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HOMOGENEOUS UNIVERSAL MODULES

PAUL C. EKLOF!

Introduction.

The purpose of this paper is to improve the theorem of B. Jénsson
[6], [7] on the existence of homogeneous universal structures in the case
where the class of structures considered is the class of modules over a
fixed ring.

We prove that for any ring A and any infinite cardinal x> Card A,
there exists a homogeneous universal /A-module of cardinality » if and
only if »=x¥, where y is the smallest cardinal such that every ideal of A
has a basis of cardinality <. (Theorem 3. This and the other results
do not depend on the Generalized Continuum Hypothesis.)

If a homogeneous universal module of cardinality >CardA exists,
then it is injective (Lemma 3). Thus the injective modules will play
an important role in our considerations. In particular, we make use of
the following result on the cardinality of the injective envelope of a
module:

For any infinite » > Card A, every module of car-
dinality » has injective envelope of cardinality x
if and only if ¥ =x* (Theorem 2).

The proof of the above result uses an equational definition of injective;
this definition and other preliminaries are discussed in Section 1. The
main theorems are proved in Section 2.

I wish to thank Gabriel Sabbagh and Ed Fisher for an uncountable
number of stimulating conversations and helpful suggestions.

1. Preliminaries.

Throughout this paper A denotes a fixed associated ring with 140.
The word ‘““ideal’’ means left ideal of A; ‘“module’” means left A-module;
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“homomorphism’ means A-module homomorphism; and ‘“embedding”
means one-one homomorphism.

Following Jénsson [6], [7], we call a module M wuniversal if every
module of cardinality <CardM is isomorphic to a submodule of M.
M is called homogeneous if every isomorphism f: N — N’ of submodules
of M of cardinality <Card M extends to an automorphism of M. If
x> Card A it can be proved, as in Theorem B of [7], that any two homo-
geneous universal modules of cardinality » are isomorphic.

We denote by y the smallest cardinal such that every ideal of 4 may
be generated (as A-module) by strictly fewer than y elements; e.g. A
is noetherian if and only if  <X,. Note that y < (CardA)*, the successor
of CardA.

We recall some definitions from [5]. If M is a module and « a cardinal,
an «-system in M is a set of strictly fewer than « equations in a single
variable x, each of the form Ar=a, where A e 4, ae M. An «-system
in M is consistent in M if it has a solution in an extension of M. M is
called «-injective if every consistent «-system in M has a solution in M.
A proof of the following is given in [5].

LemMmaA 1. An «-system S ={Ax=a,:v<f<«} tn a module M is con-
sistent in M (=) whenever Y0,1,=0 then 3p,a,=0.

It follows from Lemma 1 that if M < N, an «-system in M is con-
sistent in M if and only if it is consistent in N (as an «-system in N).
This may also be proved directly from the definition of consistency,
using the fact that the class of modules satisfies the ‘“‘amalgamation
property”’, that is, if M,c M,, M,c M,, then there exists M, such that
M, M, Myc M, and

commutes (cf. [5, §2]).

A module M is called tnjective if it is a direct summand of every
module containing it. The following is proved in [5].

LeMma 2. M s injective if and only if M s y-injective.
The reason for our interest in injectives is given by:

LremMa 3. If M i3 a homogeneous universal module of infinite cardsi-
nality x> CardA, then M 18 injective.
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Proor. Let S ={A,x=a,:v<p} be a consistent y-system in M (so
that f<y<x). Let N be the submodule of M generated by {a, : »<g}.
Then Card N < x and there is an extension N’ of IV containing a solution
b of . We can assume Card N’ <x. Since M is universal there is an
embedding f: N' — M, and since M is homogeneous the isomorphism
fIN : N - f(N) extends to an automorphism g of M. It is clear that
g~1f(b) is a solution of & in M.

An injective module E containing N is an injective envelope of N if any
embedding of N into an injective E’ extends to an embedding of F
into £’. A module M containing N is an essential extension of N if for
every non-zero submodule P of M, PnN + {0}.

