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HOMOLOGY OF DELETED PRODUCT SPACES

C. W. PATTY

1. Introduction and notation.

The deleted product space X* of a space X is X x X — 4. In this paper
we continue the investigations begun in [7] of describing those finite,
contractible, n-dimensional polyhedra whose deleted products have the
homotopy type of the n-sphere and of describing the same such poly-
hedra whose deleted products have trivial homology groups in dimen-
sion greater than p, where p=n—1. In [2], the author showed that if
X is a finite, n-dimensional polyhedron such that H,(X)=0, then
H,, (X*)=0. In [4], the author computed the homology groups of the
deleted product of a polyhedron in a subcollection B of the finite, con-
tractible, 2-dimensional polyhedra, and, in [5], the author described a
member C of B with the property that if X € B, then C can be imbedded
in X if and only if H,(X*)+0. In the same paper, he used this result
to show that an element X of B can be imbedded in the plane if and
only if Hy(X*)=0, and he also described a member CC of B with the
property that if X € 8 then CC can be imbedded in X if and only if
Hy(X*)40. In the present paper, we show that if n=2 and n<p<2n,
then there is a finite, contractible, n-dimensional polyhedron X such
H ,(X*)=%0. (This result is known if n=p. See [6].) If n>2and n<p<2n,
this paper is a first step in describing

{X | X is a finite, contractible, n-dimensional
polyhedron and H,(X*)=0}.

In particular we are interested in the relation between imbeddings and
the vanishing of the p-dimensional homology group of the deleted prod-
uct, and this investigation is to be continued in a forthcoming paper.
We let S*={xeEn+! | |x|=1} and B"={xeE" | |z|<1}. If v is a ver-
tex of a polyhedron 4, we let St(v,4) denote the open star of v in 4,
and if v,,v,,...,v, are the vertices of a simplex o, we denote o by
{v;,0g,. ..,0,). We use the circumflex 9, to denote that v; has been
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omitted, and if wy,w,,...,w, are points, j is an integer, 1 <j<n, and
k=1,2,...,5; we let wy,w,,.. .,{??),-k},. ..,w, denote the subset of w,,
Wy, . . ., W, Obtained by omitting w; ,w,,.. o Wi Thus
Uiy oy wy,. . {D ) wy)
denotes the simplex whose vertices are wy,w,,. .., w, with w; ,w,,.. Wy
omitted. Also we shall denote
A-U! St(u,4) by Aluy,...,u,],

St (uy,, A)— UL St(u;,4) by  A[u,|uy,. . .,u,],
A—-Uy_o{St(uy, 4) | g+i, for any k} by  Afuy,..., {0} .. u,],
St (tyy, A) — Up_o {St(ug, 4) | g %1y for any k} by

Al [wg, . s {8}, . u,]

The homology groups used throughout this paper will be the reduced
homology groups with integral coefficients, and we let Z denote the group
of integers. If X is a finite polyhedron and 4 and B are subpolyhedra
of X, let

P(AxB—-4) = U{ox7|oisasimplex of 4,
7 i8 a simplex of B, and snr=0}.

Hu [1] has shown that X* and P(X*) are homotopically equivalent.
If X and Y are finite polyhedra and f: X — Y is a simplicial map, let
X* denote the inverse image of Y* in the map fxf: XxX > ¥ x Y
and let

P(X*) = U{ox 7|0 and 7 are simplexes of X and f(s)nf(7)=0} .

The author [3] has observed that X * and P(X,*) are homotopically
equivalent.

2. Deleted products which are not homology spheres.

Throughout this section, we let A denote a finite, contractible, n-dim-
ensional polyhedron, and we let B denote an m-simplex with vertices
VgyV1,- - -sUp. In Theorem 1, we assume that 2<m<n, and, in Theo-
rems 2 and 3, we assume that 3<m=n.

TaEOREM 1. If ANB={v,), where vy is a vertex of A, and X=AUB,
then H (X*) is isomorphic to H ,(A*) for all r >n and X* does not have the
homotopy type of a sphere. Furthermore if A=B", v, is the center of B",
and m>2, then H,(X*), H,_,(X*), and H,(X*) are isomorphic to Z, and
H, (X*)=0 if r is neither n, m—1, nor 1; and if A=B", v, is the center
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of B™, and m=2, then H,(X*) is isomorphic to Z, H,(X*) is tsomorphic
to the direct sum Z+Z, and H (X*)=0 if nr+1.

Proor. First observe that
P(X*) = P(A*) U (Bx A[vy]) U ({1, . ., 0, X St (v, 4)) U
U (A[ve] x B) U (St (vg, A) X {vy,vs,. . .,v,,») U P(B¥) .
Now P(4*)n(B x A[v,]) =<vy) x A[v,], and hence
X, = P(A4*) u (B xA[v,])
has the homotopy type of P(4*). Also
X1 0 (01,05 - 3 0) X SE (0, A)) = 01,03y 2,0, X (St (05, 4))

and thus if X,=X,0({vy,9,,...,v,) xSt (v,,4)), then H,(X,) is isomor-
phic to H (A*) for all r>n. If A=B", we may assume that 4 is an
n-simplex which has been triangulated so that the vertices are v, and
the vertices of a minimal triangulation of 04 =S87-1. In the proof of
Theorem 1 of [6], the author defined a homeomorphism f of S"-! onto
P(S*-1x8r-1—A). If xze8*!, then there may not be a cell in
P(B" x B®— A) which contains both (z,v,) and f(x). However if there is
no such cell, then there are two cells ¢ and 7 such that (z,v,) € o,
f(x) € v and ont+d. Therefore for the purpose of defining a map whose
range is P(B" x Br—A), we may assume that for each x € S*-! the line
segment joining (z,v,) and f(x) is contained in P(B"x B"—A4). [We
“straighten’ P(B"x B"—A) locally, define the map, and then ‘“bend”
it back.] Then the function g: S"*~*x I — P(B" x B"—A) defined by

gl@,t) = (1—20)(@,v0) + 2] (@), 0st<},
— (20— 1)(vp2) +(2—20)f(z), }sts1,
is a homeomorphism of S*-1xI onto P(B"xB"-—A4) which maps
871 x {0} onto S*1x {vy} and S*~1x {1} onto {vy}x S»-1. Therefore if
A =B~
(1) {1, 0g5 - « V) X (St (v, 4))
has the homotopy type of S»-1, each (n—1)-cycle in (1) bounds in
(U1, Vgy .+, Uy X St(vg,4)

but no nontrivial cycle in (1) bounds in X,. Thus if 4=B", then
H,(X,)=0 for all r. Continuing,

X, N (Ave] x B) = Afvo] x (v) ,
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and hence X;=X,U(A[v,] x B) has the homotopy type of X,. Also
X3 N (St (g, 4) X (1,05, . .,0,)) = (St (vy,4)) x (¥1,05,...,0,) .

