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SHELLABLE DECOMPOSITIONS OF CELLS
AND SPHERES

H. BRUGGESSER and P. MANT?)

1. Introduction.

The second part of this note, especially proposition 2, may be con-
sidered an appendix to L. Schlifli’s computation of the Euler charac-
teristic for convex polytopes. His computation is easy and elegant, but
he assumes that the facets of each polytope can be ordered in a certain
favourable way. Later it became doubtful whether such an ordering is
always possible, especially since the discovery of combinatorial n-balls
whose facets don’t allow a corresponding favourable arrangement. We
were surprised to find that Schlifli’s assumption can be justified in an
almost trivial manner. On the other hand we don’t know whether an
analogous assumption is valid for all polyhedral spheres; our only re-
sult in this direction is contained in proposition 1.

2. Notations.

By a complex % we understand a finite set of polytopes, all of which
are contained in the same euclidean space E?, with the usual closedness-
and intersection-properties. A%) is the set of ¢-dimensional members
in %, and fi{(A) their number. YA is an n-complex, if each element of A
is a face of some n-dimensional element of . By |%A| we denote the
corresponding polyhedron, |U|=Ux.yX. On the other hand, given a
set 4 <E?, a decomposition of 4 is a complex U such that 4=|%|.
The complex U is called a simplicial decomposition, or a triangulation,
of A, if all elements in U are simplexes. B is a subdivision of U if |B|=
|| and each element of B is contained in some element of A. We are
especially interested in the complexes E(P), cor}\sisting of all faces of a
polytope P, and in the boundary complex E(P)=E(P)\{P} of P.
A polyhedron is called an n-cell if it allows a triangulation which is iso-
morphic with a triangulation of an n-dimensional simplex 7™. As far
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a8 we know, it is still undecided whether each polyhedron homeomorphic
to 7' is an n-cell, but this is certainly true for all convex n-polytopes.
Similarly, a polyhedron is called an n-sphere if one of its triangulations
is isomorphic with a triangulation of the boundary 77+, We say that
the n-cell B lies in the complex U if there exists a subcomplex B<A
with |8|=2B. Schlifli assumed for his computation that the boundary
complex of every polytope is shellable. This notion may be described
as follows.

DerintTION 1. Every decomposition of a 0-cell is shellable. A decom-
position U of an n-cell 4 is shellable provided that the n-dimensional
elements of 9 can be arranged in a sequence 8,,8,,...,8,, r=f~%A),
such that, for each ¢ with 2<i<r, 8;n(U;_;8,) is a shellable (n—1)-cell
contained in the boundary complex (éf(Si). A decomposition B of an
n-sphere is shellable if there exists an n-cell § € 4%(%8) such that B\ {S}
is a shellable decomposition of the n-cell ||\ relint S. The above defi-
nitions are more restrictive than the usual ones; we have chosen them
here to fit our inductive arguments. Those terms which we have not
defined explicitely shall be used here in the same sense as in the books
[1] and [2].

3. Subdivisions with nice properties.

The geometry of n-dimensional cells and spheres is, for n =3, much
more complicated than for the lower dimensions. Let us mention two
phenomena which do not occur in the simpler cases:

For each n =3 there is a decomposition of an n-sphere, which is not
isomorphic with the boundary complex of a polytope.

For each n>3 there is a non-shellable decomposition of an n-cell.

Further information about the above facts is contained in [5], [4], [3],
and especially in [1]. W. Sanderson has shown in [5] that these pheno-
mena disappear, for n=3, if we choose appropriate subdivisions of the
complexes in question, and we want to give first a short alternate proof
of his theorem, which is valid in all dimensions. We need a lemma about
stellar subdivisions. Let 9 be a simplicial complex, X € A%(), 0=<¢ =
dimY an i-face in A and z e relint X an arbitrary point. The complex,
which arises from 9 by starring X at x, shall be denoted by st (x, X)[].
Of course, if 1=0, we have st(z, X)[A]=A, but in the other cases we
obtain proper subdivisions of ¥.

Lemma 1. Let T be an n-simplex, A<T a k-face of T, 0<k=<n, and a
a point in relint A. Set H=st(a,4)[C(T)] and consider an (n—1)-ball Y
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lying in (SE(T). The n-simplexes of O can be arranged in a sequence
815+ .., 841 such that each of the intersections K, is an (n—1)-ball lying

in €(S,), where we set Ky =8,nY and K;=8;n(YuU,_;8;) for2<isr+1.

