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BILINEARITY AND CARTESIAN CLOSED MONADS

ANDERS KOCK

Introduction.

The observation that universal algebra can be treated ‘“‘in a coordinate
free way’’, using monads, together with the observation that many tech-
niques available in the category of sets are available in any symmetric
monoidal closed category ¥, makes it possible, by combined use of the
monad language and the closed category language, to describe some of
the elementary notions of universal algebra in an element-free way.
Syntactically, such a description no longer has variables ranging over
the set of elements in an algebra, but rather over the class of algebras
itself. In particular, though the monad-theoretic treatment allows for
infinitary algebras, the notions formulated here are all formulated in a
finitary way. For example, one can formulate the notion of ‘“‘algebra,
where every operation is a homomorphism with respect to any operation”.
This was done in [3], [4], and [5].

The notion to be described here is that of a “function in two vari-
ables which is a homomorphism in each variable separately.”

This concept of ‘“bilinearity”’ is used in the main Section 2, which
deals with cartesian closed categories. The main theorem is Theorem 2.6
which says that a monad on a cartesian closed category, whose functor
part commutes with products satisfies:

(i) it carries a unique structure as strong monad; and
(ii) this structure makes the monad commutative in the sense of [3];
and
(iii) the category of algebras for it is cartesian closed.

Monads of this kind we call cartesian closed (Definition 2.7). They can
also be characterized as commutative monads for which a map “is bi-
linear if and only if it is linear”” (Theorem 2.5). The two implications in
this “if and only if” are investigated separately in Theorem 2.1 and
Proposition 2.3, the first describing the notion of “affine monad”.

A remark on the scope of universal algebra in the setting of strong
monads on symmetric monoidal closed categories ¥": This scope is quite
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limited, if ¥~ is not cartesian closed; for instance, “tensor algebra con-
struction” (with respect to the ® of ¥7) will, if it exists, not in general
be a strong monad (but will probably distribute over any strong commu-
tative monad). On cocomplete cartesian closed categories, however, there
will be a strong monad corresponding at least to each finitary algebraic
theory. A hint of this fact may be found in [1].

Note that in Sections 1 and 2, the symmetric monoidal closed category
¥ is not assumed to be cartesian closed. Thus we write ® for what
later is replaced by x.

We often suppress mention of which T-structure we have in mind;
we just write “f: AQB — C is bilinear” instead of “‘f is bilinear with
respect to the T-structures «: AT — 4, f: BT - B, y: CT -~ C on 4, B,
and C, respectively”.

1. Partial linearity and bilinearity.
Let ¥~ be any symmetric monoidal closed category [2], and let 7' be
a ¥ -functor (‘“strong functor”) from the ¥ -category ¥~ to itself,
T: vV —>v

that is, 7' is a functor ¥’y — ¥7,, and there is given a family of maps
(“the strength of 7°):
styp: AhB—> AT & BT .

These data satisfy the axions VF1, VF2 of [2]. Recall [3] that out of
these data we can construct a natural transformation
ty p: A®BT — (A®B)T .
In fact, st can be reconstructed from 7': ¥; —~ ¥; and ¢/, by [6].
Using the symmetry ¢ of ¥~, we also construct the natural
ty p=cg 4¢T: ATQB—~ (AQB)T .

Now assume that T' is the functor part of a strong monad T=(T,#,u)
(meaning that n and u are ¥ -natural transformations in the sense of
[2, p. 466]). Then according to [3] we get two monoidal structures y

and ¢ on T, with
w45 ATQBT - (ARBT)T X% (AQB)T* > (ARB)T
and with
$ap=cygacl: ATOBT > (AQB)T

or equivalently, $, p=t""+t'T-u. Recall [3] that the monad is called
commutative if y, p=19 4 p for all 4,B.
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Let (4,x) and (C,y) be algebras for T, and let B be arbitrary. A map
f: A®B — C is called 1-linear if the following pentagon commutes

AT®B "% (AeB)T I~ oT

l’

AQB 7 c

If g is a T-structure on B, one defines similarly the notion of a 2-linear
map using ¢”’. Finally, call f y-bilinear if the following pentagon com-
mutes:

a@®1

AT®BT *28 (AoB)T L. 0T

(1.1) a®ﬂ[ Iv

AQB 7 C

Such a definition of bilinearity has been suggested by Linton [7].

