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COALGEBRA EXTENSIONS IN TWO-STAGE
POSTNIKOV SYSTEMS

JOHN HARPER?! and CLAUDE SCHOCHET

In this note we shall study the Hopf algebra structure of a large class
of two-stage Postnikov systems. A two-stage Postnikov system is a
diagram &

QB OB,
E . PB,
P 1
B— 1 B

where B and B, are generalized Eilenberg—Maclane spaces, z is the path
fibration, and p is the induced fibration. Applying the loop functor 2
to each space and map, we obtain a new two-stage Postnikov system
called &, which is stable in the notation of [15]. In particular, Qf is
a map of H-spaces.

We study systems satisfying the following two conditions:

1) The factors of B and B, are of the type K(z,n) with = a finitely
generated abelian group.
2) B and 2B, are simply connected.

Let p be any fixed odd prime. All cohomology is with coefficients Z,,.
(The case p=2 has been studied in [9], [4], [7].) Let R=H*QB//im (2f)*.
Write H*(Q%B,)=U(Y,), where Y, is a free unstable module over the
modp Steenrod algebra A, and U is the free A-algebra functor of [186,
p. 29]. The papers of Massey—Peterson [11], [12], L. Smith [15], and
Barcus [2] yield the following theorem.
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THEOREM. a) H*QE =RQ U (M) as algebras over Z,, where
M = op(Ker(2f)*) = Y,.
b) The sequence of Hopf algebras over Z,,

Z, >R, HxQR ", U(M) > Z,

18 coexact; ker (£21)* 1s the ideal generated by im(2,)* in positive degrees.

c) Let Y, =ker(2f)*|Y,. Then the suspension restricts to an epi-
morphism o: Y, — M of degree —1. The kernel of x is 6Y,’, where 6 is
the map of Barcus |2|:

01(Yy)or, = P and  0|(Yy )gpsr = BP*.

The subject of this note is the determination of the coproduct y on
H*QE. From parts a) and b) it suffices to determine coproducts on
(homogeneous) elements of H*QF restricting to a Z,,-basis for M, since
such elements form a simple system of generators for H*QFE as an
algebra over R.

Consider the following diagrams:

M ¥/ ° .Y, Y,— 7 . H*B

Y, % . PH*QB

where ¢ is the inclusion. Let xe€ M, and choose y € Y,’ such that
«(y)=x. Choose v € Y, such that op (v)=y. Since og(f*v)=0, we have

f*v = 3,a,b,+pPm, degm = 2t+1 (dega,, degh;>0).

(Note that m may be zero.)

Defin
¢ a; = (@p)*opa;, B = (2p)*opdb; p = (2p)*opm .

and define r(x) € H*QEQ H*QE by
p—1 ' .
r(@) = 3;0,@B;+p7} zl(f) WRuPt .
=

LemMA 1. r(x) s a well defined function of x.
The straightforward analysis of choices is left to the reader. We now
can state the main theorem.

MaiN TaHEOREM. Given x € M, there exists an element e € H¥*QE such
that (Qi)*e=x, with coproduct

ye = lQe+e®@1+Ar(x), O0FAe€Z,.
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Proor. Fix some x and v as above, and represent v as a map
v:By—>K,,, = K(Z,,n+2).

Writing the fundamental class as ¢,,, we have f*v*, ,=>a;b,+ pP'm,
and p*f*v*, ,=0. Let G be the principal fiber space over B with fibre
K, .1 induced by vf. We then have the commutative diagram

E\Q f/B

*/\

which we enlarge to the commutative diagram

(g exists since vfp~0)

n+2

@B, “"_ﬁﬁgEﬁp y /QB,,—"— \i. /
x Qg9 2B
VS
Kn_——_"—"QG/ \Kn+1 / \ n+2

Now 026G is homotopy equivalent to 2B x K,, since og(f*v)=0 (though
not as H-spaces, in general). Let 7, be the class in H*QG provided by
Lemma 2 below. Define e=(2g)*A-17, . The result follows since (Qg)*
is a map of Hopf algebras. It is thus sufficient to prove Lemma 2:

Lemma 2. Suppose G - B ——> K, ,, is a fibration with
v¥0, 0 = Jab;+fPm, deg(m) = 2t+1.

Then there is a class n, € H*QG restricting to the fundamental class , of
the fiber K, such that

Yin = 1@1, +1,Q14+2r(1,), O*A€Z,.

To prove the lemma we must digress to recall some algebraic machinery.
Suppose G is any topological space. Then there is a spectral sequence of
algebras {£,,d,} due to Eilenberg and Moore [14], [6], converging to
H*@, and with E,=Exty oq(Z,,Z,). The E, term of the spectral se-
quence may be written & (H*Q@G) where & is the reduced cobar con-
struction (see [1], [10], [13]). A monomial in E,% * is written [a,]. . .|a;]
with total degree k+ Y dega;. Multiplication in E, is by juxtaposition.
The differential d, is given on algebra generators by d,[a]=3[a’|a"’],
where ya=0a®1+1Qa+ 3 (a'®a’’), and insisting that d, be a derivation.
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Proor or LemMA 2. Reverting to the hypotheses of the lemma, we
see that it suffices to prove that

@A 0] = Zlog| ]+ 27 Z(O)Nwt | w1+ dy 0],

where be p*H*QB. Each «; and B; is primitive, so d,[«;|8;]=0 for
each 1. If p>2 then the element p—13(?)[u?|u?-*] is a cycle. (The proof
is a short exercise in binomial coefficients.) In the universal example
of K,,, > PK, , > K, , this element survives to £ to create the ele-
ment —fBP!m. (See [5] for the analogous statement in homology). On
the other hand we know that Ya;b;+pPm=0 in H*G, so the element
Sl B+ P 1 X (B) [t uP~*] must be a boundary. By dimension con-
siderations and naturality it must be equal to d;([An, +b]). This proves
the lemma, once we choose 7, =7, —b.

RemarRk. H*QF need not be co-commutative. For p> 2, consider the
two-stage system with f*(iy,,;)=1¢,8¢,. Then the coproduct on #,,_, is
11+ 7@ 1+ Aty—1@Btn—1)-
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