Therefore if X,=XzU(St(vg,d)x{vy,v,,...,v,)), then H,(X,) is iso-
morphic to H,(A*) for all r>n. If A= B", then, because of the homeo-
morphism g, each (n— 1)-cycle in 8(St (vy, 4)) x (vy,v,,. . .,v,,» bounds in
both X, and St (v, 4) X (¥1,%g,. . .,v,). Hence, in this case, H,(X,) is
isomorphic to Z and H,(X,)=0 for all r+n. Finally

Xy N P(B*) = (01,0 -+, V) X (VD) U (Vo) X V1,03, . -, V)) -

By Corollary 1 of [6], P(B*) has the homotopy type of S™-1. Thus it
follows immediately that H,.(X*) is isomorphic to H,(4*) for all r>n.
Since 4 is n-dimensional and n = 2, there is a 2-simplex (ug, %, %,y in 4.
Since 4 is contractible, there is an arc R in 4 from v, to (u,, 4, %,y such
that RBndug,u,,usy is a vertex. We may assume that this vertex is wu,.
Also there is an arc 7' in P(B*) from (v,,v;) to (v,,7,). Then

(B x <’”1>) U ({tgs w1 X {v1)) U ({wp) X {v1,99)) U (Cuy) x R) U
U (Cug) X (U, ug)) U ({ty, o) X (%)) U (B x (up)) U
U (o, v1) X (Ug)) U ({v1) X (g, ) U (o) X R) U T

is a circle in P(X*) and no nontrivial 1-cycle associated with this circle
bounds in P(X*). Therefore if m>2, then H,_,(X*) and H,(X*) are
two nontrivial homology groups, and if m =2, then the direct sum Z+Z
is a direct summand in H,(X*). Thus, in either case, X* does not have
the homotopy type of a sphere. It also follows immediately from the
above that if 4=B" and m>2, then H, (X*), H,_,(X*), and H,(X*)
are isomorphic to Z and H,(X*)=0 if » is neither », m—1, nor 1.
Similarly if 4=B" and m=2, then H,(X*) is isomorphic to Z, H,(X*)
is isomorphic to the direct sum Z+Z, and H (X*)=0 if nr+1.

THEOREM 2. Suppose 1<p<m and AnB=U?_ {v,_,, vl)} where, for
each A, {v,_1,v;) 18 a simplex of A. If X=AUB, then H,(X*) is isomorphic
to H (A*) for all r > n and X* does not have the homotopy type of an n-sphere.

Proor. Now P(X*) can be constructed by starting with P(4*) and
adding cells. We express P(X*) as the union of P(4*) and these cells,
and, after this expression, we explain the order in which we are going
to add cells to P(A4*) in order to get P(X*). If ¢y= —1, then
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P(X*) = P(4*) U (B x A[v,,. . .,5,]) U
v URH UL, UBZEe (0 0nse v s B+ 50 X AlDg, . o, B3} - 0] U
U (4[vg,. . .,v,]x B) U
v U UL UBZEE  (Algs- o (B3} - 5 0p] X 0s 015+, D+, 0)) U
U P(B*).

We add the above unions to P(4*) in the order in which we have listed
them. We introduce some notation in order to explain the order in
which we add the cells in the second union. With each cell

Ul_1 (o vsse o, (B} - 0y X Alvg, . ., P} - - 0p)])

associate a (p+1)-tuple (xg,y,. . .,x,) as follows: «,=1 if v, is omitted

in the simplex Uj_,(v,v,.. o 0utse - -0y and x,=0 otherwise. If
(6gs %1+ - -, xp) and (By,By,. . .,B,) are distinet (p+1)-tuples obtained in
this manner, we define (xg,&;,. . .,&,) < (Bp,f1,- . ., fp) if and only if either

P P
(1) sz“ < zﬂ”
#=0 p=0
or

P P
(2) >, =2p, and, if r = min{s | a,+4,}, then «, > B,.
u=0

Then if (xg,y,...,0,) <(Bo:P1---,Bp) We add the cell associated with
(xgs 41, + -, &) before we add the cell associated with (8, f,. - .,B,)-

Now if o; x 7, and o, X 7, are two cells in the fourth union, then 7, x o,
and 7, X o, are cells in the second union, and we add o, x 7, before o, x 7,
if and only if we added 7, x o, before 7, x 0.

From P(A*)n(BxA[vy,...,v,])=(ANB)x A[v,,...,v,]), it follows
that P(A*)UP(Bx A[v,,...,v,]) is homotopically equivalent to P(4*).
Now suppose 1 <« <p, and let X; be the union of P(4*) with all those
cells which have been added before

By = U (o, v150 - o» By }s e+ s 0) X A0, « s (B )50+ +,0]
Then
XnE, =[A0Ui_ ooy By 0] X Ao, o, By }se - 0] U
U U5 (Ui 0o 1, (B} - 50 X
x [A—(UE_o{St (v, 4) | g%, for any k}u St(vy, 4))]},
and hence H,(X,UE,) is isomorphic to H,(X,) for all r >n. Therefore, if
X, = P(4%) U (Bx A[vy,. . .,5,]) U
uUP_ Ui, URZEe (0o vy (B - 0 X Al B} - o))

tk=1f-1+1
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then H,(X,) is isomorphic to H,(A*) for all r>n. Now

XZ n ((vp+1’vp+2" . ’vm> X A) = Ug=o(<vp+1”up+2" M ’vm> X A[vq]) .

