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ON MULTIPLICATIVE LEBESGUE INTEGRATION
AND FAMILIES OF EVOLUTION OPERATORS

E.J.P. GEORG SCHMIDT
Introduction.

Several authors working in various contexts have developed theories
of multiplicative integration, involving limits of products rather than
limits of sums. References to this work are given at the end of the paper.
However we take an independent approach exploiting the connection be-
tween multiplicative integrals and evolution operators: this allows us to
make full use of the theorems of ordinary (vector-valued) integration.
We develop a theory of multiplicative Lebesgue integration in which there
is a dominated convergence theorem and for which the notions of abso-
lute continuity and bounded variation play their appropriate role. As a
natural by-product we obtain a structure theorem for two parameter
families of evolution operators analogous to the most elementary of the
theorems which describe the structure of one-parameter semi-groups.

We begin with some notation, a definition and motivation.

Let X be a Banach space and B(X) be the space of continuous linear
transformations of X into itself. Let R, 2={(s,t) € R%; s<t}. A family
of evolution operators is then defined to be a map 7'(-,*): R,2 — B(X)
satisfying the requirements

(1) T(s,8) = I, T(r,t) T(s,r) = T(s,t) for s<r=st.

When 7'(s,t) depends only on ¢{—s we obtain a l-parameter semi-group
S(t)=T(0,t) of operators in B(X). The structure theorems for 1-para-
meter semi-groups all generalize the following (see [2, page 614]): S(t)=
exp [At] for some A4 in B(X) if and only if S(f) is continuous in the norm
topology of B(X). The appropriate generalization of this result to 2-
parameter families of evolution operators originally motivated this work.

In the case that X and B(X) are simply the complex numbers it is
rather easy to see:

(i) T'(s,t)=exp[[ a(r)dr], where a(r) is integrable over any finite inter-
val, if and only if 7'(+,-) is absolutely continuous in each of its variables.

(ii) 7'(s,t)=exp[fis pa(-)dA], where A is a positive Borel measure and
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a(-) is integrable with respect to A over any finite interval, if and only if
T(-,-) is left continuous and of bounded variation in each of its variables.
In case (ii), 7'(s,t) satisfies the following integral equation:

2) T(st) = I + [ b(-)T(s,) d2,

where : P

bt) — a(t), when A({t})=0
() = [exp[a()A({t})]—11A({t})-}, otherwise .

When 7'(s,t) is absolutely continuous this equation is satisfied with b=a
and A the Lebesgue measure.

We wish to generalize these results. However, we should at once note
the following difficulties:

(i) In general exp[4] exp[B]+exp[A+B] for 4 and B in B(X).
Thus given an integrable function A(-): R! - B(X), the family of oper-
ators defined by 7'(s,t) =exp[[i, »A(+)dA] does not generally satisfy (1).

(ii) If A4 is an operator which cannot be expressed as an exponential,
the family of evolution operators defined by

A, if s20<t,
T(s,t) = {I, otherwise ,

does not have the structure suggested by the scalar case. (Even if 4 is
invertible it may not be expressible as an exponential, see [4].)

These difficulties can be resolved by expressing the evolution opera-
tors as limits of ordered products rather than as the exponentials of
integrals. Intuitively it seems appropriate to consider the evolution of
a physical system as taking place through a time-ordered process of
“bumps”’. Moreover the procedure to be used below is also suggested by
the following identities valid in the scalar case (when a(-) is Riemann
integrable), but not in general:

i
exp [ f a(r)dr] = exp limy . o 1150 Zn@(En) (b — 15 1)]

8

= limmax Jtn—tn—1] =0 Hn exp[a(t,)(tn —tp-1)] -

Multiplicative Lebesgue integration.
We begin by introducing a definition.

DEerFiviTION. A(+): R* - B(X) is said to be strongly measurable if for
each 2 in X A(-)z: R» - X is approximable a.e. by a sequence of measur-
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able simple functions. A(-) is said to be strongly integrable with respect
to a measure 4 if it is strongly measurable and ||4(-)||: R* - R! is both
measurable and integrable with respect to 4. (When X is separable the
measurability of ||4(-)|| follows from the strong measurability of A(-).)

Let A be Borel measure on R! and suppose that A(:): Rl - B(X) is
strongly integrable with respect to 4. We wish to define the multi-
plicative Lebesgue integral of 4 over a Borel set £ to be denoted by
Ny exp[A(-)dA]. We define this notion first for a particular class of
simple functions and then extend the definition.

DrrinITIONS. (i) A time-ordered simple function S: Rl - B(X) is a
function which can be written in the form

N
S(t) = 21 xei)Aq

where {4,}<B(X), E; is Borel measurable, E;nE;=0 for i+j, and
supE;<infE,,,.

