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R(X) AS A DIRICHLET ALGEBRA AND
REPRESENTATION OF ORTHOGONAL MEASURES
BY DIFFERENTIALS

BERNT OKSENDAL

1. Introduction.

Let X be a compact subset of the complex plane C, and let R(X)
denote the uniform closure on X of the rational functions with poles
off X. Let A(X) be the continuous functions on X which are analytic
in the interior X° of X. In this paper we will always assume that C\ X°
is connected. We say that R(X) is a Dirichlet algebra if Re(R(X)),
the real parts of the functions in R(X), are uniformly dense on the
boundary bX of X in the real continuous functions on bX. This occurs
if and only if there are no non-zero real measures on bX orthogonal to
R(X). If R(X) is a Dirichlet algebra, then C\ X° is connected [6, sec-
tion 4]. For information on Dirichlet algebras, see [17], [9] and [6].

In this paper we treat a problem, raised by Bishop in [2] and [3]:
When can every measure y on bX which is orthogonal to R(X) be rep-
resented by its analytic differential (2n1)-14(z)dz, where

i@ = [ C-27du@) for ze X°1

(See definitions below.) In section 2 we give a necessary and sufficient
condition for this to be true, theorem 2.2, and then we use this result to
prove that if R(X) is a Dirichlet algebra, then every orthogonal measure
u on bX is represented by its differential (274)-'4(z)dz (theorem 2.4).
It is an interesting question whether the converse of this is also true.

In section 3 we prove three results on when R(X) is a Dirichlet algebra.
The first states, roughly speaking, that if RB(X) “locally” is a Dirichlet
algebra, then R(X) is a Dirichlet algebra. Using the same technique we
then prove that if R(bX)=C(bX) and every bounded analytic function
on X° can be approximated pointwise by a bounded sequence in R(X),
then R(X) is a Dirichlet algebra. The same proof, without claiming
R(bX)=C(bX), works for A(X). The third result states that if X is an
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intersection of compact sets X, such that R(X,) is a Dirichlet algebra,
then R(X) is a Dirichlet algebra. These results are contained in recent
work done by Gamelin, Garnett and Davie (see [7], [10] and [11]) but
our proofs are entirely different.

At the end of section 3 we combine these results with theorem 2.4 to
obtain a generalization of a result of Bishop in [3].

I want to thank professors T. W. Gamelin and J. Garnett for providing
manuscripts of their latest unpublished work, Mr. O. B. Bekken for many
valuable suggestions and Dr. A. M. Davie for very helpful and inspiring
correspondences.

2. Representation of orthogonal measures by differentials.

2.1. DerFINITIONS. (See [2] and [3].) A sequence I'={I,} of compact
subsets of X° is said to converge to bX provided:

(i) Each I', is the union of a finite number of disjoint piecewise smooth
simple closed curves lying in X°, no two of which belong to the same
component of X°, and

(ii) If S is any compact subset of X°, then for all n sufficiently large,
8§ will lie in the union of the bounded components of C\ T, .

If 4 is a measure on bX and dw=f(z)dz is an analytic differential in
X°, we say that dw represents p (with respect to I') if there exists a
sequence I'={I",} converging to bX such that for all continuous func-
tions » on X, we have

f h(t) du(t) = lim, f h2)f () dz .
bX I'y

Let {a,}y_, and {r,}3_, be fixed sequences of non-negative numbers
such that

(1) a,=0, r=1,

(ii) et <o,

(iii) 7,40,

(iv) @pyy—Tps1>a,+1,, n=1,2,....

Put 4,={z; |z—a,|<r,}. Let V;,V,,... denote the components of X°,
and let m denote the number of such components (which may be count-
ably infinite). Then we define K=Ky to be the closure of UZ_,4,.
We let @ denote a fixed conformal mapping from X° onto K° and let
¥: K° -+ X° be its inverse. By a theorem of Fatou (see [15]) ¥ has
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non-tangetial boundary values ¥* a.e. on bK with respect to the meas-
ure df=3,,2-"d0,,, where d0, denotes the normalized Lebesgue measure
on b4,.

If » is a measure on bK orthogonal to R(K), that is, » € R(K)*, then
by the F. and M. Riesz theorem »<df, and so we can define ¥*(v) as
the measure on bX whose value on the Borel set £ is »(¥W*-1(E)).

