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A CONVERGENCE THEOREM FOR MEASURES
IN REGULAR HAUSDORFF SPACES

PETER GANSSLER

0. Summary.

The purpose of this paper is to extend a recent theorem of Wells, jr.
[3, Theorem 3, p. 125], concerning converging and bounding classes for
the family of all regular signed measures on the Borel sets of a compact
Hausdorff space, from compact spaces to regular Hausdorff spaces
(Theorem 3.1). As a special case we obtain that in a regular Hausdorff
space (X,.7") any sequence (u,),.n Of J -regular measures (inner regular
with respect to the paving " of compact subsets of X)) has the property
that (u,(4))zen is @ convergent sequence for every Borel set A< X if
(#n(U))pen is a convergent sequence for every regular open set Uc X.

Among other convergence theorems this result was at first obtained
in [2, Theorem 4.10] for normal Hausdorff spaces; it is a further refine-
ment of the techniques employed by Wells which yield the present theo-
rem using compactness results of [2] for £ -regular measures in (regular)
Hausdorff spaces.

1. Introduction.

The notions used in the following are those from [2]. Throughout X
denotes a regular Hausdorff space and % the Borel field in X. A measure
w|F is a real-valued ¢-additive set function defined on #. We denote
by A the paving of compact subsets of X and u|# is called A -regular
if: For every U €7 and every ¢>0 there exists K € 4, K< U, such
that |u(A4)| <e for all A € # with A<U\K or equivalently:

For every U e J and every £>0 there exists K € #’, K< U, such
that the total variation of x on UNK, [u|[(UNK)<e.

We remark that this implies that for every 4 € # and every ¢>0
there exists K € A", K< A, such that |u[(d\K)<e.

Let A -rca(X, %) [A -rca, (X,Z)] denote the space of all [non-nega-
tive] o -regular measures.

A subsystem €<% is called a converging class (for J -rca(X,%))
provided every sequence u, € # -rca(X,#), n € N, which converges on
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% (that is limpy,(C) exists in R for every C € %) converges on #. In
that case it follows (see [2, 1.10 and 3.8]) that for every sequence
Mo € X rea(X,#), neN, which converges on % there exists u,e
A -rea(X,%) such that lim, , pu,.(4)=p,(A) for every A € &, that is,
if € is a converging class, then for every sequence u, € & -rca(X,%),
n € N, which converges on %, the set function

,MO(C) = limu,(C), Ce %,

is the trace on € of a X -regular measure uy,|# to which (u,),.n con-
verges on every A € #.

We call € a bounding class (for £ -rca (X, %)) provided every sequence
Uy € A -rea(X, %), ne N, for which sup,.n|s,(C)| <o for every C ¥
is bounded, that is, sup, .y |t,|(X) < cc.

We write A¢ and int A for the closure resp. interior of AcX. An
open set U is called regular if U=int(U¢). The system J, of all regular
open sets is a complete Boolean algebra which coincides with the system
of all intF, F closed in X, and Z, is strictly smaller than J, even for
X =R: The set U:= (—1,1)\{0} belongs to 7 but not to J,. The
supremum [infimum] of a family (Up)s.p of regular open sets is defined
to be

int((Ugep Up)) [int((NpepUp)°)] .

The intersection of two regular open sets is regular. However, J, is not
closed under the formation of countable unions (even the union of two
regular open sets need not be regular) and this fact presents an essential
difficulty in proving the main result below.

2. Two lemmata.

2.1 LEMMA. Let € be a family of open sets in a regular Hausdorff space
(X,T) fulfilling the condition:
(1) If KeA,UeT, K<U, then there exists C € € such that K<C<U.
Assume further that w, € A -rca(X,F), ne N, is a sequence of measures
satisfying
(2) sup,en|ta(C)| < oo for every C e €, and
(8) limy_, o, u,(U;)=0 uniformly in n € N, whenever U;e T, jeN, is a
sequence of pairwise disjoint sets.
Then the following is true:
(1) (Up)nen 8 bounded, that is, sup,en |, (X) < co.
(i) If (2) is replaced by the condition that (u,),.n converges on €, then
(Un)nen COnVErges om F.
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Proor. (i): According to [2, Corollary 4.8], it suffices to show that
(8) suppen|pn(U)|<oc for all U e T,
(b) {|#,] : n € N} is uniformly tight, that is, for every ¢>0 there exists
K e A" such that sup,n|u./(X\NK)<e.
Now it was shown in [2, Theorem 3.11], that in a regular Hausdorff
space uniform tightness is implied by (3). Furthermore (3) implies that
for every U € J and &> 0 there exists K € 4 such that