(ii) Let S be a time-ordered simple function, let 4 be a Borel measure
and E a Borel measurable set with A(E) < o. Then we define

Ng exp[8(-)dA] = TI; exp[4;MENE))],

where the product is ordered by the requirement that exp[4; ., A(EnE,,,)]
should lie to the left of exp[4,A(EnE))].

In order to extend this definition for an arbitrary strongly integrable

function A(-): Rl - B(X), we have to prove:

(i) There exists a sequence {S,(-)} of time ordered simple functions
converging suitably to 4.

(ii) The sequence of multiplicative integrals {; exp[S,(-)dA]} con-
verges to a limit, and that limit is independent of the approxim-
ating sequence.

It is in fact enough to prove these facts for sets E of the form [s,).

ProrosiTioN 1. Let A(-): Rl — B(X) be strongly integrable over any
Jinite interval with respect to a Borel measure . Then there exists a se-
quence {S,(+)} of time ordered simple functions such that for any finite
interval J

sup, [ 15,( )| 2 < o0
J

and for any x in X
[ 08y = A(-ell 2> 0.
J
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Proor. We denote the continuous and discrete parts of 1 by 4, and
A4 respectively. Let {f;} be the points at which A(t;)A({t;})+0. Let
R, () be simple functions defined by

__ | A(;) when t=t, 1=n,
R = {O otherwise .

Since for any finite interval J,

Z{AENA{EY) 5 ted} < oo,

we have
IR =AY a1y >0 a5 oo
J

This proves both the assertions of the proposition for 1.

The approximation of the continuous part of 4 is a bit trickier. For
each integer, » >0, define a countable partition of the real line into
intervals of A,-measure 2" (if 4,(R) is finite we suppose it to be equal
to 1). It is possible to obtain such a partition, since 4, is continuous,
positive and finite on finite intervals. We construct these partitions in
such a way that as n increases we get refinements of the previous parti-
tions. We then define

Tot) = i, 02" [ 0, o) AC) ds,

where y, ; is the characteristic function of the ith interval of the nth
partition. Now clearly

T — A)]ll = Zsxn, () 2" f n, i) Tw() — A@B)] || dA .

Strong convergence to zero now follows from a differentiation theorem
which is well-known in the case that 4 is Lebesgue measure (see e.g.
[2, page 217]), but which can also be readily proved for continuous
Borel measures, as is done in Appendix 1 to this paper. When A(-) is
norm bounded on finite intervals, 7,(+) clearly is likewise bounded and
as a consequence of the bounded convergence theorem we get

®) [H[Tn(-)—A(-)x”d}.c >0 asmooo.
j

When A(-) is not locally bounded we can approximate it arbitrarily
closely by bounded functions A’(-) obtained by truncating A(-), in the
sense that we can make [;[|4(-)—4'(+)||dA, arbitrarily small. We noté
that for intervals J having partition points as end points we have from
the definition of 7', (-) and 7,’(-) that
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fnm) T, () d2 < an<) A 82,
Consequently,
! 7o)~ A(- el di, < 2l [ A ) =AY A + [IT () — 4'() Nl d,
7 ;

from which (3) follows in general.
The proof is completed by putting S,(-)=R,(+)+T,(-), and by verify-
ing with the aid of easy estimates that

[1suar = [ 14y az
J J

for any interval J whose endpoints are partition points of S,,.

The question of the convergence of M, yexp[S,(-)dA] is much more
complicated. The connection between multiplicative integrals and evo-
lution operators is established in the next proposition.

ProprosiTION 2. Let S(-) be a time-ordered simple function, and A o
Borel measure fzmte on finite intervals. Then
T(s,t) = Nis,pexp[S(+)dA] ‘

is a family of evolution operators, and furthermore satisfies the integral
equation

(4) T(s,t)e = & + f B(-)T(s,")x dA
where -0
5) B(z) = S(7), when S(t)A({z})=

[exp[S(x)A({z})]—11A({r})"", when S(z /1({1})+0

Proor. That 7'(-,*) is a family of evolution operators is obvious from
its definition. A little more care needs to be taken in verifying that the
integral equation is satisfied.