With these notations we get the following characterisation of measures
4 on bX that is represented by its differential:

2.2. THEOREM. Let u be a measure on bX. The following are equivalent :
(i) p is represented by tts analytic differential (273)~14(z)dz.
(ii) There exists a measure v € R(K)' carried on bK with u=¥*(@).

Proor. If there exists a sequence I'={I",} convering to bX such that
(27¢)14i(2)dz represents u with respect to I', then we can find a sub-
sequence {I,,} such that d={d;}={®D(I,,)} converges to bK, and the
differential

B((278) 1 fi(2) de) = (2ni)~t G(P(2)) W' () de

represents a measure » on bK with respect to 6. The proof of this is
word for word the same as the proof of theorem 2 in [2]. As remarked
on page 283 in [2] we then have

A(WP(z) P'(2) = #(z) for ze K°.

Using Cauchys theorem we get » € R(K)*.
Let o=¥*(»v). We will prove that =pu. If ze K° we have

s (P(e) = J‘ da(s) _ f dv(t)

s—W(z) JWP*1t)—P(2)
and
. | 1 dv(t)
MP@) = gy P& = ‘F’(z)f i—z
Now since
1 1 1
G(t) = - —

Pit)—P(z) W()t—=z

is bounded and analytic in K°, we have [G*(t)d»(t)=0, where G*(¢)
denotes the non-tangential boundary values of @, such that f(w)=a(w)
for all we X°. Since both x and o are orthogonal to 4(X), lemma 1.1
in [7] gives o=pu.

Suppose u = ¥*(v), where v € R(K)! is a measure on bK. Then, essen-
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tially by the F. and M. Riesz theorem (see [2, p. 283]), there exists a
sequence 0= {d,} converging to bK such that (2n7)-1$(z)dz represents »
with respect to 6. Again, by the proof of theorem 2 in [2], there exists
a subsequence {4,,} such that I'={I',}={¥(d,,)} converges to bX and
the differential

P((2ni) 1 H(2)dz) = (2n3)~19(D(z)) D'(2)dz

represents a measure ¢ on bX with respect to I. By the remark p. 283
in [2], we have o (2)=7(P(z)P’(2), so it is enough to prove that ¢=pu.
Since both ¢ and u are orthogonal to A(X), it is enough to prove, by
lemma 1.1 in [7], that f(w)=d(w) for all we X°. Letting z=®(w) we
have

PN 1 1 d
7) = @) H () = ¥'(2) e) = V'(z) f ti—(tz)
and
aos o [(AE) _ do(t)
w) = fs_w = fm(z) .

Hence, since G(t) is bounded and analytic in K°, the result follows.

If ze X°, let A, be the harmonic measure for z with respect to X°,
and if zebX, let A, be the pointmass at z. Choose points z,€ V,,
n=1,2,..., (the components of X°) and put 4,=4, and A1=37"_,2""4,,
where m is, as before, the number of components of X°. If fe LY(4) we
let f be the harmonic function defined on X° by f(z)=[fdA,. f is
called the harmonic extention of f (see [14, ch. 8] for properties of har-
monic measures). If o is a positive measure on bX with A<o we define
H®(¢) to be the weak* closure of R(X) in L*(c). We denote by H*(X°®)
the set of bounded analytic functions on X°. The map S,: H*(c) -
H>®(X°) given by S,(f)=f is a continuous homomorphism of the alge-
bra H®(c) into the algebra H*(X°). (See [9, p. 226].) Moreover, we have:

2.3. Lemma. If R(X) is a Dirichlet algebra, then S, s an isometric
tsomorphism of H®(1) onto H®(X°).

Proor. This follows from lemma 2.1 of [7] and theorem VIII.11.1
of [9].

2.4, THEOREM. Suppose R(X) is a Dirichlet algebra. Then every meas-
ure u € R(X)! carried on bX is represented by its differential (274)71fi(z)dz.