Hence if X3=X,U({¥p41,Vp+2- - -,¥p) X 4), then H (X,) is isomorphic to
H,(A*) for all »>n. By essentially repeating the above argument, we
can show that if
X, = X3U (4[vy,...,v,]xB)U
u U}’:i Ui_, Ui;"‘i}‘k"_lﬂ(A[vo,. S (7% NSRRI PRI TR (79 N ) I
then H,(X,) is isomorphic to H,(A*) for all »>n. Finally
Xy nP(B*) = UP_, ((0g-1,95) X {00, V15 - + +»Vg_2,Vg15- + +» V) U
U U;;O((vq} X (00150 5 0gsw 0, 00) U UP_( ({00, 01,0+ 1Dy o 1,00 X (0)) U
U UP_ (@015 - +3Vg0:0gats - + -5V X Vg1, V) -

For each x=2,3,...,p,

U528 (0po1, ) X (00, V15« 3 Vg0, Vp05 -+ o, Up)) N
n (<va-1’va> x <UO’ L TR TS PRI ’vm»
= (<”a—1> X <170> Voo 3Vs-3Vn415 -+ ,’Um>) .
Therefore Ug;l((vq_l,vq) X {09, V3, +sVq_9,Vg415- - - V) 1S contractible.
Also, for each x=0,1,...,p,
[U;’=1(<qu_1,vq> X (D15 3 Vg 9,Vg415+ + +» V) U
U U205 (g X (Wgy 01+« 3D+ 5 0a))] 0 (€0, X {0,050+ 2By v, 0,))
= ((v‘x> X <’I)0, [ TRIIRPA /M PR T PR =vm>) U
u (<va> X <’I)0,’01,. s Vs 1Vs4050 - - ’vm>) .
Hence
Xy = U ({0g-1,9) X {00, V15 - - +»Vg-2:Vg15- + +» V) U

U UP_ o ({0g) X {005 V15 -« +3Dgs - - +5030))
is contractible. Similarly
Xg = UP_ ({00,015« 5055 + ) X (V) U
U UP_; {00,015+ > ¥q-2sVgi1s - + + V) X (Vg_1,0))
is contractible. Since
X; = P[(AnB)xB—-A4], X¢ = P[Bx(AnB)-4],
X;n Xy = P[(AnB)x(4AnB)—-4],

and AnB is an arc; X;nX, has two components, each of which is con-
tractible. Therefore X,nP(B*) has the homotopy type of a circle. . By
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Corollary 1 of [6], P(B*) has the homotopy of S™-1, Therefore H,(X*)
is isomorphic to H (A*) for all r>n, and Z is a direct summand in
H,_,(X*). Since m—1<mn, X* does not have the homotopy type of an
n-sphere.

TaroreM 3. If AnB=U7 {v,_,,v;}, where, for each 2, (v;_1,v,) is a
simplex of A, and X =AUB, then H (X*) is tsomorphic to H (A*) for all
r>n and X* does not have the homotopy type of an n-sphere.

Proor. The proof is very similar to the proof of Theorem 2. However

if 4= —1, then
P(X*) = P(A*) U (Bx A[vg,...,v,]) U
U U;”;lz Ui_, Ug;g;f;fﬁl ({00,015« o, B }se o VY X Ay, - o B}y -, 0]) U
U U:zn;g Uzn=a+2 (<va’vb> X A[va’vb]) u (A[Uo,- . 5vm] X B) u
U U UL, Un ik L (Alg,. - (B} - 0] X W Vase o (B3} - 0)) U
U U:zn-—jg U;)n=a+2 (A[va’vb] x <va’vb>) u P(B*) .

We add the above unions to P(4*) in the order in which we have listed
them. We order the cells within a given union in exactly the same way
that we ordered the cells within the corresponding union in the proof

of Theorem 2, and then we add the cells according to this ordering.
Also, as in the proof of Theorem 2,

P(A*) U (B x A[v,. . -,vy])

is homotopically equivalent to P(4*). By making the obvious modifica-
tions to the proof of Theorem 2, we can show that if

X, = P(A*) U (Bx A[vg,. - -,5,]) U
uUr2 Ui, U:’;;f;-*,;’fﬂl (s V15« o> By s e+ s V) X Al0gs - o, B }se -, 0]) U
u U:zn:g ;)n=a+2 (<vwvb> X A[va’vb]) u (A[vO’ e ?vm] X B) u
VU UL UnEi® (A, o By« 50l X 00,015+ (B} 0)) U
U U;n;g U2"=a+2 (A [vwvb] X <va’vb>) ’

then H (X,) is isomorphic to H,.(A*) for all r>n. Also
X, nP(B*) = UZL; ({0g-1,%) X (V0 V15 - - +3Vg-2,Vg415+ - -, ¥)) U

u U;n=0(<vq> X <00’UI" .. ’aq" .. ,vm>) u U;n=0 (<’00,’Ul,. .. >’8q: e 4. ,'Um> X <'Uq>) U
U U (C00s V15« + - »Pg2:Vgits- - +»Vm) X Vg1, Vg))
and hence we can use the proof of Theorem 2 again to show that H (X*)

is isomorphic to H,(4*) for all »>n and X* does not have the homotopy
type of an n-sphere.
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3. Trivial homology groups of deleted products.

THEOREM 4. Let A be a finite, n-dimensional polyhedron, and let B be an
m-simplex, 2 <m =< n, with vertices vy,vy,. . .,V,. If ANB={0y,0y,...,0,),
where {(Vg,V,...,V,) is a simplex of A, and X =AUB; then H (X*) is
isomorphic to H,(A*) for all r>n.

Proor. Let f: X -~ A be the simplicial map defined by f(w)=w for
each vertex w of 4 and f(v;)=v,. Then, by Theorem 2 of [7], P(X,*)
is homotopically equivalent to P(4*). If i,= —1, then

P(X*) = P(X*)u <vl,v2, c Uy X Alvg | vg,. . . 0,]) U
U U"“1 Ui_ U:’;"’;;fl I CCIIC TR (o N M) S
x A[vy | vy, . . {%,} e U]) U (A[vg | v, .+ 0] X (01,05, .+ 4, 0,0) U
U U;’:ll Ui UnZik (Alvg | v, Bise o 0] X

X (01,0950« o5 D}y v 5 0p))

We add the above unions to P(X*) in the order in which we have listed
them. We order the cells within a given union in the same manner that
we ordered the cells within a given union in the proof of Theorem 2, and
then we add the cells according to this ordering. Since

P(Xf*) n (<U1,’U2,. . ->vm> X A['UO l '02,. . .,’Um])
= ((Vg,V3,. + ., V) X A[vg | Vg,. . ., 0,,]) U
U ((vvvz’ e ’vm> x [a(St’(vo’A)) Um 2St( )]) ’

H(P(X*) U (0,05, « -, 0y X Ay | vg,. . .,0,]))

is isomorphic to H,(P(X,*)) for each k. Now suppose 1 <& <m—2, and
let X, be the union of P(X*) with all those cells which have been added
before

By = Ui 1 (Ko« D }s e+ o) X A0 | 0950+, (B3} - - 505)) -
Then
X, nEy = Ui ((vp,vg,. ., (B3}, o X0 X Ay | Vg, . o, By} - 2, 0]) U
VUi (01090 s Dy )s v o0 X
x [8(St (vy, 4)) — UgLo {St (vg, 4) | g 1), for any k}]) U

U s {(Ugo 1 (0109 - B3} - 5 000) X
X [St(vg, 4) — (UgLo {St(vg, 4) | g +1; for any k} U St(vy,, 4))]} -

Therefore, if
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X, = P(X/*)u ((vl,vm. co Uy X A[vg | vg,. . 0] U
u U;':12 Uli=1 UZZ;?)—£1+1(<UI’”2’ sy {aik}’ s ’vm> X
x Alvg | va,. . o, (D5 }- - -5 0ml)

then H,(X,) is isomorphic to H(P(X,*)) for each k. Now

Xy 0 (Cv1) x St (v,4)) = ((7’1) X 3(St(”oﬁ4))) U U?=2(<”1> x A[vy|vg])

and hence H k(X2U(<vl>xSt(v0,A))) is isomorphic to H,(A4*) for each
k>mn. By essentially repeating the above argument, we can show that
H,(X*) is isomorphic to H;(4*) for each k> n.