Lremma 4 (Eckmann-Schopf [4]). (i) An injective module E containing
N is an injective envelope of N if and only if it is an essential extension of N.

(ii) Every module M has an injective envelope, which is unique up to
tsomorphism over M.

For every module M, E(M) will denote a fixed injective envelope of M.
By abus de langage we say that E(M) is the injective envelope of M.

The remainder of this section will not be used in the proof of the main
results of Section 2. We want to remark that Lemma 3 is a special case
of a more general result. Let .# be the class of models of a first order
theory T'; and let A be the cardinality of the language L of T'. A struc-
ture M € A is said to be x-algebraically closed (relative to ) if every
set of equations (i.e. atomic formulas) of cardinality <o« with constants
from M which has a solution in an extension P of M, where P € .#,
also has a solution in M. M is said to be «-existentially closed (relative
to ) if every set of equations and inequations of cardinality <o« with
constants from M which has a solution in an extension P of .#, where
Pe #, also has a solution in M. (Cf. [5, §7] where R -algebraically
closed and X,-existentially closed are defined).

The notions of .#-universal and .#-homogeneous structures are de-
fined as in [6] and [7]. The proof of the following is similar to that of
Lemma 3.

ProrosiTiON 1. Let M € A be an M -homogeneous M -universal struc-
ture of cardinality «>A. Then M is x-existentially closed.

CoROLLARY 1. Suppose that T has a model companion T* (see [5, § 2]).
Then every M -homogeneous M -universal structure of cardinality o> 18
a model of T*.
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Proor. It is shown in [5] that the models of T* are precisely the
models of 7" which are R,-existentially closed.

Corollary 1 is also a consequence of the following observation of
G. Sabbagh.

ProposITION 2. Any two infinite M -homogeneous M -universal struc-
tures M, and M, such that Card M, > A, Card M,> A satisfy the same sen-
tences of L. If M< M,, then M <, M,.

The proof is an easy consequence of Karp’s criterion [8].

E. Fisher has pointed out the following corollary (a generalization
of Corollary 1).

CoroLLARY 2. If T*> T is inductive and model-consistent relative to T,

then every M -homogeneous M -universal structure of cardinality >2 is a
model of T*.

Proor. We construct a chain

M=M <N, cM,c N, <.

*

where each M, is a copy of M and each N, is a model of T* containing
M, and such that Card N,=Card M,. The union is an elementary ex-
tension of M and a model of T*.

2. Homogeneous universal modules.

We will make use of the following notation (cf. [1, § 34]). If » and «
are cardinals

#? = 3, %" (cardinal exponentiation) .
THEOREM 1. Let x be an infinite cardinal = CardA. Let M be a module
of cardinality » and E(M) the injective envelope of M. Then

#X  if v is regular
»  if yis singular .

Furthermore if x¥=x, then Card E(M)==x.

CardE(M) =

Proor. We first prove:
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Every module N of cardinality x> CardA may be embedded
(*) in a module N* of cardinality »! such that every consistent
y-system in N has a solution in N*,

Let {¥;: <0} be an enumeration of all the consistent y-systems in N.
It is clear that d<x. We construct N* as the union U;_,N; of an
increasing sequence of modules. Define Ny=N, N;=U,_,N, if 1 is a
limit ordinal, and N, , =an extension of N, of cardinality =Card N, in
which ¥} has a solution. It is easily seen that N* has the desired prop-
erty.

Now, given M of cardinality » > CardA define My=M, M, ,=(M,)*
for any ordinal », M,=U,_, M, for any limit ordinal 1. Let o be the
first regular infinite cardinal 2y and let £=U,_,M,. Then it is easy
to see that E is y-injective and hence injective (Lemma 2). Now if y
is regular, p=y+ R, <x¥; and if y is singular then y <Card A <%, so that
o=y+t=y”"<x’. Therefore, since

(#2)Y = 2t if y is regular,
= »* if y is singular
([1, § 34, Satz 7]), we have

CardE = »¢ if y is regular,

»? if y is singular.