Proor. Let u be a measure on bX orthogonal to R(X). By theorem
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2.2 it is enough to prove that there exists a measure » on bK orthogonal
to R(K) such that u=¥*(»). Since ® € H*(X°) there exists, by lemma
2.3, a function @* € H®(1) such that ®*=®. Let ze X° and put z=
®(z) € K°. Let p, denote the harmonic measure (the Poisson measure)
for x with respect to 4,, where € 4,,. Then it is easy to see that 1,=
Y*(0,). This gives

z = P(z) = f@*dlz = fdi*o'l’*dgx = ftsz(t) )
and hence @*(¥*(t))=t a.e. d. But then @*(¥*(g,))=p, or

D*(4,) = @z -
This implies that

[#x@r@) ar = [ w0 do.) = ¥@) = 2,

and so ¥*(®*(t))=t a.e. 4. Since R(X) is a Dirichlet algebra, we have
|u] €24, by the Wermer—Glicksberg theorem [17, Satz 3] and the fact
that R(X) has no non-zero completely singular orthogonal measures [18].
Hence W*(@*(t))=t a.e. u. If we define »=>*(u), we have

[ avte) = [ (@) dut) = 0,

since u <A and @* € H®(4). Therefore » is orthogonal to the polynomials,
and so v € R(K)* since C\ K is connected. Since » is carried on bK and
p="Y*(D*(u))=P*(»), the result follows.

3. Conditions under which R(X) is a Dirichlet algebra.

We now turn to the question: When is R(X) a Dirichlet algebra?
We will not try to give a complete discussion of this problem, but con-
centrate on three special results. We need the following lemma about
splitting of orthogonal measures, due to Bishop (see [1, lemma 6]):

3.1. LemMa. Let F be compact and u€ R(F)t. Then for almost all
%y € R with respect to Lebesgue measure there exists a measure # on L=
{z € F; Rez=ux,} such that

!lhd‘u - -i[’hd,u =£hdﬂ for all he R(F),

where Fy={z€ F; Rez=u,}, Fy={z€ F;x,<Rez}. Further |u|(L)=0,
and if we define
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v = plF1—B, pa = p/Fa+p,
then p=u,+uy, and p; € R(F)*, 1=1,2.

We do not give the proof of lemma 3.1, since the proof of lemma 6
in [1] applies with only minor changes.

If S is a compact plane set, F' is a closed subset of S, and B is a closed
subspace of C(8) including constants and separating points on S, we say
that F is an interpolation set for B if B/F =C(F). We say that F is a
peak set for B if there exists a function f € B such that f=1o0on F, |f|<1
off F. A point x € § is called a peak point for B if {x} is a peak set for B.
If F is both an interpolation set and a peak set for B, we call F a peak
- interpolation set for B. We mention the following result, known as
the (Bishop-) Rudin—Carleson theorem: If B is an algebra, then F is a
peak interpolation set for B if and only if every measure orthogonal to
B vanishes on F. (See [4], [8, p. 284] and [13, p. 429].)

3.2. LEMMA. Let S be a compact set and let F be a closed subset of bS.
Then F is a peak interpolation set for R(S)[bS if and only if F is a peak
interpolation set for R(S).

Proor. Suppose F is a peak interpolation set for R(S)/bS. Choose
f € R(S) such that f=1 on F and |f| <1 on bS\ F. Suppose there exists
z,€8° such that |f(x,)|=1. By the maximum modulus principle we
then have f=1 on the closure of the component V of 8° which contains
z,. Therefore bV <F. But since R(S)/F=C(F) and h(z)=(z—2,)1€
C(F) there exists g € B(S) such that g(z)=(z—x,)"! or g(z) (2—2,)=1
on bV and so

g(z) (z—zp) = 1 forall zeV,

which is impossible for z=x,. This contradiction proves that F is a
peak set for R(S), and we are done.

3.3. THEOREM. Suppose that for all x € X there exists an open meigh-
bourhood W of x such that R(WnX) is a Dirichlet algebra. Then R(X)
18 a Dirichlet algebra.

Proor. Choose open sets W,,...,W, such that R(W,nX) is a Di-
richlet algebra, 1<¢<n, and X<U? , W,. Choose >0 such that for
every closed rectangle R of diameter less than & there exists W, with
RnX<W,. Let u be a measure on bX which is orthogonal to R(X).
Using lemma 3.1 a finite number of times we can write
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N N
w =_21:”i’ X = _LJIXi’
= i=

where X;=XnR;, R, is a closed rectangle of diameter less that 8, and
M4 i8 a measure on

bX; = (B;nbX) U (XnbR,)
orthogonal to R(X;). Moreover, lemma 3.1 tells us that
Ui R;nbX = u/R,nbX .
Let ¢ be fixed, 1=¢<N. Choose W=W, such that X,<W and put

Y=Y,=WnX. For xe Y° we let 1, denc;te the harmonic measure for
x with respect to Y°. Let 8,,8,,... be the components of Y°, choose
y; € 8; for all 4, and define 1=3,2-%1,,. Let K=Kx, and @, ¥, ¥* be
as in 2.1.