TrEOREM 5. If X is a finite, contractible, n-dimensional, n =3, poly-
hedron with the property that a homeomorph of X can be constructed out
of an n-simplex A by appending m-simplexes, 1 <m<n, in such a way
that the construction may be factored

A=X-X,—-~...-X =X

so that X, is obtained from X,_, by

(1) adding an m-simplex, 1 <m <n, which meets X;_; in just one of its
vertices,

(2) adding a 2-simplex which meets X,;_, in just one of its 1-faces,

(3) adding an m-simplex, 3 <m <n, which meets X;_; in exactly p of its
1-faces, 1 < p<m, where the intersection of X;_; and the appended simplex
18 an arc, or

(4) adding an m-simplex, 3 <m <n, which meets X;_; in exactly one of
its (m—1)-faces,

then H (X*)=0 for all r>n.

Proor. By Corollary 1 of [6], A* has the homotopy type of S»-1.
Suppose 2<i<p and H,((X,; ;)*)=0 for all r>n. If X, is obtained from
X,_, by (1), where m=1, then, by Theorem 4 of [7], H,((X,)*)=0 for
all 7>n. If X, is obtained from X; ; by (1) and 2<m=n, then, by
Theorem 1, H,((X;)*)=0 for all r >n. If X, is obtained from X;_, by (2),
then, by Theorem 4, H,((X;)*)=0 for all r>n. If X, is obtained from
X,_, by (3) and 1 <p<m, then H,((X;)*)=0 for all »>n by Theorem 2.
If X, is obtained from X, ;, by (3) and p=m, then, by Theorem 3,
H,((X;)*)=0 for all r>n. If X, is obtained from X, , by (4), then
H,((X;)*)=0 for all r>n by Theorem 4. Hence H,(X*)=0 for all r>n.

THEOREM 6. Suppose 2<smsn and let D,™ be the polyhedron whose
vertices are {thg, Uy, . . ., Uy, Vg, V1, - -,V ¥} and whose simplexes are
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{Cwgy g, o o By oo Uy, vy | 0=0,1,...,0},
O{Vg, V1, - +5 D50 o s, 0) |7=0,1,...,m} .

If m$n, H,,, _((D,™*) 18 isomorphic to the direct sum Z+Z,
H’n((Dmn)*)> Hm((Dmn)*): Hl((Dmn)*)

are isomorphic to Z, and H,((D,®)*)=0 if r is neither n+m—1,"n, m,
nor 1. If m=mn, Hy, ,((D,™*) and H,((D,™)*) are isomorphic to"the
direct sum Z+Z, H\((D,")*) is isomorphic to Z, and H((D,")*)=0 if r
18 neither 2n—1, n, nor 1.

Proor. If A=UZ_ (ug,%y,. . 8y -+, 2,,0)U{01,05,0), then, by Theo-
rem 1, H,(4%*) is isomorphic to Z, H,(A*) is isomorphic to the direct
sum Z+Z, and H (A*)=01if n$r+1. Also if

A = U2 (Qugytyye o oy By v o Uy, ¥ X (U1, Vgy e+ 2,0y, 0D
where m > 2, then, by Theorem 1,
Hn(A*)’ Hm—l(A*), HI(A*)
are isomorphic to Z and H,(A*)=0 if r is neither n, m—1, nor 1. It is
clear that if
B = U?_ (g %q,- ooy By oy Uy, ) U U]'-";ol(vo,vl,. N O
then H,(B*) is isomorphic to H,(A*) for each k. If o= (v,,vy,...,0,_1,7),
then
P((D,,")*) = P(B*) U U2 (0 % (tgy Uy, .« s By« +,%p») U (0 X (v,0) U
U U2 0 (Wos Vs - -+ 5 Uppy) X (uo,ul,. . .,ﬁi,. Uy, VY) U
u ((”o,”p- . ’vm—-1> X <Um,’U>) v
U UZ_ (Ctbgs gy -+ o5 By e o o8y X ) U ({0y X 0) U
U UZ o (Celgs Bgs e+ o3 Bgye v oy Uy 0 X (0, Vs« « V1)) U
U ({0, ) X {0y V13-« 1 Vpp_1)) -
For each k=0,1,...,n,
[P(B*) U U¥ZY (0 x (ugy gy -+ s Ry e« oy )] 0 (0 X CUgy Ugs e v oy By o D)
= UZ5 (o1« 35 o+ 30y 0D X Uy g+ o By -, %)) U
U UEL (0 x Qugy g, e+ sy e oy ooy %))
Therefore X,=P(B*)uU?_,(0o x {up,%y,. .., %, ..,%,)) is homotopically
equivalent to P(B*). Also

Xyn(ox (o) = j=0 (<vo’vl’ o ’ﬁj" U, U)X (V)
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and hence X, =X, U (o x {(v,,)) is homotopically equivalent to P(B*). Now,
for each k=0,1,...,n,

(XU UEL (o015 - vy Uea) X (g thgy - o vy By v 2, U,0D)] 0

N (Vg V1se  « sV X LUy Uy e o oy By o oy Uy, V)

= U2 (00, 015+ 3055+ s Opyeg) X Ctlgy g+ oy By v, U, 0)) U
U (Vg V15« U)X Uy Ugse o oy gy o oy ») U
f—
U USZ (C0gs 015« + s V1) X Clbgy gy e« oy gy v oy By e o oy U, 0))

and therefore
Xy = X, UU 0oy Vs -+« s Uy X (Uigy Uy v oy Bgye o o 3%, 0))
is homotopically equivalent to P(B*). However

