MATH. SCAND. 29 (1971), 137-160

INTEGRAL REPRESENTATION FORMULAS
AND L?-ESTIMATES FOR THE 3-EQUATION

NILS gVRELID

Introduction.

In this paper, we study the equation dv=1w in strictly pseudoconvex
domains, where u is a (0,g)-form and du=0. The main result is a L?-
estimate for this equation. More precisely, we construct operators 7T,
from (0,¢)-forms on D to (0,¢g—1)-forms on D, ¢ =1, which are continu-
ous in all LP-norms, 1 <p < oo, and such that

(1) u = C,[0T u—Ty,, 0ul

where % is a (0,q)-form, and w and 9u have L!-coefficients. From this
it follows immediately that 5(0q~Tqu)=u when du=0. The operators
T, are singular integral operators with kernels K, continuous outside
the diagonal. We prove the formula

(2) u(z) = C, [fu(C)Ko(C,z) — (T 9u) (2)
oD

when u € CY(D). The regularity and boundary behaviour of 7' ,u are
also studied.

The plan of the paper is as follows: In Section 1, we fix the notation,
and recall some simple but useful facts. The formulas (1) and (2) are
special cases of (a slight generalization of) a formula of Koppelman,
valid without the pseudoconvexity condition. It was announced in [8],
and since no proof has appeared, we give one in Section 2. It is based
on an idea of Leray, [9, ch. 7]. The kernels are pull-backs of a universal
form v on a bundle E over C*x C*\ 4 by a suitable section s. To con-
struct such a s, some special functions from Henkin [3] are used. In
Section 3, a modification of Henkin’s construction is given where only
C? boundary is needed. In Section 4, we show how to extend and modify
Henkin’s functions to get the section s, while in Section 5 we see that
if this is done with care, certain uniformity properties in { and z follows,
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from which the L?-estimates and other properties of the 7',’s are de-
duced in Section 6.

When u € A(D), formula (2) reduces to the representation formula of
Henkin [3], which was the starting point of my investigation. I want
to thank Professor Hérmander for the suggestion to extend Henkin’s
results, and for help and encouragement during the preparation of this
work.

After I had obtained (2), and the results for (0, 1)-forms, I learnt about
the closely related work of Grauert-Lieb and Kerzman. I want to thank
Dr. Lieb for sending me a preprint of the note [10], which made me aware
of Koppelman’s work, and showed how to extend my methods to forms
of arbitrary degree. As this does not complicate the proofs much, I have
decided to give the general version. I also want to thank Dr. Kerzman
for sending me a copy of his New York University thesis [7], and a
research announcement [6] with the same title. Kerzman’s papers give
both L7 and Holder estimates for (0,1)-forms. After this manuscript
was completed, Henkin’s paper [4] appeared, which gives sup-norm
estimates for (0,1)-forms.

1. Notation and preliminaries.

We will use the standard notation for differential forms in C* (as in
Hormander [5, Section 2.1]). In the present paper, however, I,J,...
will always be strictly increasing multiindices. If u,,...,u, are differ-
ential forms, and I=(,,...,%) is an increasing multi-index, 4! denotes
Ug Ao AUy, and Ay o ou; denotes uy A. .. Auy , Where ji<...<j, i
are the remaining integers in {1,...,n}.

When M is a complex manifold, A¢,)(M) is the space of holomorphic
p-forms, or (p,0)-forms with holomorphic coefficients.

{*,+) denotes the C-bilinear pairing (z,w) - X7 ,z,w;, from Cr»xC»
to C, as well as the R-bilinear pairing (¢,v) - ¢(v) from Lg(V,C)x V to
C, when V is a (real or complex) vectorspace, and Lg(V,C) the space
of R-linear maps from ¥ to C. Recall that if g € CY(U,C), U open in C?,
then

n

o) = X

i=1
is the C-linear part of dg(z), that is,
(99(2),t) = $({dg(=),t) — i{dg(2), it))

A (real or Hermitian) scalar product determines norms on V* and its
exterior powers A? V*. These norms, as well as the modulus of complex

99(2)
0z

dz,

1
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numbers, are denoted by |-|. We have |uav|<|u||v]. Notice that
LE, (D), the space of (r,q) forms with coefficients in L?(D), is the space
of equivalence classes of (r,q)-forms u with measurable coefficients, for
which |u| € L?(D). We define |u||, = |(|u|)||z#p,. If M is an m-dimensional
Cl-submanifold of a Euclidean space, do denotes the volume measure
associated with the induced Riemannian metric. If % is an integrable
m-form on M, we have
[u

M

< [ 1u(e) dot)
M

d2 denotes the Lebesgue measure on C?, and dx the Lebesgue measure
on R™,

We are going to consider differential forms u=3; ;u; ;(x,y) da’ady’,
on X x ¥, where the u; ,’s are scalar functions, and (z;,...%,), (¥y,- . . ¥,)
are coordinates on X resp. Y. If ¢ is an m-dimensional C'-cycle in X,
then

J"“ = Z( > ugy(2,y) dxl) dy’

T\ Ul=m

is a form on Y. On X x Y we split d=d,+d,, where

9 g d
dy=> —dz; and d,=> —dy,,
El owy vy

and in the same way 9=0,+0, when X and Y carry complex structures.
When «=(«,...,x,) and =(f,...,H,) are multi-orders,

DD, fu(z,y) = (9[omy)™ . . . (9]0w,)™ (2]2y,)™ - . . (2 0y,)Pmu(z,y) .