SupneN |:un1(U\K) <e

(see [2, Theorem 3.11 and 3.13]). It follows by (1) that there exists
Ce¥ with K<C<U, whence, together with (2),

SUPyeN |1un( U)I é SUPpeN Ilu’n(O)l + SUpP,en |Iu'nl(U N K) < o

for every Ue 7.
(ii): Follows using (i) from [2, Lemma 4.3].

Besides Lemma 2.1 the following result, an analogon to Lemma 1 in
[3], plays an essential role in proving the main theorem below. It was
proposed by F. Topsge to use (6) below as the appropriate separating
condition.

2.2 LEMMA. Let € be a family of open sets in a regular Hausdorff space
(X,T) fulfilling the following conditions:
(4) If C,C, €%, then C1nCye¥.
(6) If C1,C,e€ and C¢nCy=0, then C;UC, € F.
(6) If KeA', UeT, K<U, then there exist C',C" €€ such that
KcC'cX\C"cU.
(7) If C,' and C,”", n € N, are sequences from € such that
C,/'cC c...cC)/e...c0/<=cC, ) c...c0/=0C,
then there exists Cy € € interpolating the given sequence, that is, C,'" <
Co<C,’' for every n e N.
Let U;e T, jeN, be a sequence of pairwise disjoint sets and K; e A,
K;<=U,;,jeN. If we fix, according to (6), C;’, C;'" € € such that K;=C;' =
X\C;'<U;, then for every 6>0 and A€ A -rca (X,F) there exists an
infinite subset N'cN and a C\' €% such that Cy'>U;\C/ and
ACN") <é.

Proor. Let 6>0 be given. If we choose U := X\ (U;nCaiy')C,
then U € 7 and U>K,,, for every m € N, hence (6) allows us to pick
for every m € N a set D,,"" €€ such that K,, <X\ D,,” < U and where,
by (4), D,,,”" can be choosen in such a way that D,," < C,,,"" which implies
D,,," = X\ C,,,’ for every m € N. We obtain the following sequence:
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Cy = (Cyuly) = (CYuCSuly) < ... < (D' nD,/ nDy")
c (D4Il n DZII) c Dzll ,

where, according to (5) and (4), each member occurring within the
brackets belongs to €. Hence by the interpolating condition (7) there
exists B, € € such that

UienCaies’ © By < Nypen Doy’ < Nypen (XN Cy))

hence E;NU,nCon =0. If AE;) <9, the proof would be concluded.
If A(X\E,) <%0, Aregularity of A implies the existence of KM e X,
KW <, such that A(E,\ K®) < 1§. By (6) there exists a E,”” € ¥ such
that KOc X\ E,"<E,, hence B, >X\E,2U,,.nCaon’> B, <X\ KD
and A(#,"") <48, whence the proof would be concluded.

If neither A(%;)<d nor A(X \ E,) < }d, then one may repeat the pro-
cess to find disjoint infinite subsets N; and N, of {21 —1:4 e N} and an
E,e¥, E,<E, (by (4)), such that

U‘ieNloil < E2 < nJENg(X\OJ’) ¢

If A(E,)<6 or if A(E;n(X\E,))<1, the proof would be concluded as
before. Otherwise, continuing in this splitting procedure, one would
find E,€¥, E,}, neN, such that A(E,)20, (X \E,) =3, ME,) =4,
ME,N(XNEy))236,... . ME,)z6, ME,,n(X\E,))21%5,..., which

would contradict the boundedness of A if the procedure would not ter-
minate. This concludes the proof of Lemma 2.2.