The idea of the proof is to construct a function @* € L*(u) which

satisfies:

(1) @*(t) € bK for a.a.t with respect to u ,
(i) J(@*)du = 0 for k=0,1,2,...,
(iii) Yx(D*(t) =t a.e. .

When (i), (ii) and (iii) are established, it is easy to prove that if u is real,
1 must be the zero measure. For if u is real, so is the measure » = ®*(u).
v is carried on bK, by (i), and it is orthogonal to the polynomials, by (ii).
It is well known and easy to see that R(K) is a Dirichlet algebra. Hence
v=0, and (iii) gives that

u = PHD*u)) = P*(») = 0.

To construct such a function @* we first prove this local result:
There exists a function @5 * € H*®(A) such that

(I) &p*(t) e bK for a.a.t on bX;nbY with respect to u,

(I1) f (Dp*)edp; = —f O dy, k=0,1,2,...,
bX;nbY bX;nY°
(III) P*(Pp*(t)) =t a.e. u; on bX;nbY.
When (I), (IT) and (III) are established, the construction of @* goes
as follows: For each ¢ between 1 and N we construct one such function

Oy *=090%,, and since u has no mass on U¥ bR, by lemma 3.1, we can
define @* € L®(u) by

Dx(t) = BY(t) for teR,nbX = bX,;nbY,.
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Then of course ®*(t) e bK a.e. u, and since =3V u,, (II) gives that

[ @*rau = 50 [ @97 du
bX R;nbX
- % [ @3 du
bXinbYy

- -3, f Ok dy, = —f¢"dﬂ=0, k=0,102,....
bX;nX° X°

Here we have used the fact that bX;nY°=bX;nX° and that u is a
measure on bX. Moreover, since (III) is valid, it is easy to see that &*
also satisfies (iii).

It remains to prove the existence of @y *.

Since @/Y° € H*(Y°) and R(Y) is a Dirichlet algebra, there exists by
lemma 2.3 a function @, * € H*(A) such that

Pp*(z) = P(z) forall ze Y°.
Since 4, is a multiplicative measure with respect to H*(1), we get
f (@ %)k dA, = D*(z) forall ze ¥°.

Let E<bX;nbY be closed and suppose A(E)=0. Since R(Y) is a Dirich-
let algebra, all measures on bY orthogonal to R(Y) vanishes on E, by
the Wermer—Glicksberg theorem ([17]) and the fact that R(Y) has no
nonzero completely singular orthogonal measures. Hence by the Rudin-
Carleson theorem E is a peak interpolation set for R(Y)/bY and by
lemma 3.2 E is a peak interpolation set for B(Y). Again by the Rudin—
Carleson theorem we get that |u;|(E)=0, since

ui € RX)t < R(Y)*.
Hence
(1) ui/bX;nbY < A/bX;nbY .
Define the measure o; on bY to be the sweep of y; to bY, that is

deai =ffd,u, for fe C(bY),

where as before f denotes the harmonic extension of f in ¥°, and we set
f(x)=f(x) for xebY. Then g; € R(Y)*, o,<A and therefore
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2) f(q)Y*)k do, = 0, k=0,1,2,...,

since @p* e H*(A). Choose a sequence {f,}5> ,<C(bY) such that
Ifallo < 1Py *|lo and f,(t) > Pp*(t) a.e. . Then by the dominated con-
vergence

(fa*)"(2) > Pk(z) for ze Y°,
k=071’2,' ey and (l) and (2) gives

0 = [ (@y*) do; = lim, f £,k do,
bY bY
= hmn f (fnk)~ dnui
bX;

= lim,, [ (fnk).' du; + lim, J‘ fnk dpy
bX;inY® bX;nbY

- f OF du, + f (@p*) du;, k=0,1,2,...,
bX;nY° bX;nbY
which is (II).
To verify (I) and (III) define ¥,: K - X by

Yoty = P*t) for tebK,
= Y(i¢) forteK°.

We want to show that
Yy(DPp*(t) =t ae. A.
Let @=®(Y°). We assert that

@y *(t)e G for a.a. t with respect to 4 .