Using 94 p instead of y, p in the above diagram gives similarly the
notion of f being -bilinear. It turns out, however, that y-bilinearity
is the same notion as y-bilinearity (Theorem 1.1 below); so we may just
describe the notion by the word “bilinearity”.

THEOREM 1.1. For a map f: AQB — C, the following three conditions
are equivalent:

(i) f is p-bilinear,
(ii) f is 1-linear and 2-linear,
(iii) f 18 p-bilinear.

Proor. We shall prove (i) <> (ii); since the condition (ii) is “left-
right symmetric”, the proof that (iii) <= (ii) will then be similar. So let f
be y-bilinear. Multiply the commutative pentagon (1.1) on the left by

1Qng: ATQB - ATQBT .
The lower composite of (1.1) yields x®@1-f. To see that the upper com-
posite yields ¢'-fT'-y, we have to prove that
(1.2) 1@y = t'.

But this is an easy consequence of the definition of y and of 1 ,@nz-t" =
N4@p (Lemma 2.2 in [3]). So 1-linearity of f is proved. Similarly, 2-
linearity is proved using

na®ly =t",

which again is a consequence of Lemma 2.2 in [3].
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Conversely, assume that f is 1-linear and 2-linear. By definition of v,
to prove (1.1) commutative means proving

tt"T-p-fTy = aQB-f.
Now the left hand side here equals
vVt T-fT2 u-y by naturality of u

=¢-¢t"T-fT?yT-y by “associative law” for y
v-(1/)T-fT'-y by 2-linearity of f

= 1QB-t'-fT-y by naturality of ¢’

= 1Qp a1 -f by 1-linearity of f,
which is the right hand side of the desired equation. The theorem is
proved.

Il

REMARK 1.2. There is an element-free version of Theorem 1.1 provided
¥, has equalizers; we can then define subobjects Lin,, Lin,, Bilin, and
Bilin™ of (A®B) A C, whose “elements’ are the 1-linear, 2-linear, y-
bilinear, §-bilinear maps AQB — C; the sharpened form of the theorem
says: Lin, n Lin, = Bilin = Bilin" .
The proof of this is somewhat more complicated, and we omit it, since
the sharpened form plays no role in the present paper.

In the following, we assume that ¥; has equalizers. Since B and C
have T-algebra structures (§ and y, respectively), we may, as is well
known (by [4], say), form a subobject B dh C of B A C, »the subobject
of homomorphisms”’, namely as the equalizer of st-1hy and A1, st
being the strength of 7'. Also, we may make B A C into a T-algebra
by means of

BAOYT-LBhoT 2 BAC,

where 4 is the combinator constructed out of the strength of 7' as in [4]
or [5]. ;

Consider f: AQB - C as before, and let f denote the transpose,
f: A > BhC. We then have

PrOPOSITION 1.3. The map f is bilinear if and only if f is a T-homo-
morphism and factors through B 4k C.
Proor. We shall in fact argue that
(i) fis 1-linear iff fi is a T-homomorphism and
(ii) f is 2-linear iff f factors through B 4h C,
from which the Proposition will follow, using Theorem 1.2.
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The proof of (i) depends of course on knowing the interrelations be-
tween ¢’ and 2. From Lemma 1.2 in [4], one can deduce, by ®-h ad-
jointness, that 1: (B & C)T' — B & CT can be expressed as the following
composite (where % and ev denote front and end adjunctions for the
®-h adjointness):

(1.3) (BAOTSBA[(BAC)TRB]-
N BA(BAO)RBT 2L Bhor.
So if f is 1-linear, we have
t-fTy=0@l-f: ATRB -~ C;
by ®-4 adjointness we get
wlht' 1hfT-1hy=a-f: AT -~ BhC.

The left hand side here is easy to rewrite as fT' followed by 1 y, and
so equals fT'-1-1 Ay which proves (i).
The proof of (ii) does not involve information about A, but only the
equality
uBT-1 At = uB-st,

which is immediate from the definition of ¢’ in terms of st, as in [3].
We omit the details.

REMARK 1.4. In case T is commutative, B dh C is a sub- T-algebra of
B A C, according to [4]. So we can make sense to the expression
A M (BdhC). In the terminology of Remark 1.2, one can then prove
that the subobject Bilin of (4®B) & C corresponds under ®-h adjoint-
ness to 4 4h (B 4h C). Also, there will be induced a canonical isomor-
phism A 4k (Bdh C)=B d (A4 4 O), reflecting the fact that Bilin=
Bilin~.

