compact in the
space of measures if and only if BU(M) is a separable space equipped
with the seminorm ||-||4.

Proor. The only if part is identical with that of theorem 7. Let
&> 0 be fixed. Suppose 4, <M is a sequence of closed sets with

inf{d(x,y) | x€Ad,,ycd,} =2 ¢ for ndm.
We define f,, by
fo(@) = d(z,B,)[(d(x,A4,) +d(x,B,)) ,

where
B, = {xeM| dx,4,)2 te};

(note that B, cannot be empty). Further we define the mapping
6: K - BU(M) by 6(x)=3,2(n)f,.

Let BU(M)=U,(h,+B,) (where B, is defined as in the proof of
theorem 7). Each of these sets is closed in the topology induced by all
measures. An argument similar to the proof of theorem 7 yields that
fn € By, for n sufficiently great. This shows (since 6 was arbitrary) that
u(f,) = 0 uniformly as n - co. Hence u(4,) - 0 uniformly as n — co.
Because this is true for every >0, we easily see that # is uniformly
tight. (The completeness of the metric is essential at this point of the

proof.)

COROLLARY. Let pu, be a sequence of measures on M and suppose that

for each fe BU(M) there is a number u(f) such that lLimu,(f)=pu(f).
Then p is a measure and the limit relation holds also for each bounded

continuous function.

Proor. The criterion in theorem 8 shows that {u,} is weakly condi-
tionally compact in the space of measures.
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Some problems in connection with the preceding results remain open.
It seems rather probable that most of the results are also valid with
Borel measurability replaced by measurability with respect to the uni-
versal completion of the Borel field. For analogous results see [1]. For
the conclusion in theorem 2 to hold it is not enough to require measur-
ability with respect to the Haar measure on K because there exists a
finitely additive probability measure on N which equals the density of
a set whenever this exists. It seems probable that some of our assump-
tions about positivity of the measures can be removed, but non trivial
complications seem to arise.

Added September 1971.

We solve a problem proposed above. Let M be a Polish space and f,
a uniformly bounded sequence of universally measurable functions on M.
Let @, be defined by G,=clconv{f,,fp.1,...} and T=N,G, (the clo-
sure being taken with respect to the topology of pointwise convergence).

THEOREM. The continuum hypothesis implies that T contains at least
one universally measurable function.

Proor. We only indicate the idea of the proof. For each countable
ordinal number w we choose a probability u, such that each probability
on M is chosen at least once. By transfinite induction we choose, for
each countable ordinal w, a sequence ¢,,” of finite convex combinations
of f,’s such that ¢,” € G, and limc,“(x) exists for u, almost every x € M
and such that the existence of limc,"(x) implies that lim¢,*(z) =limc,*(x)
if » is an ordinal number less than w. The net ¢,”(x) then tends pointwise
to a universally measurable function in 7. This finishes the proof.

Let K={0,1}N. Define f, on K by f,(x)=n"13" z(»). If we apply
the theorem to this sequence we obtain

CorOLLARY. There exists a finitely additive wuniversally measurable
probability measure defined for all subsets of N which equals the arithmetic
density whenever this exists.

We do not know whether or not the above results can be proved
independently of the continuum hypothesis.



BOREL STRUCTURES AND A TOPOLOGICAL ZERO-ONE LAW 255

ACKNOWLEDGEMENTS. I am very thankful to J. Hoffmann-Jergen-
sen for pointing out some serious errors in an earlier version of the paper.
Moreover he suggested simplifications. Theorem 4 is due to him. I am
also thankful to F. Topsge, P. Géinssler and S. D. Chatterji for their
willingness to discuss the subject with me and for their encouraging at-
titude in general. Furthermore I am thankful to M. Flensted-Jensen
for drawing my attention to the paper [3].

ApDED IN PROOF APRIL 1972. The author’s attention has been called
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