When X or Y carry complex structure, the symbols above still denote
derivation with respect to the underlying real coordinates.

The space C¥X,0™(Y)) of C*functions on X with values in the
Fréchet space C*(Y), is identified with

{feC(XxY): DD, }ff(x,y) exists and is continuous when
|x| £ k; B arbitrary},

by the map g - (f: (2,y) - g(x)(y)). When Y carries a complex struc-
ture, C¥(X,A(Y)) is the subspace where D,*f(x,y) is holomorphic in y
when |x| < k.

If V is a complex vectorspace, we orient it by defining the real basis
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ep,%€5,. . .,e,,1e, to be positively oriented for every complex basis

€1se - r€pe

Finally, when V is a normed space, S(x,r) is the sphere, and B(x,r)
the open ball, with radius r and center .

2. Koppelman’s formulas.
Let &,,...,&, be the coordinate functions on C*. We define

= d ; A Cn N
w ( '5 ) A Et € (n)( )
and

@(E) = X (=D A\ dEy € Aop(CY).
= VE)

Note that w(£) generates A, (C") over A4(C"), while w'(¢) plays a similar
role for the complex projective space.
Let P»-1(C) be the complex n—1 dimensional projective space and

7: C*\ {0} - P»-1(C)
the projection. For simplicity, we also write = for
axl: (&)~ (n(£),x)

from (C*\ {0})x X to P»{(C)x X. Let U,={£eCn, &40}, and U;=
7(0,). The functions
O &> &l G,

are complex coordinates on U,, and a simple computation shows that
¥ (/\dn]ﬁ)) = /\ d(é:]/&‘t) = (- l)i_lfi"”w'(f)
JF+1 FEX]
on U,.

Let U be open in (C*\ {0}) x C™, and U=n(0). As =* is injective, it
follows that the map

A(’n+m—-1)(U) su—fe A(U) ’
when z*u=f(&w) o'(§)Aw(w), is a bijection on
{fe A(U): fis homogeneous in & of degree —n} .

Let in particular

B = {(£,0,2) e Cn ;5 (£,L—2)+ 0},
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and E=n(E). Let
7= (£{-2)"w'(§) A w() A w(z) .

By the remark above, #=n*y, where v e Ag,_(£). As E is open in
Pn-1(C) x C?, » is holomorphic of maximal degree, and therefore

(2.1) dv=0.
Let p: E - C*x C*\ 4 be the projection (n(£),¢,2) — (¢,2).

ReMARK. It is easy to see that (v,(,z) - (n(v+(—2),,2) is a homeo-
morphism from {(v,{,2) € C*x (C*x C*\ 4): {(v,{—2)=0} to E, which
gives £ 5 Cnx C*\ 4 a complex vector bundle structure.

Let U be open in C*x C*\ 4, and s: U - E a p-section of class C1.
We define K = K(s) as the unique (n,n— 1) form such that KAw(z)=s*».
We write K = )_‘”"IKq, when K, is of type (n,n—g—1) in { and (0,q)
in 2. Since d(KAw(z))—s*dv and KAw(z) is of type (2n,n—1), we must
have

Lrmma 2.1. 0K =0, and therefore 9,K,= —0,K, ,, ¢=0,1,...,n, when
we define K_;=0 and K,=0.

In the applications, the sections will be of the form

81 (6:2) > (mof(6,2),8,2) ,

where f=(fi,...,f,): U— C® satisfies {(f({,2),{—2)+0 in U. In fact,
this is always true. Locally, this is clear, and we normalize the local
functions f and patch them together by a partition of unity. For sim-
plicity, instead of K(s;), we usually write K(f), or even K when there is
no danger of confusion. The important thing is, however, that K(f)
only depends on s;. Now

s = (1) = F(L,2)™ f*(o'(8)) A o(0) A ol2),
where F(L,2)={f(,2),{—2), 80

(22) K@) = FEa 3 (-, A\ Bl +2uf) » 00
i= L

To explicit the kernels K,, we introduce the following notation: When
0<g=n-1, P, is the set of permutations p: {1,...,n} > {ip,Jp,Lp},
where J, and L, are increasing multi-indices with |J|=n—g—1 a:nd
|L,|=q. Let ¢, denote the signature of p. Separating the terms o,f;

from the terms 9,f;, we clearly get
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(2.3) K (L,2) = F(L,2)™ > pfi,, /\ Opf; A /\ ,firw(l) .
Ly

E

An important example is b: (C,z) - {—Z from C*x C»\ 4 to C».
As 0;b;=df; and 3,b,= —dz;, we get

KO)E2) = [E=#1 3 (=1 E—2) ) (@=d5) n (),
- e

and

K@)L7) = (=1 f=eln 3 e, =2,) A dEnold)a A\ da,

pE

when 0<g=<n-—1. These kernels are called the Bochner-Martinelli
kernels. Note, however, that they differ from those of Koppelman [8]
by a constant factor. Clearly K(b) is translation invariant, and

‘K(b)(C,Z)l é Oblc_zl—2n+l ’

where O, is a constant only depending on #. Introducing polar coordi-
nates, we see that

[1E®)(¢,21242) 5 Oy0pny*dinmeter (D),
D

where w,, _, is the area of the unit sphere in C*, and from the translation
invariance of K(b) we get

Dza(fu(C) A K(b)q_l(é‘,z)) = f(Dau(I)) AK(b),(L,2),
D D

when u € (Co!*),o(D)-
We are now ready to give the main result of this section.

