A REMARK ON RINGS WITH PRIMARY IDEALS AS MAXIMAL IDEALS

HARBANS LAL

M. Satyanarayana in [1] defines a P-ring to be a commutative ring with identity in which every primary ideal is a maximal ideal. Below is a characterisation of such rings.

Theorem. A commutative ring R with identity is a P-ring if and only if R is regular (in the von Neumann sense).

Proof. Let R be a P-ring and M any maximal ideal of R. The quotient ring R_M has a unique prime ideal M^e other than R_M ([2, Theorem 19, Chapter IV]). Let $I + R_M$ be any ideal of R_M. This is a primary ideal; so I^e (see [2] for notation) is a primary and hence a maximal ideal of R. Consequently $I^e = M$ whence $I = M^e$. In particular $(0) = M^e$; so that R_M is a field for every maximal ideal M of R. Clearly every invertible element of R is regular. So let r be any non-invertible element of R and $T = \{t \in R : rt = 0\}$. This is an ideal of R which is not contained in any maximal ideal M, which contains r, as R_M is a field. So $T + (r) = R$ which implies $1 = t + rx$ where $t \in T$ and $x \in R$. This gives $r = r^2 x$ and thus R is a regular ring. The other part is immediate.

References

Department of Mathematics, Hans Raj College, Delhi, India.