IA 1IIA

Furthermore if x?=x and y is regular, then Card E S’ =x; if x¥=x and
y is singular, then » = (x¥)! =x" so Card £ < »”=x. The proof is complete.

REMARK. Theorem 1 is a special case of a more general result. Let .#
be the class of models of an inductive (i.e. V 3) first order theory 7' and
let A be the cardinality of the language L of 7. Let « be an infinite
cardinal. Then every M € .# can be embedded in a x-existentially closed
structure P € # ; furthermore if Card (M)=x = sup(4,«), we may choose
P such that
%% if «isregular orif x=x?,

&

<
Card (P) = x* if o is singular.
THEOREM 2. Let » be an infinite cardinal > CardA. A necessary and
sufficient condition that the injective envelope of every module of cardinality
% be of cardinality » is that »X=z.

Proor. Sufficiency follows from Theorem 1. As for necessity, we
have to prove that for any infinite cardinal x <y, »*=x. We prove this
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as follows. We construct a module M of cardinality », and a consistent
at-gystem ' ={Alx=a,:v<a} in M such that there exist »* automor-
phisms {f, : 0 <%*} of M with the property that if ¢+ ¢’, f, differs from
fo on an element of {a,:»<a«}. Then for every oc<x®, &, defined by
&,={Ax=f,a):v<a} is consistent in M (because of Lemma 1) and
therefore has a solution b, in E(M). But if o+0’, b,+b_; and by hypo-
thesis Card E(M )= x; therefore »*=x.

We begin the construction of M. Since x <y, there is a sequence
{4, : v<a} of elements of A such that for every » < «, 4, is not in the ideal
generated by {4,: u<»}. We will define inductively an ascending chain
{M,:v<«} of injective modules of cardinality <x and a sequence of
elements {a, : v<«} such that a,e M,,; — M, and such that

{Ax=a,:u<v}

is consistent in M,. Define M,={0}; if A is a limit ordinal define M,=
EWU,_,M,), which is of cardinality <x by hypothesis. If M, and
{a, : u<v} have been defined, let

Av+1 = (My®A)/Kr+l ’
where K, ., is the set of elements of M ,®A of the form
(z;;<vgpap’ Qy)
where 3, _,0,4,=0. We assert:
(1) the canonical map ¢ : M, - 4 ., is one-one .

It suffices to prove that if (m,0)e K,,, then m=0. But if (m,0)=
(3,<»0.9,,0,) then 9,=0 and 3,_,0,4,=0. Therefore since

Ax =a,:p<v}

is consistent in M, by the inductive hypothesis, we have m=3,_,0,a,=0
(cf. Lemma 1).

Thus because of (1) we can identify M, with a submodule of 4,,,,
and, since M, is injective, we can write

Av+1 = Mv®Bv+1 N

Let a,=the image of (0,1) e M,®A in 4,,,. By the construction and
Lemma 1, {A,x=a,: u<v} is consistent in 4,,,. We claim:

(2) a,¢M,.

We have to show that (m,0)—(0,1)=(m, —1) is not an element of K,
for any me M,. But if (m,—-1)=(3,.0.4.,0) then g=—1, and
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2,<,0,4,=0 implies 2,=3, _ 0,4, which contradicts the choice of
{4, v<al

Thus because of (2) we can write a,=m,+b,,; where m,e M, and
0=+b,,, € B,,;. Define

My+1 = E(Av+1®BS:)1)

(where B%, denotes the direct sum of x copies of B,,;). M, has car-
dinality » by hypothesis.

Furthermore, there exist » automorphisms {g,.,,:&<x} of M,
which are the identity on M, and which differ on @,. (We can define
g,+1,¢ S0 that it takes the copy of B,,; contained in 4,,, onto the éth
copy of B, in BY)).

