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ON FINITELY GENERATED FLAT MODULES III

S. JONDRUP

0. Introduction.

Let us first recall some definitions from [3]. A ring R is said to be a
left-n-FGFP ring (right-n-FGFP ring) if any n-generated flat left (right)
R-module is projective. Ris called an n-FGFP ring if R is a left- and right-
n-FGFP ring. If R is a right-n-FGFP for all n, then we say that R is
a right-FGFP ring. A right- and left-FGFP ring is called an FGFP ring.
We always assume that n is finite. For n equal to R, a left-n-FGFP ring
is left perfect [1].

It is well-known that a semiperfect ring is an FGFP ring, cf. J. Lam-
bek [4, § 5.4, exercise 10]. In [3] it is proved that a subring of a right
noetherian ring is an FGFP ring and it is proved that subrings of left-n-
FGFP rings are left-n-FGFP rings, too. This last theorem was also
proved by I. I. Sahaev [6].

In section 1 we shall prove that a ring R, with w.gl.dim.R<1, is a
left-n-FGFP ring if and only if R is a right-n-FGFP ring. As a corollary
of the proof we get a new and simple proof of the fact that any n-fir
is an n-FGFP ring.

In section 2 we construct a ring R with the following properties:

(i) There exists a cyclic flat non-projective left R-module.

(ii) R is a right-1-FGFP ring.

All rings considered in this note are associative, with 1, all ring homo-
morphisms preserve 1 and subrings have the same 1.

1. Left- and right-n-FGFP rings.
In the study of left-n-FGFP rings the following lemma is useful:

LemmA 1.1. Let R be any ring. Then the following conditions are equiv-
alent:

(i) Any cyclic flat left R-module is projective.
(ii) Any ascending chain of principal left ideals

(@) ... (@, € ..., where a,0,,, = a,,,
terminates.
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(iii) Any descending chain of principal right ideals

(@)= ... 2(@,) 2 ..., where a,0,,,=0,.1,
terminates.

The lemma is proved by I. I. Sahaev in [5].
Furthermore we need the following well-known lemma:

LeMMA 1.2. The following statements are equivalent for the ring R:

(i) R has no infinite set of non-zero orthogonal idempotents.

(ii) R satisfies the ascending chain condition on ideals eR (or ideals Re),
where e denotes an idempotent in R.

(iii) R satisfies the descending chain condition on ideals eR (or ideals Re),
where e denotes an tdempotent in R.

Lemma 1.3. Suppose R satisfies the ascending chain condition on left
point annulets, that is, ideals of the form l{a}= {x | xa =0}, then any cyclic
Sflat left R-module is projective.

Proor. It is easily checked that R satisfies the equivalent conditions
in lemma 1.2.

Suppose we are given an ascending chain of principal left ideals
(1) (@) ...c(ay) s ..., with @a,0,,,=0,.

We have to prove that (1) becomes stationary. We claim that
Hl—-a,)}<l{(1—ap,,)} for all m. If x is an element in I{(1 —a,,)}, then
z—za,,=0. Hence za,,,,—za,a,,,=0 and consequently

X, = X0, =%, thatis, zel{(l—a,.)}.
It follows now that there exists an m, such that
H(1—an)} = H(1—ap,)}
for all m2m,. In particular if m =m,;+1, then
H(1-an)} = U1 =apn)}-

Now a,,_, € l{(1—a,,)}, hence a,,_; € I{(1 —a,,_,}}, that is, a,,_, is an idem-
potent. Thus, a,, is idempotent for all m =m,, and the proof of lemma
1.3 is completed.

A similar argument will show that the cyclic flat left modules of a ring
with descending chain condition on right point annulets are projective.
For a later purpose we need the left-right symmetric of lemma 1.3.
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Lemma 1.4. If the ring R satisfies the ascending chain condition on
right point annulets or if R satisfies the descending chain condition on left
point annulets, then any cyclic flat right module is projective.

ProrosiTioN 1.5. Let R be a ring with no infinite set of orthogonal
idempotents. If the principal left ideals in R are projective, then R is a
1-FGFP ring.

Proor. Since all left point annulets are generated by idempotents, it
follows from lemma 1.2 that R satisfies the ascending and descending
chain conditions on left point annulets. Thus, by lemma 1.3 and lemma
1.4, R is a 1-FGFP ring.

Morita technique gives the next results.

CorOLLARY 1. If all n-generated left ideals of the ring R are projective and
if R, (the ring of (n x n)-matrices over R) has no infinite set of non-zero
orthogonal idempotents, then R is an n-FGFP ring.

COROLLARY 2. Assume w.gl.dim.R<1. Then R is a left-n-FGFP ring
if and only if R is a right-n-FGFP ring.