X3 0 (Vs Vs o+ s Vppg) X (o Ugy e o vy Uy _4,V))
has the homotopy type of S»+m-2, It is clear that each cycle associated
with

X3 0 (W V15« 3 Vg X Clgy Uy e v vy Upy_1,V))
bounds in

(Vgs Vs + «3Vm1y X {Ugy Uy, e o vy Uy 1,V
and it is also true that each cycle associated with
X3 0 (Vg V15« 3 Vper) X Uy Uy e v vy Uy g, D)
‘bounds in the subset
U2 (0 x (ugyUgs e v oy Byye v oy ») U

U UL (C0g, 015 -+ s V1) X gy Uy e o oy By v oy U, D) U

U T Ul o (s 015+ - 5D o3 Oy 0 X Uy Uy« 5By o)) U

u U;'L‘Ol U2 o (0gs 015« 3 Dgse v vy 0p) X QUgy Uy e v oy By o vy U, 0))
of X,. Therefore if

X, = X3U ({001, - - sUm—1) X {Ugy Uyy e o oy Up_1,0)) 5
then, if m > 2,
Hn+m—1(X4)’ Hn(X4)’ Hm—l(Xal)’ Hl(X4)

are isomorphic to Z and H,(X,)=0 if r is neither n+m—1, n, m—1,
nor 1 and, if m=2, H,,(X,) and H,(X,) are isomorphic to Z, H,(X,) is
isomorphic to the direct sum Z+Z, and H,(X,)=0 if r is neither n+1,
n, nor 1. Now
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Xy N ({95015« + 3 V1) X (U, )
= U (00, 015+ 5051+ 1 Vg X (0, 0)) U
U (%05 V15 + V1) X V) U ({0, V1 + 5 Vpg) X D)),

and hence X, N ({(vy,vy,. ..,V 1) % (V,,,v)) has the homotopy type of
Sm-1, Let

G = U (ug, g, ooy e oy %,,0)
H = U3 (0,01, + -,y + 2,000,
Y, = P(G*)UP@xH—A)UP(HxG—A4)u

U U2 (0 x Cttgy gy e« oy Byye o o, U, )) U
U UL 0 ((0gs Vs -+« s V) X Cthgs Uy e« o3 Bgy e o oy U, D)
Y, = P(H*) U (6x{v,)) .
Then
X, = Y,uY,,
Y nY, = UG (o) x (g, 03,0 - 2, 8jye ., 0)) U
UU;’;O ((Vo, 015+« 3By o o, V) X CVY)

U_;’:Ol (<v0:7}1" .. ’@jv . :vm—1> X <’I)m,?)>) U (<vo’vl" MR m—1> X <vm>) < Y2 ’
and

(Vs V15« -3 Vp-1) XKV)) < V.
Therefore if any nontrivial (m —1)-cycle associated with

X0 ((WgsVpse  + s V1) X (Vs VD)
bounds in X,, then there exists an m-cycle in” Y, whose boundary is
(Vgy V15 + + Uy X {v). But this is impossible since (vy,v;,. . .,v,_1) % (¥)
is not an (m — 1)-cycle. Hence no nontrivial (m — 1)-cycle associated with

X4 n (<,00’vl’ e ’vm—1> X <vm:v>)

bounds in X,. Now observe that if m>2, then P(H*) carries the
(m —1)-dimensional homology of X,, and, if m =2, then P(H*) carries a
subgroup of H,(X,) isomorphic to Z. Also observe that if z, is a non-
trivial (m —1)-cycle in P(H*). then there is an m-chain associated with
the subset
(ex{vm)) U U;'"=o(<”o"”1:~ . c o3V U X (%)) U
U U7 (Cvg, 015 - - « ,@j,. v s U X (U, VD)

of X, whose boundary is z; —2,, where z, is an (m — 1)-cycle in

X0 (WgsV1se o+ 3V X (U, VD) .
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Thus it follows that if

X5 = X, U (v, vy, - - s Um-1) X (U, VD)
then H,,,,,_,(X;), H,(X;), and H,(X;) are isomorphic to Z and H,(X;)=0

if 7 is neither n+m—1, n, nor 1. For each k=0,1,...,n,
[X5 U U (Ctgy g, e o vy Ry v oy %) X 0)] 0 (Cttgy gy e - vy Ry« 5%, X 6)
= UZ (Cugy s+ v oyl oy ) X (g, 05w o,y o 1,05, 0)) U

U URL (Cutgy gy oy gy oy By o oy, ) X )

Therefore if Xg=X,uUZ (( g, %y, . . 8y,. . ., %,) X 0), then H, . 1(X,),
H, (X,), and H,(X,) are isomorphic to Z and H,(X)=0 if r is neither
n+m—1, n, nor 1. Also

Xen vy xo) = U;-’:(}((vm> X (00,000« 3 Djse v 3 V1, 0))

and hence X,=X,U({v,) x o) is homotopically equivalent to X,. Now
for each k=0,1,...,n,

(X, U UEZL (Cutgy Ugs v oy By e vy U 0) X 0,015+ 2,00 )] O

0 (s Uy e o oy Bps e o vy U, 0 X Vs Vg, + « 3 Upy1))
= U2 (CUgs gy v+ oy Bis e+« 0) X {00,015+« 03Dy o 2,0 1)) U
U ((tgyUys e+« s By o s Uy) X Wy Ve, e« o3 Vpq ) U
U UL (Qugyteg, e v oy By o oy oo 2y 0) X (D0, 015+« 01D

and hence
Xg = X, U U2 (Qugytgse o oy By v oy U, 0) X {00, V1, e« 3 V1))
is homotopically equivalent to X,. However
X 0 (g gy + oy Up_q, V) X (Vs V50 o o, Vppy))
has the homotopy type of S»+m-2, Again each cycle associated with
Xg N (g Wy e o oy Upy1,0) X {0, Vg, 0« o, V1))

bounds in {ug,%;,. . .,%,_3,0) X {V4,Vy,. . .,V,,_1) and in the subset

UP_ o (CtgyUgse « oy Bs o o, Uy X ) U

U UPZ ((ugy gy« - oy v oy Uy 0) X (00, 0g, 0 12,0 1)) U
v Ur Um’ (Qtgy Uyy e o vy By e+ oy U X (Vg 01, - - .,@1 ey Uy 0Y) U
U Uz= 70 (s Uy e« oy By v oy Uy 0D X (W, 01,0, B0

of Xy Therefore if Xo=XgU({tg,ts,. . -, Up_1,0) X (Vg,V1,. . .,Vpy_y)), then
H, .n-1(X,) is isomorphic to the direct sum Z+Z, H,(X,) and H,(X,)
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are isomorphic to Z and H,(X,)=0 if r is neither n+m—1, n, nor 1.
Finally

