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ON THE FINE STRUCTURE OF SPECTRA

CHARLES J. A. HALBERG, JR. and AKE SAMUELSSON

1. Introduction.

In this paper we shall consider the fine structure of the spectra of
bounded linear operators on complex Banach spaces. We shall use the
notion of the state of an operator to give a subclassification of its spec-
trum.

A linear operator 4 with domain and range in a normed linear space X,
is classified I, IT or III according as its range, %(4), is all of X ; is not
all of X, but is dense in X ; or is not dense in X. In addition 4 is classi-
fied 1, 2 or 3 according as 4! exists and is continuous; exists, but is
not continuous; or does not exist. The state of an operator is the com-
bination of its Roman and Arabic numerical classifications and is denoted
by the Roman numeral with the Arabic numeral as a subscript [2, p. 94],
[3, p. 235].

For a specific operator 4 on a complex Banach space we partition the
complex plane into subsets corresponding to the states of the operator
A,=A—A. For example, the subset consisting of those A for which the
state of the operator 4, is II; will be denoted by II3(4). Thus the re-
solvent set, o(4), of the operator 4 consists of the union of I;,(4) and
IT,(4) and its spectrum, ¢(4), consists of the union of the remaining
seven subsets [2, p. 109], (3, p. 264]. We shall call these seven subsets
spectral subsets and the sets I,(4) and II,(A) resolvent subsets.

The partitioning of the spectrum of an operator A4 into its unique
family of nonvoid spectral subsets will be called the spectral decomposi-
tion of A. This unique family will be called the fine structure of the spec-
trum of 4, and the set of states corresponding to the elements in the fine
structure will be called the fype of the fine structure.

Our purpose is to determine which types of fine structures are possible
for bounded linear operators on complex Banach spaces. For such oper-
ators the subsets I,(4) and II,(A4) are void [3, p. 236]; hence the state I,
plays no réle in the consideration of the types of fine structures for these
operators.

Our main result is that the only types of fine structure that can never
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occur for a bounded linear operator on a complex Banach space are
{I,}, {I11,}, and {I,,I11,}.

We shall also consider the special case of a compact linear operator 4
on a complex Banach space. The spectrum of such an operator can con-
sist of no more than two nonvoid spectral subsets, and, if there are two,
one must be IIT;(A4) [3, p. 281]. In Section 2 we prove that for a compact
operator A the spectral subsets I;(4) and III,(A4) are empty. Thus, a
priori, there are seven conceivable types of fine structure for a compact
operator. In Section 3 we show that each of these types can occur.

2. Principal theorems.

Our first objective is to prove that for any linear operator 4 on a com-
plex normed linear space X the spectral subset III,(4) is open. This is
a consequence of the following theorem.

THEOREM 2.1. Let A be a linear operator on a normed linear space X
into a normed linear space Y. If A is classified 111 and is the strong limit
of a sequence of linear operators on X into Y which are not classified 111,
then A is not classified 1.

Proor. Since A is classified III there exists a positive number ¢ and
a y € Y such that ||Az—y| > ¢ for every z € X. Let A be the strong limit
of the sequence {4,}, where 4, is not classified III for any k. Then there
exists a sequence {x,} of elements of X, such that ||4,x,—y| < }e for
each k. It follows that

e < [[Azi—yll = |14 — Al il + e .
Thus
2|jyll 2 elld— A4l

and |jx,]] > o as k - co. Hence, with y, = |z,]| 2,
il = 14— ARl + [|4xyall £ 14— Agll + (gl + &)l -
Therefore inf,_,[|4z||=0 and the theorem is proved.
CoROLLARY 2.2. Let A be a linear operator with domain and range in a

complex normed linear space X. Then II1,(A) is an open set. In particular
if A 18 compact then II1,(A) is empty.

Proor. From Theorem 2.1 it follows that every A in III,(4) is at a
positive distance from the open set g(4)=I,(4)ull,(4). Moreover,
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the set of all A such that A4, has classification 1 is open [3, p. 256] and
comprise the set o(4)UIII,(4). Hence III,(4) is open. The final asser-
tion follows since the spectrum of a compact operator is at most countable.

Remark. Corollary 2.2 has been proved otherwise by Gindler and
Taylor, cf. [1, Theorems 3.2 and 4.2].

CoroLLARY 2.3. Let A be a bounded linear operator on a complex
Banach space. Then I4(A) ts an open set. In particular if A is compact
then I5(4) is empty.