3. The Main Theorem.

The results of section 2 enable us to prove the following theorem in
rather the same way as it was done by Wells proving Theorem 3 in
[3, p. 125], in the case of a compact basic space X. In order to point
out the additional refinements which are necessary for the present case
we give a complete proof being fully aware that we contribute only a
modest amount to the ideas occurring already in the proof of Wells’
Theorem.

3.1 THEOREM. Let € be a family of open sets in a regular Hausdorff
space (X,T) fulfilling the conditions (4)—(7) of Lemma 2.2. Then € is
both a converging class and a bounding class. In particular: € =9, is both
a converging class and a bounding class.

Proor. Let (u,),.n be a sequence of /£ -regular measures which con-
verges on €. Assume that, for some A;e F, (u,(4¢))nen does not con-
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verge. Then there exists ;> 0 and for every n € N an m, € N such that

[tn(Ao) = P ima(Ao)| > & -

Hence #, := u,—ftyim,>» ® € N, defines a sequence of # -regular meas-
ures which converges to zero on %, but does not converge to zero on & .
The proof will be concluded by showing that every sequence of ¢ -regu-
lar measures, say (v,),.n, Which converges to zero on % converges to
zero on%. We remark that if (v,),.n converges on %, it follows that
ro(4) i = lim,  v,(4), 4 € F, is a A -regular measure [2, 3.8] which
must be identically zero according to (6).

Now assume, on the contrary, that (v,),.n does not converge on Z.
Then, by Lemma 2.1, (3) must be wrong, whence there exists a sequence
of pairwise disjoint sets U;e€.7, je N, so that there exist >0, an
infinite subset No<=N and a subsequence ("n)ieny OF (Va)nen With
inf; o |vp(Uj)| > 6. Without loss of generality we may assume that
inf;  |;(U;)| > ¢&. Since v; € # -rca(X,#), there exist K;e A", K;<U,,

j € N, such that A (U,NEK) < y(U,) =0
hence inf; \ [v;(C;)| > &, whenever
K,<C;<=U;, jeN.
By (6) for every j € N there exist C)', C;"” € € such that
K; < 0/ <« X\C/" = U;.

J

Now we apply Lemma 2.2 with A:= 1|, 6:=4¢ and N;:=N\{1}
instead of N to obtain an infinite subset N," of N, and a Cy,' € ¥ such
that Cyn./ 2> U, 0y and |n|(On,) <3gp. Put Cyp:=Cy,'nC,” and
choose, according to (6), D,’, D,"’ such that

K, < Dy < X\D, =<0.
Then, if we put C, :=D,’, we have C,°'nCy\,°=0, hence, by (5),

CiuC\ €€
and furthermore,

[71](Cny) < 3805 11(CL)] > & .

Next, choose m,:=1 and pick n, € N,’ so large that |»,(C;)| <1e, for
all n>n, and, applying Lemma 2.2 again with 1:=|v, |, 0 := ¢, and
the sequences

(K; © € < XNC/" < Upjenp, With  Ny:=N/'n{neN:n>n},
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we obtain an infinite subset N, of N, and a C\,’ €% such that
CNz"DUjENg'C]', arnd |’J7L1|(CN2")<%80' Put

Osz = CNZ” n ONI' n C,nl”

and choose, according to (6), D, ', D, " €€ such that

ny ?
’ r ’
K, <D, <X\D,"” <0C,' .

Then, if we choose C,,:=D,,', we have On°nC, °=0, hence, by (5)
CnyVU0,, €% and also Cy,UC, UC, € € and, furthermore,

|vn1|(0N2') < %80: l”nl(onl)l > & .

Now pick ny>n,, n, € Ny’ so large that
Pa(C)I+ Pa(Cn)] < 36

for all »>n,. Continuing in this way we obtain a sequence of integers
{ng=1,m3,my,...}, a sequence (C,);,n and a decreasing sequence
(Cny)ien of sets in € such that

(*) [ngl (Cngyy) < 360 and |, (C)| > &,  forallieN,
(**) S n(Ca)l < deo for all nzn, ,
(***) Oy < (CLuC,) < (CLuC, uC,) < ...