We conjecture that, as soon as a reasonable definition of “‘(non-
monoidal) symmetric closed category” (as hinted at in [5]) has been
found, the isomorphism A 4k (Bdh C)~B dh (4 & C) will make the
closed category generated by a commutative monad T (as in [4]) into a
symmetric closed category.

We list here some examples of 1-, 2-, and bilinear maps. Let X and Y
be arbitrary objects in ¥;, and make X7, YT, (X®Y)T into algebras
for T by means of the appropriate x. Then

ty,y: XT®Y - (X®Y)T is1-linear
tx,y: XQYT > (XQY)T' is 2-linear
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(1.4) vx.v: XTQYT - (XQY)T is l-linear
(1.5) Px,v: XTQYT - (XQY)T is 2-linear.
These facts are easy to see using Lemma 1.1 and Lemma 1.2 in [3].

Proposrition 1.5. Let T be a strong monad and v, § the two associated
monoidal structures on the functor part T. Then for any objects X, Y, the
following two conditions are equivalent:

1) vx,r=vxv;

(i) yx, y 8 bilinear or Px y is bilinear.

Further, the following conditions are equivalent

(iii) T ¢s commutative (that is, p=1p);

(iv) vx, v 18 bilinear for all X,Y, or px, y is bilinear for all X, Y ;
(v) u is a y-monoidal transformation or a p-monoidal transformation.

Proor. Assume (i). Then by (1.4) and (1.5), yx, p is 1-linear and 2-
linear, hence bilinear by Theorem 1.1, proving (ii). Assume (ii), for in-
stance, assume that yx y is bilinear. By Theorem 1.1, we may take
this to mean “p-bilinear”’, which means that

{/:'XT,YT"‘/)X,YT'”X®Y = uxQuy " ¥x,v -

If we multiply this equation on the left by 5xT®%y T, the right hand
side gives yx y. The left hand side gives, by naturality of ¢,

P (xQny)T 9T u.

Now the proof of Theorem 3.2 in [3] shows that (without assumption of

commutativity of the monad) 7x®7y yx, ¥y =7x®y, so that the above
becomes

'T’x, v’ (7]X®Y)T'/‘X®Y

which by monad laws is just §x p. This proves (i). (Similarly, if our
assumption in (ii) were “px y bilinear”’, we would take “bilinear” to
mean ‘‘p-bilinear”.)

The proof of (iii) <= (iv) is trivial from (i) <= (ii). Finally, (iv) < (v)
is immediate, noting that the diagram saying that yx p is y-bilinear is
the same as a general one out of the family establishing that u is y-
monoidal. This proves Proposition 1.5.

When the tensor product of more than two algebras are involved in
the domain, e.g.

(1.6) fr A,®... @4, >4, ,
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where (4,,«,) is a T-algebra, the notions of 1-linearity, 2-linearity, and
bilinearity split into many different notions, according to how the left
hand side is bracketed. There is, however, probably a coherence theorem
saying that ‘“the bracketing does not matter’”’; at least for n=3, this is
true because of Propositions 1.5, 1.6, and (2.4) in [3].

2. Monads on cartesian closed categories.

In the following, ¥” is a cartesian closed category (see e.g. [2, IV.2]),
so we write 1 instead of I for the unit object (which now is terminal), and
A x B for AQB (which is now a categorical product:

4 % 4% B 2% p)
Any functor T': ¥; — ¥, comes equipped with the well-known combinator
%y ' (AxB)T - AT x BT

given by x4 p*proj;=(proj,)T’, i=0,1. (One can actually show that x is
¥ -natural if T' is a ¥ -functor.) In particular, if 7' is the functor part of
a monad T, and (4,«),(B,8) are algebras for it, then 4 x B carries an
algebra structure

(3.1) (AxB)T —%> AT xBT 2% 4xB.
If also (C,y) is an algebra, a map
(3.2) fi AxB->C

may or may not be a 7-homomorphism (or “linear” in the terminology
to be adopted here). If T is a ¥"-monad, f may or may not be bilinear.

THEOREM 2.1. Let (T,st),n,u be a ¥ -monad on the cartesian closed
category ¥, with associated monoidal structures v,p. The following condi-
tions are equivalent (and describe the notion of affine monad):

() 1T~1;

(ii) AT x BT Y42 (A x B)T 2425 AT x BT = id;

(iii) as (i), but with § 4 p instead of p4 p;

(iv) any map f: A x B - C which is linear is also bilinear.