It is enough to establish the integral equation for a simple function of
the form S(t)=AXg(t); the generalization to an arbitrary simple func-
tion is easy (in fact, it is closely analogous to the argument at the end
of this proof.) We can also suppose that £ contains only a finite number
of atoms of A. For an arbitrary E can be approximated by sets ¥, con-
taining only a finite number of atoms in such a way that A(E — E,) tends
to 0 as n becomes infinite; one easily checks that the integral equation
for A%y (-) converges appropriately.
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We can now follow two different procedures. For the first of these
we notice that exp[4A(En[s,t))] is of bounded variation in ¢ (in the
classical sense with absolute values replaced by norms) and that the
variation measure is dominated by 4. According to Appendix 2 we may,
when X is a dual space of another Banach space, conclude that

exp[AAEn[s,t)]z — z = st(-)xdl.
o)
Letting ¢;, ¢=1,...,n, be the atoms in E, and A;,=1({t;}) we have
B,(t,)=[exp[4A;,]—1]4;7t. Otherwise we may (since E contains only a
finite number of atoms) use the differentiation theorem of Appendix 1
to conclude that

By() = A¥y(-) exp[AMENs,")] ae.

In order to avoid the extra assumption on X we can argue as follows.
For the atoms we have

(6) exp[AAEN{t)]x — = J [exp[AA]—ITA 2 dA .
{t}
If (s,?) is an interval such that Zn(s,t) contains no atoms of 1 we define

4 to be the continuous measure obtained by restricting 1 to En(s,?).
Then we compute:

[ AC)2a() explaXB(s, ) d2 = [ 4 explAp(s, )] du
(8,1) (s, 0)
=3 [amnpus et dy

=00

= 3 [us, oo+ 1L,

n=0

where we have used the change of variables described in Appendix 1.
Thus

(1) exp[AAEn(s,1)] - I = J A(-)Xg(-) exp[AMEN(s,"))] 2.
(8, )
To obtain the integral equation for arbitrary s and ¢ we write
k-1

[5,8) = [8,8) U U [{8:} U Gostin)] U {8} U ()

=)

and then use equations (6) and (7) for the atoms and the atom free
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intervals respectively. Explicitly, noting that 7'(s,t) is left continuous
in each variable, we get

k—
(T(s,t)—IJe = [T(s,8) = T(s, 8 +)]2 + El {78540 +) = T(8,t:12) e +

i=j
+ [T(8,t540) = T(s,: )] + [T(s,t;+)—T(s,8)]x} +
+ [T(s,t) Iz .

We now apply (7) and (6) to the terms of the form

[T(s,t;01) = T(s,t;+)]x = [T(t;+ ,t40) — 11T (8, 8+ )
and

[T(s,t;+)—T(s,t;)]x = [T(t;,t;+)—I1T(s,t) %,

respectively. This leads to the integral equation, and completes the proof
of the proposition.

Our next two propositions will deal with evolution operators and the
integral equations they satisfy; they will allow us to define the multi-
plicative integral in general. We now work somewhat within the frame-
work of the paper by Hackman [3], who proved Proposition 3 below in
the case when Lebesgue measure was involved. (We precede the proposi-
tions by some notational comments.)

Let t™ denote points (f,,...,t,) of R™ and A™ the n-fold product
measure of 1. Given B(-): Rl - B(X), we define

B™(™) = B(t)) B(ty) . . . B(t,) ,

and note that if B is strongly integrable with respect to 1, B™ is strongly
integrable with respect to A™ (which is proved in Hackman’s paper).

THEOREM 3. Suppose B(-): Rl - B(X) is strongly integrable over every
Jinite interval with respect to a Borel measure 2. Then there exists uniquely
a family T(-,+): R,2 - B(X) of evolution operators satisfying the integral
equation

T(s,t)z = = + fB(-)T(s,-)xdl
[a' ‘)

and locally bounded in norm in R, 2. Explicitly

S (n) .
Ts,t) = EOT 6, (1+B@E)A({s)), if t>s,

I, if t=s,
where
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TO(s,t) = I, T®(s,t) = f Bm(7m) dam
<< tp—1<... <7<

The series converges uniformly since
& n
176,  m1-2 [f 1B cm] :

Proor. The last estimate is obvious since, because of symmetry con-
siderations

nt [ EeEeae s [ B B .

8<1<... <1<t 8<T1, T2y ooy Tt

It is also easy to verify directly that the integral equation is satisfied
by T'(s,t) as defined above. The uniqueness of a locally bounded solution
to the equation is proved by means of the usual argument for linear
ordinary differential equations: Assume that 7' and 7" are two solutions,
and put

M = sup {|T"(s,r) ~ T(s,7)]l; st}

where [s,t) is some fixed interval. Using the equation, it is proved by
induction that

I17"(6,1) = T, Mn!-l( [1Be da)

(8,1)
for all », whence M =0.

The uniqueness being established, the relation
T(s,t) = T(r,t) T(s,r) for s<r=t
follows from the observation that if we define (for fixed r)

e gy — | T(8:1) if réfs,t],
T'(s,t) = T(r,t) T(s,r) 1if ssr<t,
then 7"(s,t) satisfies the integral equation if 7'(s,t) does.