< (Ong YV CpyuC, U0 < (OnyyUC, UG < (O U0y,

where each member occurring in (***) within the brackets belongs to €.
Hence by (7) there exists Cy € € which interpolates (***). Since, by (*)
and (**),

|v'n,'(00)| 2 |vni(0nj)‘—Z{;;I()lvnj(oni)l—|vnil(0N"+l') = %80

for every j € N, (v,),.n does not converge to zero on Cg; this is a contra-
diction and we have thus proved that % is a converging class.

The proof that ¥ is also a bounding class follows exactly the patterns
of Wells [3, Corollary, p. 128].

Finally, €=, satisfies (4), (5) and (7) (cf. [2, 4.6]) and also (6):
Since (X,J) is assumed to be a regular Hausdorff space, for every
Kex', UeZ, K<U, there exists VeJ such that KcVcVecU.
Taking C’ :=int(¥V®) and C" := X \ V¢ we obtain ', (" € € with

Kc(0cX\C"cU.
This concludes the proof of the theorem.

3.2 REMARK. We obtain equivalent conditions if we replace I in (1),
(3) and (6) by T ', where T’ is a base for T which is closed under the forma-
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tion of finite unions. This is due to the fact that given Ke X", Ue T
with K < U, there exists U’ € 9 such that K< U'<U.
Furthermore we claim that (3) is equivalent to the condition
(8") lim;_, 1, (C;)=0 uniformly in ne N, whenever C;, je N, is a se-
quence of regular open sets with (U;,;C;)*nC =0 for every i € N.
For assume (3’) holds and let U; € .7, j € N, be a sequence of pairwise
disjoint sets with
infien|1(Uj)| > & > 05

A -regularity of u; implies the existence of K; e ", K;< U; such that
(U NKy) < uy(Uj) —eq

According to (6) (which holds especially with € =.7,) we obtain C; € 7,
with
K].chc UJ., jeN,
and so that
(U,.:0;¢nCe =0 forevery te N

R |

(cf. [2, Proof of 4.5 (b)]); furthermore inf; \ |¢;(C;)| > &, a contradiction.

3.3 REMARK. The proof of Theorem 3.1 for the special case ¥ =7,
can be substantially simplified applying, instead of Lemma 2.2, the
following Lemma which was essentially pointed out to me by D. Fremlin:

3.4 LEMMA. Let (u;);cn be a sequence of X -regqular measures which con-
verges to zero on I, and let C;, j € N, be a sequence of regular open sets in
X with

(U;2:0°nC¢ = O for every ieN.

J

Then lim,_, o;(C;) = 0 .

Proor. For any open set U, let «(U) :=int(U°)\ U. [This is a kind
of boundary of U for the closure operation U — int(U¢).] Let N, be any
subset of N and ¢ ¢ N,, then it follows at once that

(8) g;n o‘(UjeNon) = 0,

on the other hand, if i€ N,, then C;n(X\U,;,C;)=0, hence (8).
Thus o(U,.n,C;) does not meet any C;, ¢ € N. Consequently, if N, and
N, are subsets of N such that N; NN, is finite, “(UjeNloj) does not meet
#(Ujen, Cp). [Note that (U C;)=0 for finite subsets I' of N (cf.
[2, 4.6 (2)]).] At once there must be an infinite subset N’ of N such that

lttal(2(UjenCy)) = 0 for every neN.
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Now, let 4 be an arbitrary subset of N’. Then
UjGA Gj = int((U’EA Oj)c) \(X(Ujedoj) )

where int((U;.,C;)°) belongs to Z,. Hence convergence of u, on J; to
zero implies that v,(4) := u,(U,.,C;) tends to zero as n — o for every
subset 4 of N’. This implies lim,, \ #,(C,) =0 (cf. Nikodym’s Theorem
in [1, IT1.7.4]) and therefore the assertion of the Lemma.
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