THEOREM 2.2. Let D be a bounded set in C* with C* boundary, and
s: Dx D\ A — E a C-section, which is equal to s, on a neighbourhood of A
in DxD. Write K, for K (s). Then we have

(2.4)
u(z) = [ f w(?) A K (L,2) — f Bu(l) A K (£,2)+3, (f WA K _I(C,z))]
D

2D

for all ze D and u e Cy 4(D), ¢=0,1,...,n, where

C, = (—1)int-D4e (n 1)1 (2i)~" .
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PrOOF. As (CF)p,o(D) is dense in Li, (D), 0Sp,g<n, it is enough
to show that

@5 [u@)ave) = [f u(t) A Kyft,2) A o(z) —
D

9D x D

- f@uC)AKq(C, ) A v(z) +f( fu(C)AKq_l(C,z)>Av(z)]

DxD

for all v € (C4™)n,n-1(D). We also notice that K, and K,_; may be replaced
by K in this formula, as the additional terms must vanish for degree
reasons.

For all £> 0, let
= {((¢,2)eDxD:|;—z|=¢},
= {((,2)eDxD:|t—z2|z¢}.
Then Stokes theorem gives

[IRGCLE CEITORE RTGPY (PO

oDxD Mg

- f 3u(t) A K(2,2) Av(z) + (= 1)2+a-1 j w(t) A K(L,2) A Bo(2) ,
U, U,
as K is closed outside 4, and the integrand vanishes on the rest of oU,.

Let T': C»x C* — C" x C" be the map (w,2) - (2+w,z). When ¢ is chosen
sufficiently small,

[uorkEare = [ THurK) av(a),

M, S(0,e)x D
and K =K(b) on M,nsuppv. Writing
u(l) = ] > ug(8) det,

we get Ti=¢

T*(uAK) Av
8(0,8) x D
= f S uy(z+w)dEZ+ D) A |w] 2"’ (W) A o(w+2) Av(2)
SoxD T1=1

= (-1)en-na | ¥ | fu, (z+w) K(b)y(w,0)} dzT A v(z)
D 1= 50,0
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by degree considerations. Observe that

w(z+w) = w(w)+ terms killed by v(z) ,
and
dZ+w) A o' (W) A o(w) = dZL A o' (W) A o(w) +
+ terms of degree >2n—1 in w.
We now need

LemMa 2.3. Let D be open in C*, and g € CY(D). Then

9(z+w) K(b)o(w,0) > Cy9(2)
S(0,8)

uniformly on compacts in D.

This follows easily from the proof of (56.1) in [9]. (The difference in
sign follows from different orientation conventions.)

The Bochner-Martinelli kernel is absolutely integrable, so we may let
e >0, and get

| w©) A K@z a0 = (=110, [ u@) roe)
D

eDxD

- jéwoAK@mAwa+«4wf(fmaAKmaA%wO.

Dx D D ‘D

After integrating by parts in the last term and rearranging, we get
formula (2.5).

REMARK. Formula (2.4) may be valid without the condition s=s,
near 4 in Dx D. It is well known how each C! homotopy % between s
and s, determines a form w, with K(s)—K(b)=dw,. (Such a homotopy
will always exist because E has a smooth vector bundle structure.)
As v has compact support in D, integration by parts gives

[ w0 A K@)@2) ave) = [ ) A K@)E2) 2062

M, M,
= (=1 [ du(d) r wpl2) av(a)— [ u) A wnllz) ado(e)
M, M,

For quite a large class of sections, which may even be discontinuous at
4, we may choose & so that
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[ 1ont.2)1 do@) > 0
S(z,8)

uniformly on compacts as ¢ - 0. If K(s) is absolutely integrable, we
get (2.4). However, we are not going to use this extension.

3. Henkin’s construction.

Assume that we can find a O section s of E over D x D\ 4, which
is holomorphic in z € D when { € 0D. At least locally, s=3, with f(,2)
holomorphie in z when { € 2D, so it follows from (2.2) that K,(¢,?) is
analytic in ze D, while K ({,2)=0 for ¢=1, when (e oD. If also s
equals s, near 4 in D x D, we get at once from theorem 2.2 that

(3.1) u(®) = C, [ f w(t) KoL) — f u(?) AKO(c,z)]
D

oD

where w € CY(D), z € D; and

(32) u(z) = C1q [éz (J.u(z) A Kq—l(caz)) - f_a-u’(c) A Kq(C3 Z)]
D

D

where u € C(lo’q)(l—)), zeD and ¢=1. Such a section can be constructed
when D is bounded with C? strictly pseudoconvex boundary. This
means that there exists a p € C%(U), where U is a neighbourhood of ¢D,
with p<0in UnD and p>0 in U\ D, and with dg(z)+0 and the Levi
form

positive definite when z e U.
We write V,={ze U: |o(2)| <¢}, and D,=V,uD. When ¢,d>o0,

0=0,,={¢?eV,xD,;: (eV, and |{—2|<é}.
Then the first step in the construction of an s with the properties above

is

THEOREM 3.1. With the assumptions and notations above we can find:
1. Constants C,e,6>0, He CY(V,A(D,)), and 4,B € C*(0, ), such that B
does not vanish on O, and

Math. Scand. — 10



146 NILS OVRELID

(1) H=AB on O; H is bounded away from zero outside O.
(2) ReA(¢,2) 2 [o(0)—e(2)]+ClL 2
(3) deA(C,2)ems= — d;A(L,2) ;s = 2 00(2) -

II. There exists h € CYV,, A(D,))", such that

H(l,2) = Eh (€:2)(Ci—2) (or <h(E,2),8—2)) .
i=1
Apart from the fact that we only require C? boundary, the theorem
above is almost identical to results in Henkin [3]. Ramirez de Arellano
[11] gives related results. We shall indicate Henkin’s argument, and give
in detail the modifications needed.