Now we prove the continuous dependence of the evolution operators
on their generating function.

ProrosITION 4. Suppose B,(+) and B(-) are B(X) valued functions as
in Proposition 3, and let T,(-,*) and T(-,*) be the corresponding evolution
operators. Suppose that for any finite interval J

Cy = sup, [ I1B,(-)l| 42 5 o
J
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and for any x in X

J'u[Bn-B]xn dA—>0 asn->oco.
J

Then for each x, T, (-,*)x converges to T(-,+)x uniformly on compact sub-
sets of R.2.

Proor. From Proposition 3 we have

To(s,t)w = 3 T,(s,1)(I +By(s) M{s)))a

m=0
and

(o]

T(s,t)0z = 3 T(s,t)(I+Bls) M{s)z .

m=0

We shall prove the dominated termwise convergence of the former series
to the latter.

Using a symmetry argument once more, we get for s and ¢ in J

76, 0] = B,(xm) djm

8<tp<... <11<?¢

IA

m!-l[ [ 1B dz] < mo,m,
(8,%)

where C is the constant appearing in the hypothesis. Since, moreover,
B, (s)A({s})x converges to B(s)A({s})z, it is clear that the series for T',(s,t)
is dominated termwise by a convergent series. Thus it is enough to
prove that for each m

T,m™(s,8)[1 + Bn(s)A({sh]z ~ T™(s,t)[I + B(s) A{s})]=

as n tends to infinity. In order to prove this we show by an induction
argument that if x, converges to z,

(8) f ”Bn(m)(.)xn__B(m)(. )x” dlm™ » 0 as n-—>oo.
Jgm

For m=1 we have

[ 1B Yo =Bl 2 5 [ IBu(-)wa=2) d2 + [ Bo() —B( el d2
J J J

< Oylon—all + [IBA() = B(-)al A,
J
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which converges to zero as n becomes infinite. Assuming (8) as induction
hypothesis, we now prove the convergence for m+1. By Fubini

[ 1B ), — B o g

Jm+1 )
= f f 1B, (+) B+ ), — B(+)B™(+) )| dl] dam
J

Jm|,

s f f 1B ( ) [B™( ), — B™(-) ]| d).] dam 4
J

Jgm|:
+ f [ f (ILB(+) = Bn(+)1B(- )| dz] dm
Jm |
The first of these integrals is dominated by

Cy [ 1B )t — B )a i
Jm

which converges to zero by hypothesis. The dominated convergence
theorem tells us that the second integral also converges to zero: for

fH[B(')—Bn(')]B‘”"(')xH dA = 20, ||BO™(- )|
J
and
JIBC) =B 1Bl d2 > 0 as n—co.
J
This completes the proof.
The culmination of all this lies in the following theorem.

THEOREM 5. Let A(-):R! - B(X) be strongly integrable over every
finite interval with respect to a Borel measure A. Let {S,(+)} be a sequence
of time-ordered simple functions such that for any finite interval J

sup, [ 15,(-) d2 < oo
J

and for each x in X
JIsu) =4 )Rl d2 > 0 as n .
J

Let B(+): R > B(X) be defined by



ON MULTIPLICATIVE LEBESGUE INTEGRATION ... 123
By = |40 if A)A{EN=0,
{exp[A@)A{N]-TIA{EDNT  if A +0,

and let B,(+) be defined similarly with reference to S,(+). Let T,(:,*) and
T(-,") denote the families of evolution operators corresponding to B,(-)
and B(-) respectively. Then

Tn(s’t) = n[s, 2] exP[Sn()dA]
and T,(-,*)x converges to T(-,-)x uniformly on compact subsets of R 2.

We precede the proof of Theorem 5 by the definition which is now
justified.
DEerinitioN. With A(:) and 7'(-,+) as in Theorem 5 we define
O, pexp[A(-)dA] = T(s,t);
for any bounded Borel set £ (contained in [s,£) say) we define
Ngexpl[A(-)dA] = Ny, pexpyx(-) A()dA]

(When A(-) is integrable over all of R! the multiplicative integral can
also be defined over unbounded Borel sets E.)