Suppose a ¢ G. Then (§/Y°—a)te H°(Y®), and by lemma 2.3 there
exists §* € H®(4) such that

f* = (@[Y°—a)t and [f¥l = (@(T°~a)].
Since @ * —a € H®(A) we then have
[ p*(@*—a)dh, = (B2)—a)(B() ~a) = 1
for all ze Y°. Hence by injectivity f*=(Pp*—a)-! and so

[(Pp*—a) e = (P/Y°—a)].
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Since this is valid for all @ ¢ G, we must have

D *(t)e @ = K for a.a.t with respect to A .

Now choose z€ Y° and put z=®P(z) € K°. Since
[ @ppar, = ) = 2 k=012,

the measure 8,=®y*(4,) is a representing measure on G< K for z with
respect to the polynomials. Choose k such that z € 4,. Since the func-
tion which is 1 on 4, and 0 on K\ 4, belongs to R(K)=P(K) (this
follows, for instance, by lemma 3.1), 8, must be a measure on 4,. Let
o, be the Poisson measure for x with respect to 4,. Then g,—8, €
R(4,)*.

Let F be a closed subset of b4, such that d0,(F)=0. Then, by the
F. and M. Riesz theorem, lemma 3.2 and the Rudin-Carleson theorem
we get that |o,— B,|(F)=0. Since g (F)=0, f,(F)=0 and so /b4, <db,.

Now let {P,} be a sequence of polynomials which is uniformly bounded
on 4, and converges to ¥* a.e. df, on b4, [17, lemma 5]. Then
P,(z) > P(z) for all z€ 4, and we have

fzp By * (1)) di, (¢ jsffo ) dB. (1)
= lim, [ P,(t) dB.(0)
= lim, P, (z) = ¥(z) = z = f t da(t)
Since this is valid for all z € Y°, lemma 2.3 gives that
Yo(Dp*(t) =t ae. 4.
Using the fact that ¥,(K°)=X°, it follows that
Py DPr*() = P¥Pp*(t) =t a.e. 2 on bX;nbY=R;nbX,

and since
ui/bX;nbY <€ AbX,nbY

by (1), we have (I) and (III).
This completes the proof.

3.4. CoROLLARY. Suppose that the diameters of the components of C\ X
are bounded away from zero. Then R(X) ts a Dirichlet algebra.
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Proor. This is an immediate consequence of theorem 3.3 and Walsh’
theorem, which states that R(Y) is a Dirichlet algebra whenever C\ Y
is connected [5, lemma 3].

We say that B(X) is pointwise boundedly dense (p.b.d.) in H®(X°)
if every function in H*(X°) can be approximated pointwise in X° by a
bounded sequence of functions in R(X). From lemma 1.2 in [7] and
theorem VIIL.11.1 in [9] we have the following lemma (A is as defined
before lemma 2.3).

3.5. LEMMA. Suppose R(bX)=C(bX) and R(X) ¢s p.b.d. ¢n H®(X®).
Then the map f—f is an isometric isomorphism from H®(A+ |u|) onto
H>®(X°®), for every measure u on bX orthogonal to R(X).

When we have this fact, an argument similar to the one in the proof
of theorem 3.3 gives the next result.

3.6. THEOREM. Suppose R(bX)= C(bX) and R(X) 2s p.b.d. tn H®(X°).
Then R(X) 8 a Dirichlet algebra.

Proor. We use the same notation as in theorem 3.3. Let u be a
measure on bX orthogonal to R(X). Then by lemma 3.5 there exists
@* € H®(A+ |u|) such that @*=®, and using the same technique as in
the proof of theorem 3.3 we get that

D*(t) € D(X°) = K a.e. A+|u.

Choose z € X° and let x=®(z). Then if g, denotes the poissonmeasure
for z, we have that ¥*(g,) is a representing measure for  with respect to
the functions which are continuous on X and harmonic on X°. Hence
by theorem 5.3 in [12], ¥*(p,)=4,. This gives that

z = O(z) =f¢*dlz=f¢*o‘l’*dga. forall ze K°,

and so

P*(P*(t)) =t a.e. db.
Therefore
(1) 0, = D¥(P*(0,)) = P*(4,) forall xe K°.

If ¥, is defined as in the proof of theorem 3.3, then ¥;o ®* e L*(2),
and for z € X° we have

ftpooqa*dz, - fTodgx - P) =2

Math. Scand. — 7
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Hence [¥,0®D*o P* dp,=¥(x) and therefore

W, o B o WH(it)=PX(t) a.e. do,
that is,

2) Yoo D*(t) =t ae. 4.