Finally, we let M=U,_,M,. By construction {A,x=a,:v<a} is con-
sistent in M. Moreover for each o € x* the sequence (g,.1 ,¢+1),<, de-
termines an automorphism f, of M such that for o+¢’, f, differs from
fo on an element of {a, : v<«}. Thus M satisfies all the properties stated
in the first paragraph of the proof and therefore the proof is complete.

ReEMARK. 1. If y >R, there are arbitrarily large cardinals such that
#¥ >, since there are arbitrarily large cardinals of cofinality R,. It
then follows from Theorem 2 that the injective envelope of every module
of cardinality » is of cardinality x for every infinite » > Card A if and only
if A is noetherian. It would be easy to derive from this result some
consequences on the definability of the notion of injective module,
which will not be discussed here since the question has been completely
solved in [5] by a different argument.

REMARK 2. Let us denote by y, the smallest cardinal such that every
y,-injective module is injective. It is clear that y; <y. One may easily
extract from the proof of Theorem 2 a proof of the fact that if y is an
uncountable cardinal which is not the successor of a singular cardinal,
then y,=y. (Note that the consistent «+-system & in M constructed
in the proof of Theorem 2 does not have a solution in M.) The following
questions remain open:

i) What happens if y is finite? One cannot hope to establish y=y;.
For example, if A is a Dedekind domain which is not principal, one has
y=3 and y,=2. One the other hand, if 4 is a commutative integral
domain such that y;=2, then by a classical result due to Cartan and
Eilenberg ([3, Chap. VII, § 5]), A is a Dedekind domain and y<3.
One may then ask if there exists a function f: w — w such that for every
ring A (or at least for every commutative integral domain A) with y,
finite one has y < f(y,).

Math. Scand. 29 — 13
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ii) What happens if y=8,? A positive answer to the question raised
in (i) would imply that in this case y,=X,.

iii) What happens if y is the successor of a singular (infinite) cardinal ?
In particular, if y=X_,,, is there a module which is X -injective and
not injective ?

The following lemma is a refinement of Lemma 4.3 of [5].

Lemma 5. Let A and B be modules. Suppose F(B) is a family of sub-
modules of A such that for any B' € #(B), B’ ~ B, and for B', B" € &#(B),
either B”"=B' or B"'nB'={0}. Suppose F(B) has cardinality » and
A =C,®C, where C, is an essential extension of a module D of cardinality
<x. Then C, contains a submodule isomorphic to B.

Proor. We may suppose 4=C,®C, is an internal direct sum so
that C, is a submodule of 4, ¢=1,2. If =, : 4 - C, is the canonical pro-
jection, it suffices to prove that there exists B’ € % (B) such that n,|B’
is one-one. Assume this is false; we obtain a contradiction by defining
a one-one function g:%(B) - D. In fact, for any B’ e #(B) there
exists, by assumption, b € B'—{0} such that z=,(b')=0 ie. b'€C,.
Since C, is an essential extension of D, Ab'nD=+{0}, so let g(b') e
(Ab'nD)—{0}. Because the elements of #(B) have trivial intersection,
g is one-one. This completes the proof.

THEOREM 3. Let x be an infinite cardinal.

(i) If x> Card A and if there exists a homogeneous universal module of
cardinality », then x!=x.

(ii) If x = Card A and if xt=x, then there exists a homogeneous universal
module of cardinality x.

Proor. (i) If M is a homogeneous universal module of cardinality
»>CardA, then by Lemma 3 M is injective. Since M is universal,
and by the definition of injective envelope, every module of cardinality »
has injective envelope of cardinality ». We then apply Theorem 2.

(ii) Let €¥={A/I : I is an ideal of A} i.e. € is the set of all (up to iso-
morphism) cyclic modules. By the definition of y,

Card? £ »* = .