Proor or THEOREM 5. The theorem is an immediate consequence of
Propositions 2, 3 and 4 once we prove that B,(-) and B(-) are integrable
over finite intervals, and that for any finite interval J and each z in X

sup, [ 1B,(-)]|d2 < oo
J

and

JIBC) =Bl d2 0 as 0> oo
J

The integrability of B(-) (and B,()) is easy: measurability is immediate,
and that [;||B(-)||dA < oo follows from

1B, = [ 1402, <
J J
and

fHB(')II dig = Z;llexp[44;]—1I|| £ Z;[14,112; < o,
J

where A;=A(t;) and 4;=A({t;}), {t;};2, being the atoms of 1 in J.
The domination property is easily verified, but the convergence needs
more care. Clearly
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[IEBC) = Bu el ad, = [ ILA() =8, )l A,
J J
which converges by hypothesis. With respect to 1; we have
©®  [IBC) =By )lell 24 = 5, [explA4,2,) - exp Sy ]l
J
We now have to exploit fully the convergence of
f (ILA() = 8a(*)]ell dAg = Z;II[A;— Snslll 4
J
as n tends to infinity. From the domination property we get

(10) ZilSnsll2; = Kliall, and 3;|ldald; = K|,

and hence also
(11) I1S,4l14 < K, and |4,)4; < K.

Now, using (11), we can estimate (9) as follows:
3;l[exp[4;4;]—exp[8,;4;]]]

1
> f exp[S,; 4,718, — 4,12, exp[A4;4,(1— 7]z dv
J

0

IIA

1
oK f S 1180s— 4,13 exp[A;2(1 — 1)Ja]] de
0 J

IIA

1
J 0

The first term converges to zero by hypothesis. So does the second one.
For we have, using (10), that it is less than

1
N )
er > NS — A4 {exp[d;4(1— )] - I}z dv + 2KeX ||| > (4,4, .
0 =1 J=N+1

The latter sum can be made arbitrarily small for N large. For N fixed
we then apply the dominated convergence theorem to the integral term
to see that it too converges. This completes the proof.

As a corollary of the proof we obtain the following generalization of
the dominated convergence theorem for multiplicative integrals.
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THEOREM 6. Let A,(-) and A(-) be B(X) valued functions strongly
integrable over an interval J, with sup, [;||4,(*)||dA < co, and such that

[I4u)-a¢mlar >0 as n— oo,
J

for each x in X. Then
N exp[4,(-)d]e > N exp[A(-)dA]x .

The process of multiplicative integration which we have outlined
allows us to generate a large class of families of evolution operators.
We must however still take into account the existence of operators which
cannot be expressed as an exponential. We first note the following easy
proposition.

LeMMA 7. Given A(-) locally strongly integrable with respect to A, and a
sequence of operators {T',} associated with points {t,} such that
A )A({t,}) =0 and 3I{T,-1|; t,eJ} < .

Redefining A to have mass one at each t, we let

A(t) when t & {t,} and A({t})=0
B(t) = | [exp[AO)M{EN] - I]A{E})  when A(6)A({t}) >0
T,-1 when t=t,

Then B(*): Rl — B(X) 18 locally strongly integrable with respect to A.

This justifies the following:
DeriniTION. Let A(+), T, and 1 be as above. Let 7'(-,-) be the family

of evolution operators corresponding to B. Then
O, p{exp[A(+)dA], T} = T(s,1)
If E <[s,t) we define
Ng{explA(-)dA1, T} = N o{explxa(-) A(-)dALT,'} ,
where {T','} is the sequence of 7',’s lying in K.
It is of course possible to go through an approximation procedure
analogous to that carried out previously. We do not dwell on the details.

We now consider the role of bounded variation and absolute continuity
for multiplicative integrals.

DerFINITIONS. A function F : J — B(X) is said to be of bounded varia-
tion (absolutely continuous) if and only if it satisfies the classical condi-
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tions for bounded variation (absolute continuity) with absolute values
replaced by norms.

A family of evolution operators 7' : R, 2 - B(X) is said to be of bounded
variation on an interval J if

sup{Z|T(t,t0) = I ti<ty<...<t,€J} < .

It is said to be absolutely continuous if for any ¢ > 0 there exists § > 0 such
that when (a;,b;, t=1,...,n, are disjoint intervals with 37 ,|b;—a,| <d
we have 37 _,|T(a;,b;) —I||<e.

We now elucidate the relationship between these notions.

ProrosriTioN 8. Let T(-,:) : R,2 - B(X) be a family of evolution oper-
ators.

a) T(-,-) ts of bounded variation over an interval J if and only if the fol-
lowing conditions are satisfied:

(i) 7(-,*) s of bounded variation separately in each variable with the
other fixed.

(ii) There exist poimts ty,...,t, (in increasing order with t, and ¢, the
end points of J) and a constant M such that when s and t lie in any
(t,8;41), then T'(s,t)72 exists and ||T(s,t)- Y| < M.

b) T'(-,*) is absolutely continuous over J if and only if

(i) T(-,*) ts absolutely continuous in each variable.

(ii") T'(s,t)~! exists for s and t in J and ||T(s,t) Y =M.

(This is satisfied, for example, when 7'(s,t) is jointly continuous.)