Proor. We denote by B the intersection of all facets of 7' contained
in ¥, and proceed by induction on the number

U(4,Y) = min{fo(4)—f%ANB), f%4)—1}.

First case, I=0. Our assertion being trivial for f0(4)=1, assume 4 < B,
and arrange the simplexes of § arbitrarily in a sequence Si,...,S;;-
Clearly every intersection K; is a proper subset of the boundary S,
therefore it is enough to show that K is the polyhedron of an (n—1)-
complex .QiC(g(Si). Since §;n8; is always a common (n—1)-face, we
only have to consider the intersection of S; with a facet F<Y of 7.
We find
8; = conv{{a}ud(T)\ {t;}},

for some ¢, € 4%(4) and
F = conv {A%T)\ {t;}},
for some #; ¢ 4°(4), and consequently
S;nF = conv {{a}ud®(T)\ {t;,t;}},

which implies the desired conclusion. Second case, I>0. We choose
a, € A°%A), not contained in B. Since f%(4)>1, we have ay,+a. Let
8, be the n-simplex in § which does not contain a,, and denote by $’
the complex $\ {S;}. We set

A’ = conv {4%4)\ {ao}}

and choose a point a’ e relint A’. Let & be the isomorphism between §’
and 9=st(a’,A")[€(T)] which carries ¢ into a’ and leaves the other
vertices of ' fixed. An easy coerutation shows that

(1) 8;nY is an (n—1)-ball in €(8,),

(2) for each S € A%9H’), Sn(YuS)==n(8)nY.
(2), together with the inductive hypothesis, applied to § and the (n—1)-
ball ¥ in é(T), allows us to arrange the simplexes of §’ in a sequence
8Sa,. . ., 841 such that S;n(YuU,_;8;) is always an (n—1)-ball in €(S,).
This, in conjunction with (1), means that the sequence §,,8,,...,8;,
has the properties required by our lemma.
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ReMARk. If Y is empty, we may arrange the simplexes in § arbi-
trarily, and will find that K, is empty, whereas each K,, 2<i15k+1,
is an (n— 1)-ball as described in the lemma. Similarly, if Y is the whole
boundary of 7', the sets K;, 1<¢=<#%, are as in the lemma, and K, _, is
the whole boundary of S,,;.

ProrosiTiON 1. Every decomposition of an n-cell and every decomposi-
tion of an n-sphere contains a shellable subdivision.

Proor. Let A be a complex whose polyhedron || is an n-cell.
Clearly there exists a subdivision of % which is isomorphic with a sub-
division %’ of €(7™). A well known result in piecewise linear topology
(see corollary 1.6. in [3]) guarantees that there is a positive integer r
such that some rth derived subdivsion %, of €(7™) is also a subdivision
of A’, and since 9, arises from E(7™) by repeated starring operations it
remains to prove: if B is a shellable simplicial decomposition of an
n-ball, and if B’ arises from B by starring a face X € 44(%B), ¢ =1, then
B’ is shellable, too.

Denote by z erelint X the new vertex of B’. Assume that < is a
linear ordering of A"(%), fulfilling the conditions of definition 1. Con-
sider a simplex S € 4%(B) with X =§. The complex €(S) < is replaced
in B’ by &' =st(x,X)[€(S)]. By our assumption about B, ¥ =8nB(S)
is an (n—1)-ball lying in €(S), except when § is the first simplex in
A4™(B8). Here B(S) stands for the union of all n-simplexes of B preceding
S. We apply lemma 1 (or, if S happens to be the first simplex in 47%(%),
the remark following lemma 1) to the simplex S, the decomposition &’
of § and the (n—1)-ball ¥, and denote by <, a linear ordering of
A™(©') with the properties described in lemma 1. Let < be the following
ordering of A(®B’): If X,Y € A*(®B’) are contained in the same n-sim-
plex 8 of B, we set

X<KY < X<,7Y.

If X,Y ed™(®B') are contained in different simplexes of A%(B), say
X<8, YT, we set
X<Y <= S8S<T.