Proor. Suppose first that D is strictly convex, that is, that the
Hessian
= %)

H (2)t = t
) .',j§=:1 omgom; !

is positive definite near D, where (z,,...z,,) are the underlying real
coordinates of C». If

H,{)t z 3C|t|]* when {€dD,
then, by Taylors theorem
e(z)—e(C) = (de(C), 2—0)+C|l—2|*

when ( is near D and |C —2| <48, where § is a suitable positive constant.
We define

H(,2) = 29(8),C—2), hy(l,2) = 20e(C)[2L;,
and get

ReH((,2) = (do({),{—2) 2 [e(¢)—e(&)]+C L —2[*.

With A=H, the theorem clearly holds.

Combined with the constructions below, this gives elementary exis-
tence proofs and L?-estimates for the d-complex of a bounded domain
with C? strictly convex boundary.

When ¢ is C? and strictly pseudoconvex at v e C?, there exists a
biholomorphic map 7', from a neighbourhood U, of v to a neighbour-
hood U(v) of 0, with inverse 8,; such that g,=go S, is strictly convex.
Define T',: (2q,. . .,2,) > (wy(2),25,. . -,2,), When
< ()

wl(z = 2(3@ v),z v) + Z
%,J=1 oz 'ta j

(2s—v)(z;—vy) ,
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and z,,...,2, 8o chosen that dw,(v)/0z,+0. By Taylor’s formula
e.(w) = Rew, + Ly(v)(8, (w))+o(lwl?) ,

so H, (0) is positive definite.
We can therefore find 6,’ >0 and C,’ >0, such that

ey(w"), W' —w) 2 @, (W) —ey(w) +Cy'|w’ —w|?,

when |w'| <4, and |w—w'| <d,’. As T, is a diffeomorphism, there exists
8,,Cp> 0, with

(o To(0)), Tof£) = To(2)) Z e(l) —e(2) +ClL ~22,
when |{—v| <, and |{ —2| <d,. We define

Av(az) = 2(3@0( v(C)) z))
= 2{00(£), Sy'( v(C))[T (C)— o)

when ¢ e B(v,d,) and ze€ B({,4,). Choose v,,...,vy€ U, such that
{B(v4,0y)}i=1,...,n cover @D, and @; € Cy®(B(v;,6,,), 1=1,...,N, which
form a partition of unity on a neighbourhood V of D. If 6=
mind,,. .. d,,, we define

(3'3) Z (Pz v‘ C z) on Os,d

=1

Let C=min{C,,...,C,,}. Clearly,
(3.4) ReA((,2) = e(0)—o(2)+C|f—2* on O.

If £>0 is chosen small enough, we therefore get ReA({,z)>0 when
(¢,2) € V,x Dy and 36 < |{—2|<d. Finally we notice that

9, A(L,2) = 200(8) +0(|C—2|) ,
and

z'A (2) = =2 zl% £)o 8, (T (C))OT‘,'(Z) ’
i=
80 A(Z,2) clearly satisfies (2) and (3) in the Theorem.

We may now proceed as Henkin, and use the Oka-Cartan theory for
domains of holomorphy to construct H and h.

Let x € Cy™(B(0,9)), with x(z)=1 when [z|<3d. We solve 0,0(¢,2) =
By(t,2), with CeCOYV,L¥D,)), where B;=0,((Ind)x({—z)) on
supp d,x({ —z) and 0 outside. (Notice that Re 4(,z) > 0 on supp d,x({ —2),
so we may choose the principal branch of the logarithm.) This is done
by composing B,: V — C( 1(D,) with a left inverse £ to 0, going from
kerd to L*D,), which exists by [5, Theorem 2.2.3]. (Project on (kerd)t.)
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Then

H(l,z) = A(L,2)exp(—C((,2)) on O, 4,
= exp(InA4({,2)%({ —2)—C(L,2)) on the complement ,

is in CY(V,,A(D,)). Now Henkin writes
G(¢,2,w) = H(L,z)—H(,w) .

Clearly G € C{(V,,A(D,x D,)). Further, G({,—) vanishes on A<D, x D,,
so by Taylor’s formula it is a global section of the Ideal I generated by
Wy —2q,...,W,—2,. By the last part of section 7 of [1], it follows that
there exists g({,z,w) € CY(V,,A(D,x D,)*), such that

G(C,Z,u)) = ﬁlgi(c’z’w)(wi—zi) .

As A(¢,¢)=0 and therefore H({,()=0, we have G({,2,)=H(,z), and we
may define k({,2)=g({,2,{).