Proor. We need consider only the case of bounded variation (abso-
lute continuity is analogous but easier).

We suppose first that the evolution operators 7'(-,-) have bounded
variation over J. Then |T'(s,t)|| is uniformly bounded for s and ¢ in J,

since
IT(s,0 = IT(s,8) =]} +1.
Consequently the bounded variation of 7'(s,?) in ¢ follows from
I17(8,2542) = T(8: 81| = I T (8, T (Bssts10) — 1] -

The bounded variation in s is similar. We verify next that (ii) is satis-
fied. Since 7'(-,-) is of bounded variation in each interval we know
that left and right hand limits exist. For definiteness we can assume
that T'(-,-) is left continuous in each variable. Now let ¢; be the points
at which ||T'(¢;,t;4+)—1]|>0. Since

3 Iy ty+) ~1l < oo
J-
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we can find n such that

1T(t;t+) -1l < .

It

J

To the points ¢,,...,f,_; we then add the end points of J and denote
the points in this set by ¢,',...,t," where the numbering is such that

ty <ty <...<t,’. We now restrict our attention to a particular inter-
val (t/,t;,;) from which big jumps are excluded. We can cover that
interval by finitely many open intervals I,(k=1,...,m) such that on

each interval (T(p,q)—1I||<4% (first choose such intervals (¢,',a) and
(b,t; +1), and then use a compactness argument on [a,b]). Thus for p
and q in I, T(p,q)! exists and ||T'(p,q)~'||<2. For arbitrary s and ¢
in (ti’,tzﬂ) we then find points p,, k=1,...,l say, between ¢ and ¢ such
that points following each other lie in the same interval — one needs
at most m — 1 such points. Then

T(s,6)7t = T(s,p1) ' T(prpa) ™" - .. Ty, )

and (T(s,6)-Y| < 2 < 2m-1.

This concludes one half of the proof.

The converse is easy. It is clearly enough to show that 7'(-,-) is of
bounded variation over each (t/,t;,;). If t;/<# <...<£, <t and we
choose any s with ¢, <s <%, we have

ST G bisa) = I < 1T(5, )7 ZIT(5:Ea) = T, B0
< M Z|T(8,80) — T, -

It is interesting to note that a family of evolution operators can indeed
be of bounded variation in each variable without being of bounded
variation in the stronger sense. The example which follows demonstrates
this. Let X =@X; be the countable direct sum of Banach spaces and
let P, denote the projection onto @;<;X;. Let {x;} be an increasing
sequence of real numbers converging to a finite limit x. We then define

I if [S,t)ﬂ {(xk}=0
T(s,t) = { 2%-1P,,  if o _1<8Zoq<...<x<tZoqy
0 if s<op<a=t.

Then "
Z 1T (g5 00040) =1l = m

1=1

but, for any s<t, <t <... <ty

S 6, t) —T(s,t)] < 1

t=1
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and for any s;<8;< ... <8, =t,

n
ST (ss40,) = Tl < 2.
=1
It would be interesting to develop some counterexample for the case of
absolute continuity as well.

We come now to the main differentiation theorems.

THEOREM 9. Let X be a separable dual space of a Banach space Y.
Suppose that T(-,-): R,2 - B(X) ts a family of evolution operators. The
Jollowing statements are equivalent:

(1) There exists A: R* - B(X) strongly integrable on each finite interval
with respect to a Borel measure A, and a sequence {T,} of operators asso-
ciated with points {t,} at which A(t,)A({t,})=0 and satisfying

ST, —1I|l; taeJ} < o0
for each finite interval J, such that
T(s,t) = n[s.t){exp[A(')d}']’Tn}

(2) There exists B(-): Rt - B(X) strongly integrable on finite intervals
with respect to a Borel measure A and such that for all x in X

T(s,t)e—z = fB(-)T(s,-)xdz;
(5,0

(3) T(-,*): Ry2 > B(X) is of bounded variation, and left continuous in
each variable.

If T is continuous in the second variable, or if each T'(s,t) is normal and
invertible, (1) can be replaced by (1'):

(1') There exists A : Rt - B(X) strongly integrable with respect to a Borel
measure A over each finite interval, such that

T(s,t) = Ny, pexp[A(-)d2] .
THEOREM 10. Let m denote Lebesgue measure and let T : R? — B(X) be
a family of evolution operators. Then the following are equivalent:

(1) There exist A : R! - B(X) strongly integrable with respect to m on
finite intervals such that

i
T(s,t) = () exp[A(-) dm].

(2) There exists A : Rt - B(X) strongly integrable with respect to m on
finite intervals such that
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t
ﬂmW—x=fmqﬂmez
8

(3) T'(-,-) ts absolutely continuous.