The relation < clearly satisfies the conditions of definition 1, and B’ is
shellable.

The proof for decompositions of n-spheres is almost literally the same,
the remark following lemma 1 guarantees that no trouble arises if the last
simplex in such a complex has to be subdivided.
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By the above construction, each decomposition of an n-sphere has a
subdivision which arises from (E,(T"“) by repeated starring operations.
Clearly such a subdivision is isomorphic with the boundary complex of
a polytope.

4. Boundary complexes of polytopes.

Before we can state our result, we need a few more definitions. If p
and g are (not necessarily different) points in E", denote by

[p.q] = {z]|2 = ap+(1-a)g, 02 =1}

the closed segment and by [p,q)=([p,q]\ {¢})U{p} one of the halfopen
segments between them. A point p € E»\ P is admissible with respect
to an m-polytope P<E® if there is no face F of P whose affine hull
aff ' contains p. Let P<E" be an n-polytope and p € E*\ P an ad-
missible point. The set S(P,p) of visible points on the boundary P is
defined by
S(P,p) = {we P |[a,p]nP={z}}.

Similarly

U(P,p) = {x € P | there exists no point y € P such that z € [p,y)}

stands for the (closure of the) set of invisible points. Both, S(P,p) and
U(P,p), are (n—1)-balls in (&(P). Let &(P,p) and U(P,p) be the under-
lying subcomplexes of @(P), such that we have |&(P,p)|=S(P,p),
[W(P,p)|=U(P,p). Notice that G(P,p)=&(P,p)nN(P,p) is isomorphic
to the boundary complex of an (n—1)-dimensional polytope P’. The
latter can be found by intersecting the polytope @ =conv(Pu{p}) with a
hyperplane which separates p from the remaining vertices of Q.

DerinITION 2. Lett P<E"™ be an m-polytope. A line G<E" is ad-
missible with respect to P if
(3) no hyperplane aff F, F' a facet of P, is parallel to G;
(4) whenever F, and F, are different facets of P, the points (aff F;)nG
and (aff F,)nG are different.

The next two lemmas are immediate consequences of the correspond-
ing definitions. We omit their proofs.

LemMMa 2. Let P<E™ be an n-polytope and p € E™ an admissible point.
A facet F of P belongs to S(P,p) if and only if p is beyond F.
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LemMa 3. Let P and p be as in lemma 2. If E<E™ is a flat containing
p, set P=PnE, and assume dim P=dimE. p is admissible with respect
to P, and S(P,p)nE=8(P,p), UP,p)nE=U(P,p).

ProprosITION 2. Let P < E™ be an n-polytope and p € E™ an admissible
point. S(P,p) and W(P,p) are both shellable decompositions of an (n—1)-
cell.

Proor. Set

o = {A | A=G(P,p) or A=U(P,p) for some n-polytope
PcE™ and some admissible point p e E®, and
P A) =k}

We prove our assertion for all members ¥ € «,* by induction on » and,
for fixed n, on k. The cases n=1 and k=1 are trivial. Let P be an
n-polytope, n2=2, and consider QIC(;Z(P) with f*-1(%A)=2, where A=
S(P,p) or A=U(P,p) for some admissible point p € E*. It is easy to
see that there are many lines in £* which contain p, meet the interior P
of P and are admissible with respect to P. Let G be an arbitrary line
of this kind. By @, and G, we denote the two closed rays whose union
is the set G\ P. We assume p € G, and, if p; is the endpoint of G, let
< be the following linear ordering of G,UG,:

xel@, ye Gy, = x<y,
x,yeGl, xe[?py) = x<yr
2,y € Gy, Y€ [pyx) = x<y.

Denote by An-1(P) the set of facets of P. Since @ is admissible, each
hyperplane aff F', F € A*-1(P), meets G in exactly one point g(F), and
if F,F' are different, g(F) and g(F’) are different, too. We arrange the
facets of P in a finite sequence (F,);<;c,, r=cardA"-1(P), such that
g(F;)<g(F;) is equivalent to i <j.