Proor. Assume (i). To prove (ii), it suffices to prove

Y4, B'%4,B°PrOj; = proj;. i=0,1.

Let us do it for t=0. Let k: B — 1 denote the unique such map. Then
it is easy to see, using naturality of y-x» with respect to k£ that
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(2.3) Y% Pproj, = w-x%-1x k7T -proj,
= 1x kT p-%-proj, = 1 x kT -yp-(proj,)T .
We shall prove
- projo T = proj,: AT x 1T — AT .

(which clearly will imply that (2.3) is just proj,). Now this equation says
that * in the following diagram commutes:

t

1
AT x1 2% AT < 1T —*> (Ax1)T
* % *
Projo=r4T Brolo erT=pmjoT
> AT

From (1.2), the top diagram here is known to commute; the “triangle”
** obviously commutes; the outer diagram commutes by the unit law
for #'. (See Lemma 1.8 in [3] for a proof of the symmetric statement
about ¢t"’.) To conclude that * commutes, we thus need that 1 x #, is epic.
But, by (i), 17" is terminal, and thus #,: 1 - 17" is an isomorphism, so
1x 7 is an isomorphism. The proof of (i) = (iii) is similar. To prove
(ii) = (iv) (or (iii) = (iv)): let f: A x B — C be linear. This means

waxff=fTy.
If we multiply this on the left by y, we get by assumption (ii)
axpf=yfly,
saying that f is y-bilinear, thus bilinear. (To prove (iii) => (iv), replace
v by % and conclude that f is -bilinear, thus bilinear.)

We shall now prove (iv) =- (ii) and (ii) => (i). If (iv) holds, then
id: AT x BT -~ AT x BT is bilinear with respect to the canonical struc-
tures w4, ftp, %4, ' Maxp- This means

Var,Br ¥ar,Br MaX Up = HaXUp -

Multiplying this equation on the left by %7 x 5T and using naturality
of y and x» gives

Va8 %4, 8 MaT xnBT) (pax up) = T xnT) (ugx pp)
whence (ii) follows from monad laws. Finally assume (ii). Since y-»x=id,

is monic. Since (proj,)7': (1x1)7" - 17 is an isomorphism, we con-
clude that y-proj,T' is monic. But
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¥1,1°ProjoT = vy, 4 % proj, = projy: 17'x 17 - 1T,

80 proj,: 17" x 17" — 17T is monic. This together with the fact that there
always is at least one map X — 17, namely

X->131T,

enables us to conclude that 17" is terminal, hence 1~17'. This proves
Theorem 2.1.

The condition (ii) in the following Proposition was pointed out to me
by Gavin Wraith; 4=(4,«), B=(B,B), and C=(C,y) are algebras as
usual.

ProrosiTiON 2.2. The following conditions are equivalent:
(i) for every A,B
(2.4) Laxpyr=%4,8'Y4,8° (AXB)T ~ AT x BT -~ (A x B)T’;
(ii) for every C, the diagram
T 2%, 0T x CT

(2.5) (:,')>\ ve
(CxOT
commutes, A being the diagonal.
Further, (2.4) implies that a map
fi AxB->C

which s bilinear 1s also linear.

Proor. The last statement can be proved with the same technique as
the one used for (ii) = (iv) in the previous theorem. Now assume (2.4)
for A=B=C, and multiply (2.4) on the left by (4,)T to get the first
equation in

(Ae)T = (40)T%¢,0*ve,c = Aoz vo,c5

the last equation being obvious from the definition of » and 4. Con-
versely, if (2.5) commutes for C=A4 x B, we multiply it on the right by
T of the map

Projo x proj;: (A xB)x (AxB) - Ax B

(““projecting onto first and fourth factor”); the equation (2.4) now is
easily derived, using naturality of y with respect to proj, and proj,,
and obvious properties of proj, », and 4.
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The proposition also holds, if we replace y by § everywhere. If the
monad is commutative, that is, =17, then a converse of Proposition 2.2
holds, namely (iv) = (i) in

ProrosiTioN 2.3. Let T be a commutative monad. Then the following
conditions are equivalent:

(1) %48 Y4 5=luxmr for every A,B,

(i) dor-yo=(4c)T for every C;

(iii) Any map from a binary product of algebras which is bilinear is also
linear;