X9 n ((vm’v> X <v0’vl! tee ’vm—1>) = (<v> X (vO’vlﬁ R ’vm—1>) U
U ({0 X (00, 01,+ + +301)) U UT0 ({030, 0) X {00,015+« 0,0y o 1,0 0))
and hence Xyn({w,,v) X {wy,vq,...,v,,_1y) has the homotopy type of
8m-1, Now if 2z, is a cycle in XN ({v,,,v) X (¥, ¥q,...,0,,_1)), there is a
chain ¢ in

P(H*) U (0% {(w,)) U ({v,) X o) U
U U7 (Cttg,0) X {00,015« 5D, 1 0, 0,)) U
U UTL o (C2g) X {005 015+ + 505+ 2,0y 0D) U
U U o ({00, 035+ + D)+ 2,0 X 2, 0)) U
U U}';O((vo,vl,. v Dy eV, 0D X (Ug))

such that dc=z, —z,, where z, is a cycle in

X4 n ((’Uo,’Ul, s 7vm—l> x (’Um,’l)>) .

Therefore each cycle associated with Xyn({v,,,v) x {Vg,Vy1s- - -, Vpp_1)
bounds in X, and in ({(v,,,v) X (Vp,?¥15...,Vp_1y). Hence if m=+mn,
H i m1(P((D,)*)) is isomorphic to the direct sum Z +Z, H,(P((D,,)*)),
H,,(P((D,)*)), and H,( P((D,,")) are isomorphic to Z, and H ( P((D,,")*))
=0 if r is neither n+m—1, n, m, nor 1. If m=n, Hy, ,(P((D,*)) and
H n(P((Dm")*)) are isomorphic to the direct sum Z+Z, H 1(P((Dm")*)) is
isomorphic to Z, and H ,(P((Dm”)*)) =0 if 7 is neither 2n—1, n, nor 1.

THEOREM 7. Let X be a finite, contractible, n-dimensional polyhedron,
and let B={vy,vy,...,,,) be an m-simplex (3<m=n). If

XnB = UP (v,v,),

where, for each A, (vy,v,) 18 a simplex of X, and Y =X UB; then H,(Y*)
s isomorphic to H (X*) for all r>n+1. Moreover if a homeomorph of X
can be constructed out of an n-simplex A by appending t-simplexes
(1=t=n) in such a way that the construction may be factored

4=X-X-»>...>X,=X

o that X, is obtained from X, ; by (1), (2), (3), or (4) of Theorem 5, then
H,(Y*)=0 for all r>mn.

Proor. If the additional hypothesis is satisfied, then, by Theorem 5,
H,(X*)=0 for all >n. Thus if X can be constructed in this manner, we
need to show that H,(Y*) is isomorphic to H,(X*) for all r>n. In any
case, if ¢y= —1, then
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P(Y*) = P(X*) U (Bx X[0y,. - .,0,,]) U
UUPZ UL, Undik (e g, o)« 0 % X[, . TP S | NV

=1k-1+1
U Ufl_ _2 UL (0u0a - B vy x X[y, D) 0] U
U (X[vg,. -] x B) U
uUrz Ul Ungik | (X[v,. . {vlk} V] X W,V o B s V) U
U fo CUpsUk2, (X vy, I A E S CITC 7S (5 SN 1Y)
U P(B¥) .

We add the above unions to P(X*) in the order in which we have listed
them. We order the cells within a given union in the same manner that
we ordered the cells within a given union in the proof of Theorem 2, and
then we add the cells according to this ordering. Since

P(X*) 0 (Bx X[y, . .,v]) = (X0B)x X[vg,. ..,v,]),

P(X*)u(B x X[v,,...,v,]) is homotopically equivalent to P(X*). Now
suppose 1 <a<m—2, and let X' be the union of P(X*) with all those
cells which have been added before

By = U1 (K0oo0pse - o, (B3} e 0 X X[wg, . o, (B3}, o1y 00])

Then
X'nE, =
[X n U (o015 - s B3 ds e+ 50 X X[vgs e oo D}y« 0] U
UU; 1{(VUga1 ({00015« o5 Bds e+ -5 000)) X
x[X — (q 0{St (v, X) | g1, for any k} U St (v zﬁ, X))} .

If 4,>0, X'UE, is homotopically equivalent to X’. However if ¢;=0,
we may change the homotopy type of X' by adding £,. But, in this
case, if r>n, H,(X'UE,) is isomorphic to H,(X') unless H,_,(X'nE,)+0.
Since X is a contractible, n-dimensional polyhedron, H(X'nE,)=0 for
all s>n. Therefore H,(X'UE,) is isomorphic to H (X’) for all r>n+1.
If H,(X'nE,)+0, then in the construction

A=X1_)X2‘_)-.. _>Xp=X

of X, there must exist ¢, 2<¢ < p, such that X; is obtained from X,_,
by adding an n-simplex which meets X;_; in at least two of its (n—1)-
faces. Thus if the additional hypothesis is satisfied, then H (X'UE,) is
isomorphic to H,(X') for all r>n. If 1Ssa<m—1, a<bs<m, and X" is
the union of P(X*) with all those cells which have been added before
By =(v,,v,) x X[v,,v], then

Math. Scand. 29 — 15
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X" 0By = ({vg) % X[v4:0]) U ({0p) X X[v,,]) U

m
U U (@029 % X[0,00:%5]) -
ai;gb
Therefore by an argument similar to the one above, H (X' UH,) is iso-
morphic to H,(X") for all r>n+1, and, if the additional hypothesis is
satisfied, then H, (X" UE,) is isomorphic to H, ,(X"'). Thus it follows
that if ¢,=—1 and

X3 = P(X*)U (BxX[vgs...,0,]) U
UUR UL URZEe L (@avye o B o0 0n) X X0, o, Dy - -, 0p]) U

i=1k—1
~2 | &
u U?1=1 U1l:l=2 Ui:=2ik_1+1 (<vl’v2$ “ ey {,aik}’ LI >vm> X X[vl’ ey {ﬁik}, LI )vm]) ’

then H ,(X3) is isomorphic to H,(X*) for all »>n+1, and, if the addi-
tional hypothesis is satisfied, then H,(X3)=0 for all »>n. By essentially
repeating the above argument, we can show that if

Xt = X3U (X[vgs. - .»0p]xB)U
U UPR UL Uk L (X0 o Dby« o3 0m] X {00,005+, By o, 0pd) U

tp=1k—1+1
-2 |k
u U2 U UR2, (X on e 0 - 0] X g, D), - 00))

then H ,(X*) is isomorphic to H,(X*) for all r>n+1, and, if the addi-
cional hypothesis is satisfied, then H, (X*)=0 for all »>n. Since P(B*)
has the homotopy type of S™-! (see [6], Corollary 1) and m<n,
H (X*uP(B¥)) is isomorphic to H,(X*) for all »>n unless there exists
a nontrivial s-cycle, s=n, in X*nP(B*) which bounds in P(B*). But
this cannot happen since P(B*) is (m—1)-dimensional. Therefore
H ,(Y*) is isomorphic to H,(X*) for all r>n.