Choose a sequence {P,} of polynomials such that |P,|x <M <oo and
P,(2) > Py(z) forall ze K°,
P,(t) > Pyt) ae. dfonbK.

Then {P, o ®*} is a bounded sequence of functions in H*(A+ |u|). There-
fore there exists a function F € H®(A+ |u|) and a subnet {P;o P*} con-
verging to F' in the weak* topology in L®(A+ |u|). Using (1) we get for
ze X°:

Fz) = f Fdi, = lim, f P,o®* di,

- IimifPidgz - J"I’*dgx - Y(z) = 2.
Hence by lemma 3.4
3) Fit)y=t ae. A+|u|.

Let E denote the convex hull of {P;o @*}. Then since

o Pioor da+iu) ~ [ F d(h+iu)

for all g € LA+ |u|) and the unit ball in L*(A+ |u|) is metrizable, there
exists a sequence {@,} of polynomials such that

Qpo®* € £ and @Q,od*->F
in L*A+ |u|). We can assume that
Qo D*(t) > F(t) a.e. A+|y|,
and since ||P,, o @*|| < M for all m,

IQueo®@*| < M foralln.
Since
F(t) = Py(D*(t)) ae. i

by (2) and (3) this gives that, if g, =®*(4;), then
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527 [ %o Qul dox = 3427 [ [0 0%~ Q, 0 0% d,
= B2 [ IF - Qo 0% i,
=f|F-Qnoqs*| i~ 0.

By passing to a subsequence, we may therefore assume that

Q.(t) > Py(t) a.e. df on bK .
Hence

Qn(@) > Wy(x) forall ze K°.
Define G(t)=lim,@,(t) for those { € K such that lim,@Q,(f) exists. Put
T = {tebX; lim,Q,(P*(¢))=F(t)=t}.
Then (A+ |u|)(bX \T)=0 so that
G(D*(t)) =t ae. A+|yl.
Since Q(K°)<=X°, it follows that
D*(t) e bK a.e. A+|ul.

Hence if we define »=®*(u), then » is a measure on bK. Since d* ¢
H®@A+ |ul)),

f((ﬁ*)kd,u —0 fork=00L2,...,

and » is orthogonal to the polynomials.
Now suppose u is a real measure. Then » is real, and so »=0. Hence
u=G(P*(u))=G(»)=0, and the proof is complete.

If Y is a compact plane set we define H(Y) to be the space of real-
valued functions harmonic in a neighbourhood of Y, and H(Y) to be
the uniform closure of H(Y) on Y. To get the other main result of this
section, we need the following two lemmas from potential theory, which
we state without proof. The first is due to Davie [6, lemma 2.1] and the
other is due to Carleson [5, lemma 1] and Davie [6, lemma 1.5].

3.7. LEMMA. Let Y be a compact set and suppose x, is a peak point for
H(Y). Let f be a superharmonic function defined in a neighbourhood of z,.
Then

f(z,) = liminf f(x), xeC\Y.

x - 9
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3.8. LeMMA. Let Y and E be subsets of C such that E has zero one-dimen-
stonal Hausdorff outer measure and Y UE is connected. Let u be a finite
real measure with compact support such that

Pyy(2) = [log|t—2I= dlul(¢) < o

for all z€ Y. Let f be a real continuous function on an open set U and
define

9(z) = P,(2)—f(2),
where

P, = [loglt—2l= dul0) ,

Sor those ze U which satisfies P, (z)<oco. Suppose g(z) is a constant «
for all ze YnU. Let zy€ YnU and suppose P,(z,) < co.
Then g(zy) = .

We can now prove

3.9. THEOREM. Suppose X,X,,X,,... are compact sets such that

(i) Xp<sX, forn=12,...,
i) X=0N2_,X,,
(iii) R(X,,) vs a Dirichlet algebra for n=1,2,... .

Then R(X) ts a Dirichlet algebra.

Proor. First we want to prove that if x,ebX then the pointmass at
2,4, is the only representing measure for  on bX with respect to H(X).
To prove this, it is useful to establish the following:

(*) If ;e X and u is a (positive) representing measure for z,
with respect to H(X), then

P,(z) = log|z—=e|~* for all z € bX \ {x,} .