(iv) p s linear: AT x BT — (A x B)T' (with respect to the structures
Pa> Bp> O Y gxp)-

Proor. We have (i) = (ii) = (iii) by the preceding Proposition. By
Proposition 1.5 and commutativity of T, the map y is bilinear, so if (iii)
holds, y is linear as well, proving (iv). Finally assume that (iv) holds;
this means that

(2.6) %ar, pr X py = yITp.
Multiply this equation on the left by (4, % 5)7". The left hand side gives
%y by naturality of » and monad laws. Theorem 3.2 in [3] gives that 5

is a monoidal transformation. So the right hand side of (2.6) above
yields, by left multiplication by (54 xng)T,

Maxnp)T yT-pu = (naxp)T = 1.
This proves that »-y =1, which is (i). Proposition 2.3 is proved.

ReMARK 2.4. To prove 7 monoidal one need not use the commuta-
tivity of T (as can be seen by inspecting the proof of Theorem 3.2 of [3]),
so that, without assuming commutativity of T, we can prove that
“p4, p linear” implies that (2.4) holds.

THEOREM 2.5. Let T be a strong monad on a cartesian closed category,
with associated monoidal structures y and . Then the following conditions
are equivalent:

(1) T is commutative and a map f: A x B — C is linear if and only if it is
bilinear;

(i) x4 pand p4 p are inverse to each other for all A,B;

(iii) %4 5 and P4 p are inverse to each other for all A,B;

(iv) the functor part T of T commutes with finite products.

Proor. Assume (i). By Theorem 2.1 and Proposition 2.3, y, p=
$4,p is a two-sided inverse for », p, proving (ii) and (iii). If (ii) or (iii)
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holds, %4 5 is always an isomorphism, whence 7' commutes with binary
products. Also, using Theorem 2.1 again, 17"~ 1, whence 7' commutes
with empty products, thus with all finite products, that is, (iv) holds.
Finally, if (iv) holds, then 17"~ 1, whence by Theorem 2.1, y, 5 as well
as §,4 p are one-sided inverses for x, p, which however is an isomor-
phism, so that v, p=9, p is a two sided inverse. By v, p=94 5, the
monad T is commutative, and “linear <= bilinear” follows from (ii) =
(iv) in Theorem 2.1 and (i) = (iii) in Propisition 2.3. So (i) holds, prov-
ing Theorem 2.5.

THEOREM 2.6. Let T, n, u be @ monad on a cartesian closed category ¥~,
and assume that T' commutes with finite products. Then the monad carries
a unique structure of strong monad, and as such, it is a cartesian closed
(¢n particular commutative) monad. If ¥~ has equalizers, the category of
algebras for (T',n,p) is cartesian closed.

Proor. To construct a (commutative) strength st on 7', 9, u it suf-
fices by [6, Theorem 2.3], to construct a monoidal structure on 7', mak-
ing 7 and u monoidal transformations.

We take the monoidal structure y to be given by the inverse of

%4, 5 (AxB)YT — AT x BT';

the transformation id — 7" we take to be the given 7, which is easily seen
to be monoidal. Also, x can be seen to be monoidal, by multiplying the
desired commutativity on the left and right by suitable composites of
the invertible .

It then follows from Theorem 2.5 that the strong monad ((7',st), 7, u)
is in fact cartesian closed. The statement about the algebra category
being cartesian closed will be proved in the next section. Finally, we
prove the uniqueness of a strength on 7,7, u: if sty,st; are two strengths,
they give rise to the same monoidal structure y: AT x BT - (4 x B)T,
since this has to be an inverse for the invertible x4 5, by Theorem 2.5 (ii).
However, the tensorial strengths ¢,"’,¢," : A x BT' - (4 x B)T correspond-
ing to sty,st; under the one-one correspondence of [6, Theorem 1.3],
can be reconstructed from vy as 7, x 1-y; thus ¢’ =¢t,"", and therefore
sty =st;.

DErFINITION 2.7. A monad, which satisfies the condition of Theorem
2.6 above is called cartesian closed.

3. Algebras for cartesian closed monads.

Recall that if T is a strong commutative monad on a symmetric
monoidal closed category ¥~ with equalizers, then, by [4], the category
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of algebras for T can be made into a closed category. In fact, if 4 =(4,«)
and B=(B,f) are algebras, the sub-object 4 &k B of A 4 B which equa-
lizes & A 1 and st-1 A 8 (where st is the strength of 7') can be made into a
T-algebra, in fact, a subalgebra of 4 4 B equipped with the structure
A4, 514 B The main result of [4, Theorem 2.1] states, then, that dh
makes the category ¥;T of T-algebras into a closed category.