Remark. If one is willing to replace D, by D,’<<D,, as we may, the
map
E: (kerd: C3 1(D,) > C3 5(D,)) ~ L¥D,),
defined by
0Bu = u|p;, Bulkerd,

is in fact continuous by the open mapping theorem. In the same way,
we may construct

S: I(D,xD,) > A(D,x D,)"*,
by choosing f’' € A(D,x D,)" satisfying
<f,’w—z> =F e I(‘DaXDc) )

and take S(F) to be the ortogonal projection of f’ on (ker { —,w—2))t in
(A(D,x D, )nL¥D, x D,))".
8§ is clearly linear, and it is continuous by the open mapping theorem.

4. How to construct s.

To obtain representing kernels, we need to extend and modify % to
get a fe OY(D x D\ 4)* satisfying

(4.1) F(,2) = (f((,2),L—2) = 0 outside 4,
with s/((,2)=s,({,2z) when { € aD, but s,=s, near 4 in D x D. This will
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be done by choosing a ¢ € C°(D x D\ 4), so that 0<p<1 and =0
near the zeroes of & but ¢((,2) =1 when 2+ ¢ € 0D. Then we define

(4.2) f(&,2) = 9(,2)p(L,2) (E,2) + (1 —9(L,2))b(C,2) ,

where p is a C*-function on suppe, such that Rep ¢ H>0 when ¢> 0.
To get f everywhere well defined, we must have ¢({,2)=0 when
0(0) £ —e¢, in which case we define f(Z,2) =b(¢,2).
Recall that with the ¢ and 6 of theorem 3.1, we have ReA({,2)>0
when ({,z) e V,x D, and 36<|l—2|<d. With »e Cy™(B(0,0)), »(z)=1
when z =< 14, we may choose

p(8,2) = #((—2) B((,2)7 +(1—x(( —2))H(,2) .
If ¢ is supported by {({,z) € 0: Re A(,2)>0}u(V,x D,\ 0), (4.2) makes
sense and (4.1) is valid.
We next want to make the form K(f) explicit. If g;=ph;, and
B;=@dg;+(1—@)db;, j=1,...,n, we have

Substituting this in (2.2), we get

K(f) = F» 3 (=102 A Brvdp a3 (= 19-4g,=by)

Ve j<i

< A Bt S-0-b) A B)]rat).

l41,7 k>1 l+i,k
Since

i=zl = = A
and
ft(gj"bj) —fj(gt—bi) = bigj"gibj’

we get

n
w3 K = P50 LA Brdp a3 (-1 00
i=1 J<i
A Ao,
l1,7
Decreasing ¢ somewhat, we may assume that the %;’s and therefore the
g.'s are bounded, together with their derivatives, so

Ifil £ Cile+1C—2), 1B = (4, Ibigj_gibjl < C1|8—2|

for some suitable 0, >0; C, independent of ({,z). Substituting in (4.3),
we get
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(44) |E()C2) £ Co|F(E,2)|17(9(8,2) + [E — 2| (1+ [dp(C,2)| + |d,9(C,2)1))

for all (£,2) e Dx D\ A and some C,> 0.

5. The estimates.

The L?-estimates follows quite easily (see next section) provided we
can prove the existence of a constant C such that

(5.1) f|K(c,z)1d/1(C) <C forallzeD,
D

and

(5.1) f |K(¢,2)| dA(z) = C forallteD.
D

We want to determine a function g(r): ¢g(r) > 0 as r — 0, such that

|K(Z,2)| dA(L) £ g(r) forallzeD,
DaB(z,7)
and

K(¢,2)| dMz) S g(r) foralleD,

DnBY,n

when r <some r,. This easily gives the inequalities above, as K is con-
tinuous on D x D\ 4.

We first introduce certain local coordinate systems, in terms of which
it is easy to estimate F({,z).

From now on, all constants C;, i=1,2,... will be independent of ¢
and z. Choose &,> 0 such that ({,2)€0,, when eV, and |{—z|<¢,
orze V, and | —2| Se&,.

LeMMA 5.1. There exist positive constants R, and Cs, and for each
zE V,o a Cl-map u,: B(z,¢,) - R of the form

Uy C - (Q(C)_e(z)’ ImA(C’z)’uz”(C))

with wu,(z)=0, such that u, has a local C* inverse (,: B(0,R,) - B(z,¢,),
and such that

(i) 1, (u)—2|>C37Y|u| and |, (u)| < Cs for all we B(0,R,)

(ii) |u,'(C)| <Cj for all ¢ € imu,.
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Proor. By Theorem 3.1 (3), <d; Im A({,2)|,-,.t)= — (do(2),it). Thus
d; Im A(¢,2)|;, is everywhere =+ 0 near 17,0, and is clearly linearly inde-
pendent of dg(z). For every z,e€ V, we can therefore find u,”({) such
that w, is a diffeomorphism near z,. Applying the inverse function
theorem to

(€,2) > (u(0),2) = ((0(¢) —e(2), Tm A(L,2),,,(£)), )

near (2,,%,), we see that u, is locally invertible, {, satisfies (i), and u,
satisfies (ii) for suitable R,,C; when z is close to z,. The lemma follows
by a compactness argument.

As d,A(L,2)|,p = —200((), there exist in the same way
v B(L,80) > R*™, 2 > (0(0) —o(2), Im A(L,2),0"'(2))

with local inverse z,(v) for all { € ¥, , and satisfying the analogues of (i)
and (ii) for suitable constants R, ,C;’. We assume for simplicity that
Ry=R,' and C3=0Cy'.

