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A PRODUCT THEOREM FOR LATTICES OVER ORDERS

MICHAEL SINGER

In [5], to which the reader may refer for further background to this
paper, we proved a product theorem for ideals over orders, which in this
paper we generalise to treat lattices over orders. Our earlier theorem is
not required in the proof. Indeed, in sharp contrast to previous exposi-
tions, we have found it possible to confine ourselves to the most ele-
mentary methods throughout.

Roiter’s concept of divisibility of lattices [4] immediately suggests a
possible generalisation of our theorem, but we show that this suggested
generalisation is false.

Let R be a Dedekind domain, to avoid trivial exceptions not a field,
with quotient field K. Let 4 be a finite-dimensional commutative
separable K-algebra. An A-R-lattice, M, is a finitely generated projec-
tive R-module, with the provision of A-module structure on M ®Q ;K.
M is an A-R-ideal in 4 if it is further contained in 4 and KM = A4.

Let M,N be A-R-lattices spanning the same K-module. We remind
the reader of the definition of the module index of N in M, denoted by
[M:N]. If R is a principal ideal domain, M and N are R-free, and the
module index is the R-fractional ideal generated by the determinant of
any R-linear transformation from M onto N. In general, we have a
module index at each prime of R, and [M : N] is defined to be the frac-
tional ideal of R determined by these local ideals.

Let B denote the maximal order in 4 over R. The index [BM :M]
is of considerable interest, and is closely related to the defect of M, a(M),
defined in [2]. In fact, the defect is the square of this module index,
multiplied by a factor which depends only on R, 4 and the K-module
spanned by M, and not on M itself. This factor is chosen so that a(M)
shall be invariant under finite separable extension of K.

Let M be an A4-R-lattice, and let J be an A4-R-ideal in 4. Denoting
by “~” local isomorphism of 4-R-lattices, we prove here the following

TrEOREM. a(JM)|a(M), with equality if and only if JM ~ M.
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This theorem generalises two earlier results. In [2], Frohlich proved
that a(JM)|a(M) when MRy K is A-free. In [5] we proved the whole
theorem for the case when M is an A-R-ideal in 4.

Lemma 1. We can assume that from now on R is a discrete valuation ring,
with prime ideal p.

Proor. Obvious.

Now let L be a finite separable extension field of K, with ring of
integers S over B. We shall identify 4 with AQ ¢ K, so 4 is embedded
in AL=AQ®gL in a natural fashion. If M is an A-R-lattice, we identify
the AL-S-lattices MS=M@pS. The next lemma can hardly be new,
but our proof is rather simple.

Lemwma 2. If M is an S-R-lattice, then M =MSnKM.

Proor. Certainly M MSNKM, and (MSNKM)S<cMS. So
(MSNnKM)S = MS.

In case MSnKM is not finitely generated as R-module, let N be an
A-R-lattice with Mc NcMSnKM. Then

MS ¢ NS < (MSNnKM)S = MS,
so MS=NS. But introducing module indices,
[N:M]S = [NS:MS] =8,

and so [N:M]=R. But M N, so M=N. Hence MSNKM must be
finitely generated as R-module, and so in the above we may take
N=MSnKM.

The following lemma can be compared with [3] and [2, Appendix B].

LemMa 3. Let J be an A-R-ideal. Then there is a finite separable exten-
ston field L of K, with ring of integers S over R, such that JS~T, where
T is an AL-S-lattice with 1 € T < B, and where B, is the maximal order
in AL over S.

Proor. Let E be a finite separable splitting field for 4 over K. Sup-
pose that (4:K)=mn, and take L to be any finite separable extension
field of E, such that the residue class field of S has cardinality at least n.
In particular, L can be any sufficiently large finite separable non-rami-
fied extension of E. We shall prove the existence of an element v € AL
such that 1 e uJS<B;.

To simplify notation we assume that in fact E/p has cardinality at
least n, and that A splits over K, with maximal order 8 over R. Multi-



52 MICHAEL SINGER

plying J by a suitable element of 4, we may assume that BJ =8, and
we must prove now that there is an element y € J with y8=%. For
then 1e y~lJ < B.