Let M =E(@®¢.eC®). Since x¥=x, Theorem 1 implies Card M =x. We
claim that M is homogeneous universal. To prove that M is universal
we have to show that any module N of cardinality <x can be embedded
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in M. Because of Theorem 1 we can assume N is injective. By ([13,
Prop. 7.9]) N is the injective envelope of a direct sum S of cyclic mod-
ules. Since S is embeddable in @¢.,C™, N is embeddable in M. To
prove that M is homogeneous, consider an isomorphism f: N - N’ of
submodules of M such that Card N <x; f extends to an isomorphism
f:E(N)—> E(N'). Write M =E(N)DP, M=E(N')®P’; to prove that f
extends to an automorphism of M, it suffices to prove that P~ P’.
Since P and P’ are injective, to prove P~ P’ it suffices, by the “Schroe-
der—Bernstein theorem for injectives” (see [2]), to prove P can be em-
bedded in P’ and P’ can be embedded in P. We use Lemma 5: since M
is universal, P can be embedded in M ; and since E(N’) is an essential
extension of a module N’ of cardinality <, Lemma 5 implies P’ con-
tains a submodule isomorphic to P. Similarly P contains a copy of P’,
and therefore P~ P’. The proof of the theorem is complete.

ReMaRk 3. If »>CardA (and »!=x) we can give a proof that M=
E(®¢egC™) is homogeneous universal which does not use [1}] or [2].
In fact by Theorem 2.5 of [10] it suffices to prove the following: if @
is a A-module, X a subset of @ of cardinality <, and ¢ an element of
@, then any embedding f of the submodule (X} of @ generated by X,
can be extended to an embedding of {(X)+ Aq into M. We can assume @
is injective, and that E({X))< @, and we can extend f to E({(X)). Write
M=f(E({X)))®N and @=E((X))®P. We can assume g € P; to prove
that f can be extended to (X)PAq it suffices to show that Ag can be
embedded in N. But since CardA <x, Card(X)<x and Lemma 5 im-
plies that N contains a copy of Ag.

REMARK 4. If A is a noetherian ring, then y <X, and for every in-
finite cardinal x, »* =x». Hence there is a homogeneous universal module
in every infinite cardinal = CardA. Using [9], it is easy to describe the
structure of homogeneous universal A-modules. For example, if A is
commutative noetherian, the homogeneous universal module of cardi-
nality » is isomorphic to @p.zE(A/P)® where & is the set of prime
ideals of A. In particular, if A=2Z, the homogeneous universal module
of cardinality x is @,Z(p™)*®Q™.

REMARK 5. When we consider the problem of the existence of homo-
geneous universal modules of infinite cardinality A=Card4, we find
that many of the previous arguments fail; the principal difficulty is
that condition VI, of [6] fails to hold: i.e. a subset X of cardinality <2
of a module @ is not necessarily contained in a submodule of @ of car-
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dinality <A. However, the previous arguments yield the following
result:

ProrosrTioN 3. If A=Card A = R, the following are equivalent:
(i) there exists an injective universal module of cardinality A;
(ii) 22=1;
(iii) there exists am imjective homogeneous wuniversal module of cardi-
nality A, and any injective universal module is isomorphic to it.

The following example, due to E. Fisher, shows that a homogeneous
universal module of cardinality A is not necessarily injective nor unique
up to isomorphism: Let A be an integral domain which is not a field.
If there is an injective homogeneous universal module M of cardinality
A=Card 4, let M'=M®DA. M’ is certainly universal and it is homo-
geneous because any submodule of cardinality <A is torsion and hence
contained in M. But M’ is not injective, since A is not injective, and
M’ is, therefore, not isomorphic to M.

REMARK 6. As a special case of a result of E. Fisher [51] we have:
every homogeneous universal module of cardinality > Card 4 is saturated
if and only if the theory of A-modules has a model-completion. In view
of [5] therefore, every homogeneous universal module of cardinality
> Card A is saturated if and only if A is coherent.
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