Theorem 10 is an immediate consequence of Theorem 9, as will be
clear from the proof of the latter.

Proor or THEOREM 9. The equivalence of 1 and 2 is obvious from the
previous considerations. That (2) implies (3) is also evident, if we take
into account the fact that ||7(s,)|| is uniformly bounded on any finite
interval.

That (3) implies (2) is a consequence of the differentiation theorem
of Appendix 2. We see this as follows. Let A, be the measure associated
with the variation function

V([,); T(s,)) = sup {3, [T(s,t4) — T(s, )15 8Sty<ty<...<t<t}.

Then, taking into account the left continuity,

ﬂmn—x=fgmxﬁs
[s,0)
for some suitable locally strongly integrable function G,: [s, o) - B(X).
From the proof of Proposition 8 we see that 4, is absolutely continuous
with respect to the measure A associated with the variation function

V([s,t); T(-,*)) = sup {3 |1 T(t;,ti40) — 115 8Sty<ty<...<t,<t}.

Thus we also have

ﬂmn—x=fH¢mﬂ,
[8,8)
which has the advantage that the integration is with respect to a measure
independent of s. When 7'(s,t) is invertible and locally norm bounded
in R,2 the proof is quickly concluded. For then 7'(-,-) can be extended
to all of R? by putting T'(s,t)=T(t,s)"* when s<t and the identity
T(s,t)=T(p,t)T(s,p) (which continues to hold) implies that

Hs(‘) = Hp(')T(s’p)}' a.e.

In this case therefore Hy(-)T'(:,s)=H,(-)T(-,p); so H,(-)T(-,s) is in-
dependent of s. Defining B(-)=H(-)T(-,s) we have H(-)=B(-)T(s,*)
as required. The local integrability of B(-) is implied by the local inte-
grability of H,(-) and norm boundedness of [7'(s, )]~

Math. Scand. — 9
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For the general case we use the property of evolution operators of
bounded variation described in Proposition 8a (ii). Recalling the nota-
tion used there, we have

(12) T(t,t,+)w = z + f [7(t,,t,+) - TIA({t;}) 2 dA .
{tj}
Moreover we shall prove that for #;<f<¢,,

(13) T(t,+ e =  + fB(-)T(t,+,t)z da .

@0
The integral equation is then obtained for arbitrary s and ¢ by using
the same argument which concluded the proof of Proposition 2. To
prove (13), we simply note that 7'(s,f) can be defined for any s and ¢ in
(t;:t;41) and that as before H,(-)T'(-,s) is independent of s on (t;,¢;,,)
so that we can put B(-)=H,(-)7(-,s) and consequently obtain

T(s,t)r — 2 = fB(-)T(.s,-)x da
[s, 9
from which (13) follows, when s decreases to ¢;.

It remains to show that in some circumstances (1) can be replaced
by (1’). Clearly when 7'(-,-) is continuous so is the measure 1, in which
case (1) reduces to (1'). When each 7'(s,t) is normal and invertible we
simply apply the following lemma.

Lemma 11. Suppose that {T,}y_, 18 a sequence of normal operators with
bounded inverses such that 3||T,—1I||<oo. Then there exists a sequence
{A, )5, of operators such that T, =exp[4,], and T||4,) < co.

Proor. By spectral theory, we can certainly find bounded normal
operators 4, =log(7,) such that 7', =exp(4,). Furthermore if |7, —I||
< 1, then use of the principal branch of the logarithm on the spectrum of
T, gives an A, with

14, < ~log(1— [T, —1I),

and the result follows.

In conclusion we note that the definition of multiplicative integrals
has generally involved limits of products of the form TT(1+A4(¢,)4y)-
Since (1+.4/n)" converges to exp[A] as n becomes infinite in most situa-
tions our definition of multiplicative integrals leads to the same concept.
We suggest now that the simplest approach to multiplicative integration
would be not to use a limiting process at all, but simply to utilize the
“generalized exponential” which is described in Theorem 3. This al-
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lows a very direct transition from the well developed theory of vector
valued integration to the theory of multiplicative integration.

The author would like to thank J. Hoffman-Jergensen and E.T.
Poulsen for many helpful conversations.

Appendix 1. Differentiation with respect to a continuous Borel measure.

For the sake of completeness we present a proof of the following
theorem for which we lack a suitable reference.

THEOREM. Let A be a continuous Borel measure on Rl. Let f: Rl - X
be strongly integrable with respect to 1 (i.e. f is A-a.e. approximable by
simple functions and [||f||di<oo. Then we have for A-a.e. t in R! that

lmWHMJ)fw ~f@dr=o,

where J is an open interval containing t and having A(J) > 0.