Let e,,...,e, denote the primitive idempotents of A. For some i,
1<i<mn, suppose we have found an element y, € J such that y,e; is a
unit in Re;, 1<j=<1. Using induction on 1, it is enough for the proof of
the lemma to find a suitable element y,,, € J. We can suppose that
ys¢; is not a unit in Re; for j>i. We write

%
Yi= 2 o5e; + &,
Jj=1

with £ € p®B and the «; units in B. Let x € J with xe;,; a unit in Re,,,.
We write i+
@ =2 B+,
j=1

with 7 € pB and the f; in R with §;,, a unit. Let 9 run through a set of
representatives of Rfp in R. For each j, 1<j=1,

if and only if
€ Pjx; +p,

and this can occur for at most one value of 2. Since
t £ n—1 < card(R[p),

there is some unit 9 such that g;—0x; is a unit in R for 1<j=<1; also,
this is certainly the case for j=i+1. So x—2dy;eJ will serve as our
Y41, 88 Tequired.

Proor or THE THEOREM. With L as in Lemma 3 let u € AL with
leuJS c B,
where 9B, is again the maximal order in AL over S. Hence
MS c wJMS < B, MS = BuJMS .
So
[(BruJ MS:uJMS]|[B, MS: MS],

or, equivalently
a(JMS)|a(MS) ,

with equality if and only if
wJMS = MS.
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Now a(MS)=a(M)S, so we have proved that a(JM)|a(M). Suppose
that a(JM)=a(M); then a(JMS)=a(MS), so uJ MS=MS.

At this stage we could appeal to a relatively deep result due to Zas-
genhaus and Reiner, quoted for the case when K is an algebraic number
field in [1, p. 538]. We are however able to give a direct elementary
exposition. Note that some such approach is needed for reduction to the
split case in [5], which is otherwise incomplete on this point.

Some power (and any higher power) of J is invertible. This appears
in [2] as a Corollary to the product theorem there, but is in fact a quite
elementary result. For consider the ideals (uJS)?, ¢=1,2,..., in AL
over S. They form an increasing sequence since 1 € »J.S, and all terms
are contained in B. It follows readily that from some point on all the
terms are equal, and indeed equal to an order in AL. The correspond-
ing J? are invertible by [2, Lemma 5.1]. Thus there is a positive integer
r, an order 9 in A and elements v,w in 4 such that Jr=v, Jr+l=w.
But by induction, w*Jr MS=MS, and if Op(M) denotes the order of M
in A over R, we have

Os(M8) = Dg(J*MS) 2 Dg(J*S) = AS .
So
M8 = woAMS = woMS .
Similarly
MS = wtlwMS .

Hence 1 MS=@w1lwM)S=JMS. So by Lemma 2,

viwM=JM .
Thus JM ~ M.
According to Roiter’s definition [4], the A-R-lattice M divides the
A-R-lattice N, written M >N, if the lattice

MHOM,_p(M,N) = Imx:me M, xc HOM_p(M,N)}

is equal to N.

Certainly M > JM for every ideal J in 4. This suggests the generalisa-
tion: if M, N are A-R-lattices spanning the same K-module with M >N,
does the theorem still hold with N in place of JM ? Unfortunately, as
the following example shows, it does not.

Let M span A+ A (external direct sum), and be of the form U4V,
with U,V ideals in A. Let & be the A-automorphism of 4 +A4 which
transposes the two summands. Take N =M + Mo, so certainly M > N.

Now N=(U+ V)4 (U+ V). The relation a(N)<a(H) (strict inclusion)
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which gives our counterexample, will certainly hold if the ideals U,V
satisfy
a(U+V) < al), a(U+V)c<aV),

so we are reduced to finding ideals in 4 satisfying this.
Let R be a local ring, with prime ideal p. Let 4 be split with dimen-
gion 3 over K. Let g, A, e denote the primitive idempotents. Let

U = {pPg+p°h+R(g+h+e)}*, V = {ptg+p(g+h)+ Re}*.
Now
U+V = (U*nV*)* = {pig+p3(g+h)+p(g+h+e)}*.

An easy direct calculation now gives

[BU:U] = [BV:V] =3 [BU+V)(U+V)] = pt
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