REMARK. Henkin used Im A({,z) as a local coordinate in the study of
the boundary behaviour of his kernel. Related constructions are also
used in the works of Kerzmann and Lieb.

We write D,® for ,-(D) and D,® for z,~Y(D). If k is a function on
some subset of D,xD,, k,Y(u) denotes k({,(u),z2) and k®(v) denotes
k(¢,2,(v)). Let V,' denote V,nD and O, ,=0,,n(V,’ x D).

In the proof of the estimates, further restrictions on ¢ are needed.
It is convenient to require the existence of positive constants r;, C,,
and Cj, such that ¢({,2)=0 when { or 2¢ V,' and |{—2|<r,, and such
that
(1) ReA(L,z)=2C,4|C—2|?

(2) Cstdep(L,2)] £ 1d,9(C,2)| = Cgldep(C, 2)]
when ({,z) € suppe and | —z| <7,
(3) ldp,P(u)| < Cyop,P(u)[ou, when ze V, and we B(0,r,/C3)nD,2,
(8") |deA(v)| = Og 09, ?(v)[ov, when (€ V., and v e B(0,r,/C3)nD®.
We are going to construct a ¢ satisfying (1)—(3’), which in addition be-
longs to CY(D,C*(D)). We define

2(8,2) = (=ReA(,2) +3CIL —2I%)/e(0)

in O;, and pick a function y e C*(R) such that y(t)=0 when i<},
v ()>0 when }<t<l1, and y(f)=1 when {=1. We want to have
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@(L,2) =yo %(L,2) when ¢ € D and is close to aD, and z € D and is close to

{. Then we get

(*)  0< —o()/2 S ReA(£,2)—3C|L—2* when ¢(¢,2)+0,

so (1) will be satisfied. It follows from theorem 3.1 that
ReA((,2)—4CIC—2[* 2 o(0)—e(2) +3C|{—2[*> when ({,2)€0,,.

We have o(z) <0 in D. If we shrink ¢ so that ¢ < C§%/4, we therefore see
that x({,2)>1 when ({,2) 60;,, and |f—z| is close to . We may also
choose ¢<¢,. If y; € C*°(R) has support in ]—e¢,[ and equals one near
zero, and ¢((,2) is defined as (o x(¢,2)) y;00(C) in O, , and y,00(¢) in
(Dx D)\ O, ,, we have ¢ e CY(D,C*(D)). Finally we put ¢({,2)=1 on
(@D x D)\ A. When { €dD and ze D\ {{}, | —2| <d; note that —po(¢')
is small and positive while y,0p({')=1 and

ReA(',2))—3C10" —2'|* 2 o({") + 301" =22

and has a positive lower bound when (¢’,2') e Dx D is close to ({,z),
so =1 on a neighbourhood of (¢,2) in D x D. Thus ¢ is C'-function on

(DxD)\{(&,2): L e oD} .

If r, is chosen small enough, it follows from (*) that ¢(,2)=0 when
y100(0)<1 and |{—z|<ry, and also that ¢({,z2)=0 when { or z¢ V,,
and |[[—z|<r,. When verifying (2)-(3’), we may therefore assume
@(¢,2)=yo %(£,2) on suppp. By theorem 3.1,

d,Re A({,2)|;, = —do(z) and d; ReA((,2)|;., = do(2),
80 we may write
ReA(C,Z) = Q(C)_Q(z)'l'ol(c’z) ’
where o, and do, vanish on 4. We can therefore get |do,({,2)| < any

positive constant on 0:0,,0, by choosing 7, small enough. Putting

0((,2) = —0y((,2) +3C|L -2,
2(8:2) = [e(0) —e(z) +0(¢,2)]/e(C)

we get
and

**) dep(C,2) = (" 0 x)[(—2(C,2) = 1)de(l) +d; 0(C,2)]/e(0) ,
(***)  d(l,2) = (¥'ox)[de(2) +4, 0(5,2)]/e(l) -

As 3 <y =1 on suppy’ oy, and |dp| has positive upper and lower bounds
on 17; which dominate sup |do| when r, is small, (2) follows. To prove
(3), we pull back the equation (**) by {,*, to get
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dpN(w) = y'(1,0(w)) [( - %) — 1)duy + (£;*do) (w)]/(u1 +0(2))

when z € ¥, and u € B(0,7,/C5)nD,M. A linear map and its adjoint have
the same norm, so by lemma 5.1 we have |{,*(u)| <5, and the discus-
sion above shows that the coefficient of du, dominates the other terms

when r, is chosen small enough. In the same manner, (3’) follows from
(***).

REMARK. Clearly there exists a large class of functions satisfying (1)
to (3’). A simpler one is
((e() —3CIL—2I*)[30(0)) vroe(0) ,

but this is only a C?function in z. In the examples above dp,M(u)/ou,,
resp. 9, @(v)[0v,, dominate the other derivatives as u, resp. v, tend to
zero, and this property is independent of the other basis vectors.