Corollary 2.3 follows from Corollary 2.2 since under the hypothesis
I;(A4)=1III,(4’), where A’ is the conjugate operator of 4 [2, p. 100],
[3, p. 237].

The next corollary is a consequence of the preceding two corollaries
and the fact that the spectrum of a bounded linear operator on a com-
plex Banach space is a nonvoid compact set. We use the notation do(4)
to designate the boundary of the spectrum ¢(4). Also, for convenience,
we shall refer to the set II,(4)UIl;(4)UIIL,(A)UIII4(A) as the frame of
the spectrum and denote it by Fo(4).

COROLLARY 2.4. If A is a bounded linear operator on a complex Banach
space then the frame, Fa(A4), is a nonvoid compact subset of the spectrum
o(A), containing the boundary oc(4).

Next we state a theorem concerning the relationship of the fine struc-
ture of the spectrum of a linear operator A which is completely reduced
by a pair of closed subspaces and the fine structure of the spectra of
the restrictions of 4 to these subspaces.

TaEOREM 2.5. Suppose A is a linear operator on a Banach space X
and that A i3 completely reduced by a pair of closed subspaces X, and X,.
Let A, be the restriction of A to X, k=1,2.

Then, if A belongs to the resolvent or spectral subsets L,(A4,) and M4(A4,),
it follows that A belongs to the resolvent or spectral subset N, (A), where
N =max (L, M) and y=max(x,f).

The proof of this theorem is omitted since the results are easily de-
ducible from existing theorems [3, p. 270]. A conclusion implicit in
Theorem 2.5 is that o(4)=0(4;)U0c(4,).
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We find an immediate application of Theorem 2.5 as an aid in the
development of a method of constructing certain operators which will
be useful in the ensuing portions of this paper. The construction in-
volves a mizing technique, whereby given two operators 4 and B an
operator C is produced which satisfies the hypotheses of Theorem 2.5, and
the restrictions of C to X; and X, have the fine spectral structures of
A and B, respectively. We let 4 and B be bounded linear operators on
the sequence space l,, 1<p<=<oo, with infinite matrix representations
(ay) and (b;), respectively. The operator C, which we shall denote by
[4,B], is then defined by the infinite matrix (c;;), where

0 if 444 is odd ,
Cij = | Y1, 34y if ¢ and j are both odd ,
byi 3 if + and j are both even .

Completely analogous techniques can be used to mix any finite number
of operators.

Our next theorems deal with subclasses of the algebra of bounded
linear operators on a sequence space. For a given sequence space 1,
where 1 <p < oo, we denote this algebra by [l,].

Let {a;}3° be a sequence of nonzero complex numbers, such that

limy a0, = B < o,
and let #={£,}7° be an element of ,. Define the operator 4 by
Az = {ag_y0;7 60T

Then 4 €[1,], for 1<p=<oco. We will call this operator the weighted shift
operator generated by the sequence {a,};°. The weighted shift operator
generated by the sequence {1}3° will in the sequel be denoted by 7'.

If R>0, then 4 €[l,] is classified I. It is convenient to introduce the
right inverse 4 € [1,], uniquely determined by

(2.6) I=A44=44+P,

where I is the identity operator and P is the projection of I, onto the
subspace generated by the first fundamental basis vector e, .

One of the properties of a weighted shift operator A is that its spectral
radius, |¢(4)|, equals R, independently of p. To see this, we observe, that

lA™M| = supy|ay/a.n ,
and therefore

IU(A)I = limn»ooHA"ll"” =R.
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Analogously, if B> 0, then

[ A" = supy|a,agt,| |
and

lo(A)| = B! = |o(4) .

A second property of such an operator is that 4 belongs to its point
spectrum, Po(4), if and only if {A*~*a;_,}7° €l,. In particular, if || <R,
then A € Po(A) for any p=1. For further use we note that if A € Po(4)
and y el,, then there exists a unique vector z in the null space of 4,,
denoted by A47(4,), such that Px= Py.

It is now apparent that the spectrum, ¢(4), of a weighted shift oper-
ator 4 is the closed disc, centered at the origin, with radius R.

A further property of a weighted shift operator A is that I;(4) is the
interior of the spectrum of A4, i.e. Intg(4)=1I,(4). To see this we need
only observe that, for |1| < R, the operator A(A4 —I)-1 e [1,] is a right
inverse of 4,. The property now follows from Corollary 2.3 and the fact
that Po(4)>Into(4).