For the particular case of a cartesian closed monad (Definition 2.7),
Ay will turn the closed category of algebras ¥, T into a cartesian closed
category, as we shall now prove.

Denote the underlying - functor ;T — ¥#; by U. If (B,B) is an algebra
(by abuse denoted B), then

-xB: #T YT
is a functor; we propose to show that it has the functor
(3.1) Bdh-: 4T > HT
as a right adjoint. (The fact that (3.1) is indeed a functor with ¥;T as
codomain follows from the commutativity of T together with the results

of [4]).
For (4,x) another algebra, we have maps in %,

&v,: BhA)xB-=5 (BhA)xB - 4,
¢ being the equalizer defining B 4k 4. This family is natural in (4,«).
Lremma 3.1. Each ev, is a homomorphism.

Proor. By condition (i) of Theorem 2.5, we just have to prove ev,
bilinear. Since ev: (Bh A)xB -~ A is the transpose of 1: Bh 4 —
B A A, the map ev, is the transpose of e: Bdh A - Bk A. However,
e is a homomorphism by construction of structure on B dh 4, and it
factors through e: Bd A -~ B A A, whence Proposition 1.3 gives the
bilinearity of ev,. This proves the lemma.

Consider the transpose u: A > B (4 xB) of 1,,5. Since 1,5 is
linear, it is bilinear by (i) of Theorem 2.5, whence by Proposition 1.3,
w is a homomorphism and factors across B dh (4 x B) as %,

A

U4 u

Bh(AxB) — Bh(AxB).
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By commutativity of the monad, e can be made into a homomorphism;
the fact that w is a homomorphism now implies that %, also is. Again,
%4 is natural in (4,x). We thus have homomorphism, natural in (4,«):

ev,: (BAhA)xB—->A, u,: A>Bdh(4xB).

The fact that these satisfy the equations making — x B+ B dh — now
easily follows from the fact that U: % T — 7; is faithful, and from the
corresponding equations between ev and u, whence

THEOREM 3.2. If T is a cartesian closed monad on a cartesian closed
category with equalizers, the category of algebras for T is again a cartesian
closed category.

RemARk. The closed structure on the algebra category mentioned in
the theorem is (as the proof above shows) the one existing by [4] because
of commutativity of T. The fact that a commutative monad whose
functor part commutes with products has a cartesian closed category of
algebras was originally conjectured by Lawvere and Tierney.

AN ExamprLi. Let PO denote the category of partially ordered sets.
To a partially ordered set 4, let (4)7 denote the set of “directed non-
empty filters” of A, that is, the set of such nonempty subsets X c 4
so that

(1) (@ezx)A(xeX) = aeX,
(i) (wgeX)A(x1€X) = (FaeX) (@S X)) A (X £25);

(4)T is partially ordered by inclusion. Then clearly, 7' is a functor
PO - PO; for an order preserving map f, fT takes a directed nonempty
filter into the filter generated by its set-theoretic direct image.

For acA, let (ayye(4)T be {xcd |x=La}; for Ze(A)TT, let (Z)uy e
(A)T be the set-theoretic union. These data together form a monad on
PO.

To see that it is a cartesian closed monad, we just have to prove
that T commutes with finite products. By the nonemptyness condition,
17~ 1. By Theorem 2.1, then,

%: (AxB)T -~ AT x BT

is split epi in PO; so it is an isomorphism if we can show that it is 1-1
as a set mapping. Let X, X' be directed nonempty filters with (X)x=
(X")%. Assume {a,b) € X. Then a € (X)x,, b € (X)x,, hence by assump-
tion a € (X')x%,, b € (X')%,, meaning that there exist a’,b’, so that

{a,b"ye X', (a',b)eX’.
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By condition (ii), there exists a common upper bound (a’’,d'") for them
in X', that is

asa’, b0,
and
a’ =a’, b0
But then {(a,b)=<<({a’’,b""), whence also {(a,b) € X'. So X £ X’; similarly,
X'cX.
The category of algebras for the monad here is the category of partially

ordered sets such that every directed nonempty filter has a least upper
bound (and the maps are those that preserve this bound).

1. J.
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