When F((,z2) is defined by (4.1),
F(C,2) = 9(C,2) A(C,2)+(1—9(C,2)) I —2|?
when { € V,' and z € D with |{ —z| < }d. By property (1) of g, this gives
IF(Z,2)| 2 C*[g(¢,)|Im A(Z,2)] +min(1,C,)|¢ —2[2]
when ({,2) €0, , and combined with lemma 5.1,
\F D)} 2 Colp,M(u) [ug] + [ul]
when z € ¥, and u e DPnB(0,r,/C;). Here Cy and C* are suitable con-
stants. Under these assumptions on z and u, lemma 5.1 also gives
[(dep)(Calw),2)| = |(u;*de,O)(w)] = C3lde,V(u)| .
Substituting this in (4.4) and using properties (2) and (3) of ¢, we get
| O(u)] £ Crlp0(w) lug| + [ul2] (9,0(w) + [|(1 + 09,0 (w) 0, ) )

when z € 17:0 and » € D,VnB(0,r,/C;). By lemma 5.1, |det, (u)| < Cg?™,
and the change of variables formula for integrals gives

62) [ 1K@ <
B(z,r)nD
SC [ (Ol + ) (R0) + i1+ 20 o))
BO,C3v)
provided rCg2<r,, O3r<R,, and ze V,,. (Cy is a suitable constant.)
On the other hand, by our assumption on ¢, we have K({,2)=K(b)({,z?)
when 2z ¢ V, and |{—2z|<7,, and thus
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K@al s [ IK@)Ow)diw) = Cy'r,

B(z,H)nD B(0,7)

provided z ¢ V, and r<r,.
In the same way we get

62) [ I1K@GIdre) s
B¢, »HnD

= Gy f (@£P(0) [vg] + [0[2) (9 P() + [0](1 + O D(v)[00y) ) dw
B(0,C3 1)

when (€ V,, and rCg2<r,, rC3< R,, while

|K(C,2)|dA(z) = Cy'r
B¢, »HnD

when { ¢ 17:0 and r<7,. This means that we have to consider
[ (i) + 11(1 + o)) du
D

where D is a subdomain of B(0,R), ¢ € C®°(D) and ¢ takes values in
[0,1], dp(u)/ou, is positive when dp(u)=+0, and N(u)=[p(u)|uy|+ |u|2]-".

I. Let w, denote the p-dimensional area of the unit sphere 87 in R?+1,

Then
R

[¥emidu < | ( | |u|-<2"~1>da<u)) ds = wp R.
D 0

|u|=8
Let v=(v,,v') e R, m23, and 7,8>0; N=1. Let

dao(v)

100 = | oo+ P

Using polar coordinates, we get

dv,

8 dvl 8
, 2| — do(v')) = 2w,,_sm-2N ,
I(s,7) < J.[w1+82]1" (WL‘ a(v )) Wyymg Of ——

80
(5.3) I(s,7) < 2w,,_5(s™2N[7) log(1 +7/s) .
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II. Consider
R

I, = [Nwewdu = | ( |
D 0 S

(0,8)nD

N(u)p(u) do(u)) ds.

We subdivide S(0,s)nD as D,/uD,”, where
D/ = {ue8(0,s)nD: p(u) < st},
D" = {ue8(0,8s)nD: p(u) = st}.
Then

N(u) p(w)do(u) < f s~ gt do(u) + f [8* |utg] + [u]2] " do(u) .
DnS(0, s) |lu|=8 U=s

By (5.3), the last term is less than 2w,,_,s~*log(l +s-%) while the first
is clearly w,, ;5%
Thus I,=<Cg4Rtlog(1/R).

ITI. Consider

op(w)
ou,

I, = | N(u)|u| du ,
-]

and write w=(u;,u’). The mapping u — (¢(w),u’) from suppdp to
[0,1]x {u’ € R*-1; |u'| < R} has nonvanishing Jacobian dp(u)/du,, and is
clearly injective. Thus we get

R
(f ( f [ |ua| + Iu'lgl‘"‘“*da(u')) ds) do ,
0

l]=e

and by (5.3),

1 R
I, < 2w2n_3f f @~ tlog(1+¢/s) dsdp .
00

A simple integration gives I3 < CyoR log(1/R)2

REMARK. With more information on g, it is easy to improve II. The
examples above satisfies ¢(,2) <Oy |dp||{—2], on 0@ <4, as is easily
checked, and this gives
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0 -
qo,éCmg%lul on 0<¢, £} forallzelD.
Uy

Then
[ ¥wow du s 017,
o= %

while the other part is estimated by III.
To sum up, we have shown that, with g(r)=C,,rtlog(r-'), or even
g(r)=C\gr(log(r-1))%, we have

(5.4) [ ECa a0 = 909,
DnB(z, r)

and

(5.4) [ &K@ ax@ < g0,
DnB@¢, 7

for {,z€ D, and 7032 < ry, O3r < R, .
Finally, we study the stability of the estimates when D is perturbed.

ProrosiTioN 5.2. Let g: U - R be as above, and F a compact neigh-
bourhood of oD in U. Let
N, = {e € C¥U): max, g, .er|D% () —D%(2)| <c} .
When o' € C3(U), we define
D' = D(') = (D\NF)u{ze F:'(2)<0}.

There exist constants C and c, such that D' i3 open and we can find a con-
tinuous kernel K'=K(s') on D' x D'\ A with

[ikEara <

Dl

for all ze D' and

[ @aiae < 0
D

for all ¢ € D', when ¢’ € N,,.