Proor. It suffices to prove corollary 2 for n=1. If R is a left-1-FGFP
ring, then the principal left ideals of R are projective. It follows from
lemma 1.1 and lemma 1.2 that R has no infinite set of non-zero orthogonal
idempotents. Corollary 2 follows now immediately.

CorOLLARY 3 (cf. [2] and [3]). Any n-fir ¢s an n-FGFP ring.

Proor. It is well known or readily checked that the ring of (n x n)-
matrices over an n-fir satisfies the ascending chain condition on left
and right point annulets.

REMARK. As a consequence of corollary 2 let us note that a left semi-
hereditary ring for which the ring of (» xn)-matrices for all » has no
infinite set of non-zero orthogonal idempotens is right semihereditary
(cf. L. W. Small [7]).

ProrosiTioN 1.6. If any left or right zero divisor in R is milpotent,
then R is a 1-FGFP ring.
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Proor. Assume we have a chain of principal left ideals

(2) .€ay)e g ... s (@) S ...,
where a,=a,a,,.,

for all m € Z. It suffices to prove that (2) becomes stationary. We can
assume that
(0) # (a,) =+ B forallm.

The equation a,,(1 —a,,,,)=0 shows that a, or 1—a,, is nilpotent for all
m. If a,, is nilpotent, then

—_ o _— 8 —
Oy = Oy 1Oy = oo = Qpy_10,,° = 0

for s suitably large, and we are done in this case. If (1 —a,,) is nilpotent
for all m, then the equation (1-a,)(1-¢,,.,)=(1—a,,;) shows that
@,,1=1. The proof of the proposition is now completed.

2. An example.
An example of a ring, R, with any cyclic flat right module projective
and with a cyclic flat non-projective left module is given as follows.
Let K be any commutative field. We take R to be the K-algebra on
the generators X;, ¢=1,2,..., and defining relations

'X'iX’lH'l = ‘X’i’ ’b.= 1,2,. “e e

From lemma 1.1 it follows that there exists a cyclic flat non-projective
left R-module. The left-right symmetric to lemma 1.1 shows that R is
a right-1-FGFP ring if and only if any ascending chain of principal right
ideals

(3) (@) ... c(@,) s ..., with a,a, =0a,,,

terminates. It is not hard to check that any element in R can be written
as k+a, ke K and a of the form 3k, ., X, ...X,", where in no term
all the y; are zero, the r-tuples (y,,...,y;) are all different, and all
k,. ., are different from zero. This representation is unique. Each
term X,”...X,” is called a monomial in the representation of a.

Let us first assume that all the k; which appear as constant terms in
the expressions of the a, in (3) are zero. We can furthermore assume
that a, is non-zero. Choose p maximal with respect to the existence of
a monomial of the form X,” ... X " in a,. Consider all these monomials
in the representation of a, and fix one with (y,,...,y,,0,...) minimal
in lexicographical order. From the minimality of (y,,...,7,,0,...) it
follows that the corresponding minimal monomial never appears as a
monomial in an expression of the form a,a,.
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We can now assume that infinitely many of the £, in (3) are non-zero.
It suffices to consider the case, where all the k; are non-zero.

If a,=k;+b; with k, € K and b, a K-linear combination of monomials,
then the relations (3) become

kikiq = k;y and  bgk; 1 +bibyy+kbiy = by
Thus, we conclude that k;=1 for all : >1. Hence for ¢ > 2
bivab; = —bpy .

Let us assume that these equations hold for all ¢. In b,, which is non-
zero, let us choose a monomial X ,*r... X" such that (y,,...,7,,0,...)
is minimal in lexicographical order. Suppose

yl=.--=yp=0o

The equation bgb,= —b; shows that there exists a monomial of the form
X2... X" with y,=0 in the canonical representation of b,. So it
follows that all the b; have a monomial with “y;=0". Again the equa-
tion bgb,= — by shows that b, ‘“‘has a monomial with y, =y,=0" (look at
the terms with ‘“py;=0"). Thus, there exists a monomial in b, of the
form X ... X, for all n. In particular b, has a monomial of the form

Xo... X", and this contradicts the equation by, = —b,.

REFERENCES

1. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings,
Trans. Amer. Math. Soc. 95 (1960), 466-488.

2. C. U. Jensen, Some cardinality questions for flat modules and coherence, J. Algebra 12

(1969), 231-241.

. 8. Jendrup, On finitely generated flat modules 11, Math. Scand. 27 (1970), 105-112.

. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, 1965.

5. I. I. Sahaev, The projectivity of finitely generated flat modules, Sibirsk, Mat. Z. 6 (1965),
564-573. (In Russian.)

6. I. I. Sahaev, About rings for which any finitely generated flat module is projective, Izv.
Vys§, Utebn. Zaved. Matematica 9 (88), (1969), 65-73. (In Russian.)

7. L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656—658.

oW

UNIVERSITY OF COPENHAGEN, DENMARK