The following theorem gives an example to show that adding an
m-simplex to a finite, contractible, n-dimensional polyhedron
(3<m=n) at an m-odd may add (n+ 1)-dimensional homology to the
deleted product.

THEOREM 8. If 3<m=n and A is the polyhedron whose vertices are
{00y V1« o s Vs Wy, Wy o o oy Wiy, Uy, Ug, o o+, Uy} AN whose simplexes are

{Wo Wy, W, « o, Dy, o o, Wy [1=1,2,...,n+1}U
U {(ovpu;) |7=1,2,...,m} U (v, %;,%,) ,
then H (A*) is the free abelian group on 2m — 3 generators, H,(A*) is the
free abelian group on m?—m generators, and H.(A*)=0 if n¥r£l.

Furthermore if B={vg,0y,...,0,,) t8 an m-simplex and X=AUB, then
H, (X*) and HyX*) are isomorphic to the direct sum Z+Z, H,(X*),
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H, _,(X*), and H,(X*) are isomorphic to Z, and H (X*)=0 if r is neither
n+1, n, m—1, 2, nor 1.

Proor. If K, = (UM, wy,wy,. .., D;,. .., W,.10) UV, Uy, Uy, then by
Theorem 1, H,(K,*) is isomorphic to Z, H,(K,*) is isomorphic_to the
direct sum Z+Z, and H(K,*)=0 if n$r+1. Since

K,y = Ky U {0,01,%1) U {0, Vg, Ug)

is homeomorphic to K,, H.(K,*) is isomorphic to H.(K,*) for each r.
Now for each k=3,4,...,m, let

K, = Kyu U;-“=3(v0,vj,uj> .
Then, for each k=3,4,...,m,
P(K,*) = P(K3_;) U P(Kj_y X (0o, 0y gy — A) U
U P ({0, Vg, gy X Ky — A) U P(({0g, Vg, D) *)

Now
P(K;_y X o, Vi tgey — A4) = (K g X {0p uy)) U

U (U (o wa, - o, By o, W1 X (V0 Vs W) U (g, g X <vo’vk,uk>):U
u U(f;}(v,,u@) X <Uo:vk:'“'k>) ’
and hence P(K,,_; x (vy,;,u;,—A4) is contractible. Since
P(Kp ) 0 P(Kj_y % {00, Vg, Wy — A) = ({tg, ug) X {v)) U
U (U Gwy g, o, Dy, vy Wiiq) X (D)) U (URZ1 (095> x ()
it follows that
H,(P(K{;) U P(K_y x {0, v %) — A))
is isomorphic to the direct sum H,(P(K;,))+Z,
H1(P(K;:—1) U P(Kj_q % (04, U, Uy — 4))
is isomorphic to the direct sum of H,(P(Kj,)), and the free abelian
group on k—2 generators, and
H (P(K}y) U P(Kpq % 05,0, %) — 4))
is isomorphic to H (P(Kp ) if n+r+1. Also P((vg,vy,u) x K;,_y —A4)
is contractible and
[P(K;:_l) U P(Kk—l X <vo’vk:’u’k>'—A)] n P((”O’”k!“k) X Kk—l_A)
= ({vo) X Uy, Up)) U
U (U1 (Copy x €03 u3)) U (UEL(C00) X w0y, g, -+ Dy« 2, W 41)))
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Therefore, if
M = P(K;:—O U P(K 1 X (09, Vje gy — A) U P({0g, vy, 0y ) X Ky — A)

then H,(M) is isomorphic to H,(P(K},))+Z+Z, H,(M) is isomorphic
to the direct sum of H,(P(K;,)) and the free abelian group on 2k—4
generators, and H (M) is isomorphic to H,(P(K;,)) if n+r+1. Since
P(({vg, vy, ugp)*) has the homotopy type of S* and

M 0 P((Cvo, 0 wg))*) = ({06) X Vs we)) U ({0 e X (V) 5

H,(P(K.*)) is isomorphic to H,(P(K},)+Z+Z, H,(P(K,*) is iso-
morphic to the direct sum of H,(P(K}*,)) and the free abelian group on
2k —2 generators, and H,(P(K,*)) is isomorphic to H,(P(K} ) if n+
r=# 1. Therefore it follows that H,(4*) is the free abelian group on 2m — 3
generators, H,(A*) is the free abelian group on m?—m generators, and
H, (A*)=0if n&r+1.

Now let @=UM1 vy, wy,wy,. .., D;. .., W, and N=GUB. Then, by
Theorem 1,

H,(N*), H,(N*), H(N*)

are isomorphic to Z and H,.(N *)——'-O if 7 is neither n, m—~1, nor 1. For
each j=1,2,...,m, let Q;=NuUUj_,{v,,v;,%). Then, if Q,=N,
P(Q;*) = P( ]_1) U P(Q;-1 % (vg,vj,u;) — A) U P({vy,v;,u;) X Qi1—4).

Now
P(Q;-1 % {vg,vj,u;) —A) = (G x {vj,u;)) U

U (U wy, wa, . oy Dy v o, Wy gy X (vo, ,u;p) U
U ({0gs 01, +» Uy X () U ((vo,vl, oDy, Uy X (V5 u)) U
U ({vy, 09+ - +5 V) X {00, %3)) U ({01,050« 5050+ 50300 X Vg, 05, 5) U
u (Ui (vo,v,c,uk) x (;,%;) U (UIZ4 Copo ) ¥ (vo,v,,up
and
P(Q},) N P(Q;_1 x (o, vj,u;p ~A) = (G x <”]>
U (U wy, wy, e oy Dy v o Wyin) X {00, 050) U ({00, V15« 13Dy 2,0y X {0;)) U
<”1’”2’ ey X {0Y) U ({03,095 By 000 X <”0’”j>