Proor. The proof depends on a change of variables which reduces this
to the standard theorem involving Lebesgue measure m, rather than 2.

Let the function ¢ : Rt — R! be chosen in such a way that A((a,b))=
@(b) — p(a) for every interval (a,b). Then ¢ is a continuous non-decreas-
ing function, and it is constant on an interval if and only if that interval
has A-measure 0. Let I,, n=1,2,..., denote the at most countably
many closed intervals of constancy of ¢, and put A=R'—UI,. Then
@ is a measure-preserving homeomorphism of 4 with measure 4 onto
@(4) with measure m, and R1—A=UI, has A-measure 0 while
@(RY) —p(4)=¢(UI,) is at most countable and thus has Lebesgue
measure 0. Consequently, if y denotes any function with ¢(y(t))=¢ for
all ¢ € p(R!), then the following change of variables formula holds for
simple functions, and hence in general:

[rera2 = [fou)dm.

I o(B)
" Now, when te 4 and J is an open interval containing ¢ we have
A(J)>0, and

J)‘1 If () =@l dA = m(p(J))* fllf(w('))—f(w(w)))ll dm .
)
We notice that @(J) is an interval and that ¢(f) lies in the interior of
@(J), and recall that the correspondence between ¢ in A and ¢(¢) in ¢(4)
is 1-1. Using the standard theorem for the case of Lebesgue measure
(see [2, p. 217]) we get convergence to zero as A(J) tends to zero.
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Appendix 2. On the absolute continuity and bounded variation of
operator-valued functions.

We precede the main result of this Appendix by a definition.

DErriNiTION. Let Z be a Banach space. Then F : R! — Z* is said to
be weak*-measurable if for each z in Z, {z,F) is Borel measurable. F is
said to be weak*-integrable if it is weak*-measurable and ||F|| : Rl — R
is both measurable and integrable.

THEOREM. Let F : R! - Z* (B(X), with X separable and X =Y*) be
weak*-integrable (strongly integrable). Then:

(a) F(t)—F(s) = weak*- f G(-)dA  (strong- J’ G(-)d2)
[80) [s,®)
for some Borel measure A and a weak*-integrable (strongly integrable)
G : R - Z* (B(X)) if and only if F is of bounded variation and left
continuous; A may be taken as the Sticltjes measure associated with the
variation function of F.

(b) F(t)—F(s) = weak*- f G(-)dm (strong- f G(-)dm)

(where m is Lebesgue measure), if and only if F is absolutely continuous.

Proor. The proof for Z*-valued functions can be found in [7, Theo-
rem 6.5] or in [6]. The proof for B(X) valued functions (with X = Y*)
is obtained by expressing B(X) as a dual space Z* and by proving that
weak*-convergence in Z* is equivalent to strong convergence in B(X).
For this purpose tensor products are appropriate. The basic facts we
need about tensor products are recalled in the following lemma.

LevmMA. Let X and Y be Banach spaces. Let XQY be their algebraic
tensor product. Any element of X® Y may be represented as a finite sum
>x;Qy,; where x®y may be thought of as a bilinear functional on X* x Y*,
defined by xQy(x*,y*)=x*(x)y*(y). A norm may be defined on XQ Y by

4 (_le@yi) = inf lelv‘cillll%l!; 2Z®F = 2, xi®yi}'
1= =

Let X®,Y be the completion of X®Y in the norm y. Any element of

X®,Y can be represented (but mot wunmiquely) by a y-convergent series

32.12@y; y extends to all of X®,Y and y(xQy)=|k|llyll. B(X,Y*)

(the space of continuous linear maps from X into Y*) is isometrically
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wsomorphic to (X®,Y)* by the map T — Lp where Lp(3z,Qy;)=
2Tz (ys).

The missing step in our proof of the theorem is now supplied by

LeMmA. Let X = Y* be separable. Then B(X) is isometrically isomorphic
to (Y*®, Y)*=2* A function F(-): Rl - B(X)=2Z* is weak*-measure-
able if and only if it is strongly measurable. Consequently it is weak*-
integrable if and only if it is strongly integrable.

Proor. The first assertion is a consequence of the previous lemma.
If F(-) is weak*-measurable then we have in particular that (y, F(-)y*)
is measurable for any y in Y and y* in Y*. Thus F(-)y*:R! - Y* ig
weak*-measurable. But F(-)y* is also separable valued (X = Y*) being
separable). Thus, according to a lemma of Hoffman-Jorgensen (Lemma
2 of [5] or Lemma 4 of [6]), F(-)y* is in fact approximable a.e. by a series
of simple functions, and so F(-) is strongly measurable. The converse
and the statement concerning integrability are trivial.
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