First case, A=GS(P,p). By lemma 2, A is the subcomplex of é(P)
generated by those facets F € A*-1(P) for which g(F)<p. Therefore
max {i | g(F;)<p}=k=2, and we choose a point te@ for which
g(F ) <t<g(F,). We set g(F,)=g, and S(P,t)=U". By the inductive
hypothesis, % is shellable if we can show that

(5) A=WUEF,), CF)NUA = S(Fy ) -

The first of the above relations immediately follows from lemma 1.
In order to prove the second, we observe that by the property (4) of G,
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gy is admissible, in aff F';, with respect to F,, so &(F,,g,) is defined.
We set

A =4, |Af =4, S(Fr.9) = Sy U(Fr9x) = U, 8nUg=G,.
Obviously relint F',,n4’=0, so it is enough to establish the relations
(6) Sk\Gk < A,, (Uk\Gk)nA' = 0.

Consider a point z € (relbd )\ G,,. The line aff{g,,2} intersects P in
a nondegenerate segment F, < F,. Set

E = aff {(Gu{z}} and P = PnE.

Since G is admissible with respect to P, it is also admissible with re-
spect to P, and, furthermore, every facet of P contains an interior point
of some facet of P. The last remark implies that « is an endpoint of the
segment F,. By lemma 2 it suffices to prove that x belongs to 4’'nE
if and only if [x,9,]nF)={x}. This assertion, which corresponds to the
case n=2 of (6), is easily verified.

Second case, A=U(P,p), and there is no facet F e A*1(A) with
g(F) e @,. Choose q € G, such that g <g(F) for all F € A*-1(A). Lemma 1
implies that

A= WP,p) = &P,9),
and by reversing the ordering of G, UG, we are lead back to the first case.

Third case, A=U(P,p), and g(F) e G, for some facet F e A"-1(Y).
A is generated by those facets F in (g(P) for which g(F)>p. Set i,=
min {s | g(F;) > p}. By our assumption, g,:=g(F,) belongs to G, and
we choose t € Gy with g,<t<g(F; ;). We set A'=U(P,¢) and show, by
nearly the same argument as in the first case,

(7) QI = m, V) @(F'io)’ @(F{o) n Q[’ = H(F{o,go) )
which again implies that U is shellable.

CoROLLARY. The boundary complex of every convex polytope P is shell-
able.

Proor. Choose a facet F; e @(P) and a point p € E™ which is beyond
F, and beneath all the other facets of P. 1(P,p) is shellable, by pro-

position 2, and so is €(P)=11(P,p)U{F,}.

Notice that we can prescribe in advance the first and the last facet
in a shelling of €(P). We only have to choose F, and the line @, used
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in the proof of proposition 2, accordingly. Since it has been made more
than a century ago, let us finally recall Schlifli’s computation.

5. The characteristic of Euler-Schlifli.

For each complex U set
dim %A

2@ = 3 ().

1=0
Let & be the set of complexes introduced in the proof of proposition 2,
set a®"=UP  a," and denote by p" the set of boundary complexes
€(P), P an (n+ 1)-polytope.

ProrosiTioN 3.
(8) Xear => yX)=1
9) Xepr = y¢(X)=1+(-1).

Proor. Both assertions are trivial for n<1. For n=2 the following
remark will be useful. If X and Y are subcomplexes of the same com-
plex, the definition of y immediately implies that

1 XUY)+4(XnY) = x(X)+x(Y) .

Let us prove first, by induction on %, that (8) is true for each X € ;"
If k=1, we have X =€(P), P an n-polytope. Clearly, x(X):x((Ab:(P))+
(—1)*. By the inductive assumption, x(é(P))=l+(—1)n-1, therefore
2(X)=1. If k>1, there are, by the relation (5) or (7), subcomplexes
Y and Z of X such that

Yeol,, Zeou" YnZeoar?l, YuZ=X,
which, together with the inductive hypothesis, means that y(X)=
1)+ x(Z)—x(YnZ)=1. Finally, to prove (9), let P be an (n+1)-
polytope. Choose a facet F, e A"-(P) and a point p € E*+! which is

beyond F; and beneath all the other facets of P. We find @(P):
C(F,)ul(P,p), while the intersection €(F,)nU(P,p) is the boundary

complex @(FI) and belongs to g*-1. Therefore, by the inductive hypo-
thesis, and by the additivity of y mentioned at the beginning of this
proof, we calculate

HEP)) = 14+1—(1+(=1)*1) = 1+(=1)",

and proposition 3 follows.
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