U (U], {0, 05 gy X (0D) U (U,-: 4 (v gy X (v, v;))

are contractible. Therefore P( ]_1) U P(Q;_1 x {wy,v;,u;)— A) is homo-
topically equivalent to P(Q"‘_l) Similarly it can be shown that P(Q,*)
is homotopically equlvalent to P(QJ’"1 Therefore if

Q=Nu Uj=1<”o’”i’uj>a
then P(Q*) is homotopically equivalent to P(N*). Also
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P(X*) = P(@*) U P(Q x (v, %y, %) — A) U P({g, %y, Up) x @ —4) .
Now

P(Q x (v, ug, ugy —A) = (U1 {wy,wy, . . o, @y, o, Wy 1q) X (05, g, Ug)) U
U (G x Ctty, ug)) U (B X {Uy, g)) U ({01, 0, -« -3 V) X (Vg5 Uy, %g)) U
U (U;i3<vo>vj:uj> X Uy, Usg)) U (U;n=3<vj’uj> X Vg, Uy, p)) U
U (0,01, %) X (Us)) U ({v1,%1) X {0, Uy)

is contractible, and

P(@*) n P(Q x (g, ug, up) — A) = (G x (uy)) U (G x {ug)) U

U:‘*l Wy, Wy vy Dy vy Wy 1) X {VgyUp D) U
U (UZET Cwyy g, o o @y, W) X (U0, 1)) U (B X)) U (B x (up))

U ((”1»”27 Uy X <'Uo’u1> (V1,025 - -,V X (Vg Up)) U

u (U i3 {00, Vs, ;) X (Ug) U U;n=3<”o’”p u;) X (Ug)) U

u (U 5 vy, %) X (v, uy)) U mS(vJ,u>x<v0,u2))u

U (g, 01, %) X {gp) U ((Vg, Vg, Up) X {ty)) U

U ({01, %) X Vg, Ug)) U ({0, tg) X Vg, %)) -

Therefore

Hn(P(Q*) n P(Q X <7)0,u1,u2>——A))

and

H\(P(@*) N P(Q x {vy, Uy, up) — A))
are isomorphic to Z and H (P(Q*)NP(Q x (vy,uy, ug) —A))=0 if nr+1.
In particular
= (G x Cup)) U (U {wy wa, - o, Dy, o, Wy 1) X {00, %)) U
u (G X <u2>) U UM—l <w1’w2’ . ’wi’ cee >wn+1> X <vo’“2>)

is an n-sphere in P(Q*)NP(Q x {vy, %, Uy —A) such that no non-trivial
n-cycle associated with this sphere bounds in

P(Q*) n P(Q X <v()1u1"u’2>"A) ’
and
Iy = ((wg,wy) x (us)) U ({wy) X (g, u1)) U ({wy) X {0, Up)) U
U (v, Wy X (Ug)) U ({09, v1) X Ctgp) U ({vy) X {0, Up)) U
U (Cv1) X (vo, %)) U (g, v1) X (uy))

is a l-sphere in P(Q*)NP(Q x (vy,u;,us)—A) such that no non-trivial
1-cycle associated with this sphere bounds in

P(Q*) n P(Qx(vo,ul,u2>—A) .
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If 2, is an n-cycle on I, then there is an (n+ 1)-chain ¢, ., on the subset

(U1 (Wos w1, way « « By, + Wy 10) X 01,81 )) U

U?akvo’wvwz: ces Wy Wy 1) X (Va, Up)) U

U (U1 g, wy, Was e« oy By o o Wy ) X (¥3,05)) U

U (UM wy,wy, .« Dy oy Wy 1) X {4,01,%,)) U

U (UM wy, wy, . o o, Dyy e Wy 41D X (Vg Vg Ug)) U
U (U‘?:% <w1’w2" .. ’w’i" A ’w’n""'l) X <’00’vl”02>)

of P(@*) such that d(c,,,)=2,. Also, if 2, is a l-cycle on I',, then there
is a 2-chain ¢, on the subset

({w) X {09, v1,%1)) U ({wy) X ¥y, v1,09) U ({wy) X (v, 03, %p)) U

U (v, w1 X {01,%1)) U ({9, w1 X (¥1,5) U ({Vg, w1 ) X V3, %p)) U

U ({0, v3) % {01,%1) U ((Vo,3) X {01,9)) U (v, 3) X {3, %p)) U

U ({00, v1,v3) X Ugp) U ({0, v1,03) X D) U (v1,03) X {0, %)) U

U (w1930 X 04, %g)) U ((V3) X {0, ¥1,%1)) U ({03 X {¥y,1,03)) U
U (vg) x (g, Vg, Us))

of P(Q*) such that o(c,) =2;. Therefore
H (P(@*) U P(Q x (v, U, ug) — 4))

is isomorphic to Z if s is either n+1, n, m—1, 2, or 1, and it is zero if
s is neither n+1, n, m—1, 2, nor 1. By a similar argument, it can be
shown that H(P(X*)) is isomorphic to the direct sum Z+ Z if ¢ is either
n+1 or 2, H(P(X*)) is isomorphic to Z if s is either n, m—1, or 1,
and H (P(X*))=0 if s is neither n+1, n, m—1, 2, nor 1.

If we examine the last part of the proof of Theorem 8, we can observe
that this theorem also gives an example to show that adding a 2-simplex
to a finite, contractible, n-dimensional polyhedron, » =3, at two of its
1-faces may add (n+ 1)-dimensional homology to the deleted product.
However we have the following theorem.

TreorEM 9. If X is a finite, contractible, n-dimensional (n=3) poly-
hedron with the property that a homeomorph of X can be constructed out
of an n-simplex A by adding m-simplexes, 1 <m=mn, in such a way that
the construction may be factored

A=X>Xy»>...>X, =X

so that X; is obtained from X, _; by (1), (2), (3), or (4) of Theorem 5 or by
(5) adding an m-simplex, 3<m=n, which meets X, , in exactly m
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1-faces, where the intersection of X, , and the appended simplex is an
m-odd, or

(6) adding a 2-simplex which meets X, , in exactly two of its 1-faces;
then H (X*)=0 for all r>n+1.

Proor. By Corollary 1 of [6], A* has the homotopy type of S»-1.
Suppose 2<i=<p and H((X;_;)*)=0 for all r>n+1. If X, is obtained
from X, , by (1), (2), (3), or (4) of Theorem 5, then we repeat the proof
of Theorem 5 to show that H,((X,)*)=0 for all r>n+1. If X, is ob-
tained from X;_, by (5), then, by Theorem 7, H,((X,)*)=0forallr>n+1.
If X, is obtained from X;_, by (6), then, by Theorem 7 of [7], H,((X,;)*)=0
for all r>n+1.
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