Proor orF (*): Since ¢ — log|t—z|~t € H(x) for all ze C\ X, we have

that
P (z) = logle—=,|? forall ze C\ X,

and especially for ze C\ X,,, for all n. Since R(X,) is a Dirichlet alge-
bra, it is easy to see that each point in bX, is a peak point for H(X,,).
Since P,(z) is superharmonic in C [16, I1.23], lemma 3.7 gives that

P, (2) = log|lz—x,|! for zebX,, n=1,2,....
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Hence
P, (z) = loglz—xy|~* for ze Y

where ¥Y=U$_(C\X,°). Since R(X,) is a Dirichlet algebra, C\ X,°
is connected for all », and so Y is connected. Let £ be the empty set,
U=C\{,} and define

f(z) =loglz—xy|~t for zeU.
Then P,(z) <o on Y and
g(z) = P,(2)=f(2) =0 on YnU.
Let w e bX \ {z,}. By lower semicontinuity

P,(w) £ liminfP,(z) < loglw—2g|~! < oo,
zZ—>w

and since w € bX \ {z,} = Y nU, we can apply lemma 3.8 and get that
g(w)=0, which proves (*).

Let x, € bX and choose two representing measures u, and u, for z,
on bX with respect to H(X). Let u=pu,—pu,. Using (*) we get that

P,(z) =0 forall ze bX\ {x,}.
Moreover, if a € X°, then (*) gives that
P, (2) = log|z—a|™ forall zebX,

where 1, as before denotes the harmonic measure for a with respect to
X°. Since A,({zo})=0 (see [12, lemma 5.2]), P,(2)=0 a.e. 4,. Since

[([1081t-21+ aaute)) a lui) = [oglt—ai* i) < o
the Fubini theorem gives
0= [P = | ( [10g1t 21 dutt)) anto
= f (flog]t-—z|‘1 dla(z)) du(t)
~ [1ogit—aldut) = P,(@).
Hence P,(a)=0 for all aeX° Since we also have P, (z)=0 for
ze (C\X)u(bX \ {z,}), it is well known that x must be the zero meas-

ure [5, lemma 2]. Therefore u;=p,, and so 4, is the only representing
measure for z, on bX with respect to H(X).
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For zebX, n=1,2,..., define 1,» as follows: If z € X,° we let 1,*
denote the harmonic measure for 2 with respect to X,° and if 2 € bX,,
we let A," denote the pointmass at . Then |4, =1 for all n, and so by
the theorem of Alaoglu the sequence {1,7}_, has at least one cluster-
point in the weak* topology on measures. Let o be one such point.
Since the unit ball of C(X,)* is metrizable, we can find a subsequence
{Az}5-, which converges weak* to o. Since A3* is a measure on bX,,
it is easy to see that ¢ must be a measure on bX. Moreover, if f is har-
monic in a neighbourhood U of X then X, < U for n big enough, so that

ffdo - 1imkffdzgk = f@).

Taking uniform limits, we get that ¢ is a representing measure for
on bX with respect to H(X). Hence ¢=21,, and this proves that 1,"
converges to A, in the weak* topology.

Now suppose u € R(X)* is real and carried on bX. Let u, be the
sweep of u to bX, defined as follows:

[faun = [Fodu tfor fecpx,),
where
Foz) = f fdir for ze X, .

Then it is easy to see that u, € R(X,)*. Since R(X,) is a Dirichlet alge-
bra, u,=0. But if f e C(X,), then

flx) = ff dh, = lim, f fdan = lim, f®)(x)
for all x € bX, and since

If™ @) < |Ifll forall zebX,

the dominated convergence gives

ffd,u = 1im,,ff<n> du = lim,,J‘fd‘u,, -0,

and so u must be the zero measure.

Let U, (unbounded), U,,U,,... be the components of C\X. In [3]
Bishop proved that if bX=bU,, then every measure u on bX orthogo-
nal to R(X) is represented by its differential (27¢)-14(2) dz. As a con-
sequence of theorem 3.9 and corollary 3.4 we get the following, which
by theorem 2.4 generalizes the following result of Bishop.
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3.8. CoroLLARY. Suppose that
(**) bU,; n UZbU, is non-empty for j=1,2,... .

1=0

Then R(X) i¢s a Dirichlet algebra.
Proor. Let X, =XuUR . U, n=1,2,.... Then
C\X,=Ur,U, and C\X,°=Ur,U,,

=0 =0
which is connected for all n by (**). Therefore by corollary 3.4, R(X,)
is a Dirichlet algebra for all #, and since X =N$_; X,,, R(X) is a Dirichlet
algebra by theorem 3.9.
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