We shall only indicate the proof: When ¢ is small enough,

N
A'(C,2) = 2 gltm((f) '), Sy Tof O T o 0) = To DD
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satisfies conditions (1) and (2) of theorem 3.1 in O, ,, provided we de-
crease C and § somewhat. For ¢ and ¢ small enough, we may apply
the open mapping theorem to function spaces over D, to find ¢’ >0,
B'e0,,,H cC(V,A(D,), and b’ € C{V,,A(D,)" with C"-1<|B'| < (",
C'-1<|H'|<C" outside O,;,, and b’ and the 1. order derivatives of
k', H' and B’ bounded by C’; which satisfies theorem 3.1 with respect
to o’ € N,. Then C, of formula (4.4) may be chosen independently of o’,
and also ¢y, Ry, and C; of lemma 3.1. This means that y and y, used in
the construction of ¢ may be chosen independently of ¢’, and an examina-
tion of the preceeding estimates shows that the constant C, exists.

6. Deduction of the main results.

We assume that D is a bounded domain, with C? strictly pseudo-
convex boundary. Let K, ¢=0,1,...,n—1, be the kernels constructed
above. We have proved that

[k s o
D

for all ze D, and
[IE a0k < 0
D

for all ¢ € D, where C is a suitable constant.

THEOREM 6.1. If we Ly (D), ¢z 1, the integral [pu(l)aK, ,(C,2) is
absolutely convergent for almost all z € D. The operator T, defined by

Tu(z) = f w()AK 1(8:2)

D

maps L o(D) into Lf o 1y(D) with norm <C, when 1<q=<n and 1 < p < oo,

Proor. If u € L, (D),

[ 1w ( [ qu-l(z:,szz(z)) aie) s © fuly
D D

As
[u(8) A Kg1(8,2)] S (O] |Kq-a(C,2)]

we get from Fubini’s theorem that T, (z) converges absolutely for almost
all ze D, and
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[1rauaie) s [ 1K, @) 1)) i) dae) < Ol -
D

DxD

On the other hand, if u € Lg ,(D), then

} [u©) A Eae2)
D

< [ (O] 1K, 1(8,2)] d2(0) S Ol
D

80 [|[T,ll, = C for p=1 or co. The result for all p between 1 and o follows
by the M. Riesz-Thorin theorem. (See [2, ch. VI, theorem (10.11)]).

ReEMARK. Combining the result above with proposition 5.2, we see
that we can use a fixed C for all domains D’ that are sufficiently close
to D in the C?%-sense (with appropriate kernels on D’).

PROPOSITION 6.2. T, maps L ,(D) into Cyy qy(D), when g2 1.

Proor. If x € C;>(C"), with » identically one near 0, we define
KEP1(02) = (1-n(k(C+2))) Koat:2) -

Let the corresponding integral operator be T,®. As KP, is continuous
on Dx D, T,® has the wanted property. When u e L ,(D), it follows
from (5.4) and the inequality

1T qu(z) - T #(2)| = ( 1K g-1(82)] dl(C)) oo

k|{—z] e supp »

that 7 ,®u — T u uniformly on D.

When ¢ € CY(D,C*®(D)), it follows from the construction of the kernels,
that for all multi-indices &, D,”K,({,z) exists and is continuous in
DxD\ 4. In this case we have

ProrosrrioN 6.3. T, maps C(’ﬁ,'q)(D) into C’Zﬁ,,q_l)(D), Jor 129=<n and
05Zk=oo.

ProoF. Assume that u € Oﬁ)’q)(D), and z € D. Choose x € Cy*(D), with
%=1 near z, and so small support that K, ,({,2")=B,,({,2") when
{ e suppx, and 2’ is close to z. By the remark preceding theorem 2.2,

DT u(z) = f D (#(2) - w(Z)) A K(b),—1(C,2) + J-(l —#(0))u(l) A DFK ,_4(¢,2).
D D
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Finally, we would like to extend the formulas to more general forms.

We have

ProrosITION 6.4. If w e L (D) and 0u € Ly 4,(D); g2 1, then

u = Cy[0Tu—T,,0u] .

Proor. It is well known how to construct a sequence u;, € C’E’g’q)(ﬁ),
such that |ju;—ull, and ||du;— Oull, > 0 as k - co. (If w is supported by
a small neighbourhood of wedD, we take u=gq;*u, when g@,(z)=

k*ng(kz) and ¢ € C;™(B(0,1)) is supported by a narrow come around the
exterior normal to dD at w. By the definition of weak derivatives,

Ou;, =g *(0u) in D. The general case follows by a partition of unity
argument.) By theorem 6.1,

T~ T in Ly . (D),
and the formula follows by the continuity of

0+ Ty (0,w) > 0v+T, 3w
from Ly , (D)® LY, 441)(D) into Py (D).

CoROLLARY. Assume ¢21, uwe Ly, (D), and du=0. Then
9(C,Tu) = u in Ly, o(D).

In exactly the same way, we prove

ProrosrrioN 6.5. If we C(D), and 9(u|p) € L 1,(D), we have

u(e) = Cy [ [w© o2~ [3u) AKO(:,@]
D

2D

almost everywhere in D.

ADDED IN PROOF. A detailed version of [10], giving sup-norm and
Holder estimates for the 0-complex in strictly pseudoconvex domains,
has appeared in Math. Ann. 190 (1970-71), 6-44, while G. M. Henkin
(Uspehi Mat. Nauk 26 (1971) nr. 3, 211-12) and P. L. Polyakov (ibid. nr. 4,
243-44) have announced sup-norm estimates for the d-complex in certain
analytic polyhedra.
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