These several properties of a weighted shift operator imply the first
conclusion of the following theorem.

THEOREM 2.7. Let A be the weighted shift operator generated by the
sequence {a,}5 where

B = limy_, lag ;.7 .

Then o(A) is the closed disc, centered at the origin, with radius R, and
Inte(4)=1;(4) for 1<p= oo,

If 1<p<oo, then do(A4) is 1I3(4) or II,(A) according as {a,_, R¥-1}y°
belongs 1, or not.

If p=oco, then 00(A4) is IIIy(4) or II1,(A) according as {a,_y R*¥-1}{°
belongs to 1, or not.

Proor. In view of Corollary 2.4 and the fact that 1 e Pg(4) if and
only if {A*-lg, ,}°€l,, it only remains to be proved that if |A|=R,
then 4, is classified II or III according as p is finite or infinite. If p is
finite and |A| = R, direct computations show that each of the members of
the fundamental basis in [, is in the range of A4,, which is therefore
classified II. If p=oc and |A|=R >0, then 4, is classified III, since the
vector y = {n;},

n; = W R exp (i arga_,)

has a neighborhood, which belongs to the complement of %#(4,). To
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see this assume that z={£,}°e€l, and z=A,x={{,}{° €, where {, =
(1 +0,) with |0,| = K <1. Direct computation yields

& F 149 }
= Mg, 1=~ * 1.
b i Qo 2:1 la, 1| R”

Hence, if the series 3 |a,|~1 B~ converges, then
@] B 3 |a,| -1 R~
v=k
is bounded, while if the series diverges, then

k

lax| B* 3 |a,| 2 B~
y=1

is bounded, contradicting the fact that lim, , |a;_,a,7'|=R. If R=0,

then 4 is classified III, since the vector {1}7° €, has a neighborhood

in the complement of Z#(A4).

COROLLARY 2.8. Let A be the weighted shift operator generated by the
sequence {a,}° and let |6(A4)|>0. Then, if 1<p<oco, the spectrum of A
18 the closed disc, centered at the origin, with radius |o(A4)|=. The interior
of o(A) is the set TIT,(A) and the boundary of o(A) is the set IIT,(A) or the
set T1,(A) according as the vector {a,~1|o(A4)|~*}Y is an element of the con-
Jugate space of 1, or not.

Proor. It is easy to see that Po(d) is empty. Moreover, if 4 € (2,1,
1<p<oo, then its conjugate operator J’e[lq], pl4ql=1, is the
weighted shift operator generated by the sequence {a,~'}3°. These facts
together with the above theorem and the state diagram [2, p. 100],
[3, p. 237] give the corollary.

The condition in Corollary 2.8 which determines the nature of do(A4)
can also be given in terms of geometric properties of the operator 4.
We shall say that A4 e[l,] is of minimal type if given yel, and any
4 € 9a(A), there exists a sequence of elements x, € l,,, such that 4,z, — 0
as n — oo and Px,=Py. We shall say that 4 €[l,] is of maximal type
if Aedo(4) and A,z, - 0 as n - o implies that Px, - 0. With this
terminology an alternative characterization of do(d) is given by the
following theorem.

THEOREM 2.9. Let A be a weighted shift operator on l,, 1 =p<oo, and
let |6(A)|>0. Then A is of minimal type if and only if do(d)=1I,(A)
and A is of maximal type if and only if do(A)=111,(4).
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Proor. Suppose that A is of minimal type and A € d6(4). Then A-1e
0o(4) and therefore A4, is classified II. Thus given any yel, and
£> 0, there exists an x, €1, such that [|4,,2; —y|| < 4¢. Moreover, there
exists an z, such that ||4,,,||<}¢ and Px,=Px,. Since, by (2.6),
A(A)=R(I - P), there is an z such that —Adx=x,—x,. Thus

”“IA“’—?/“ = ”—}“‘11—1“1“"‘?/” = [ A%~y —A31%| < €.

From Corollary 2.8 it follows that 4, has state IT, and therefore do(4d)=
11,(4).

To prove the converse assume that do(d)=1I,(4), A€ do(4) and
yel,. Thus -1 € 90(4) and hence there exists a sequence {y, ), where
Yn €1,, such that

Ay, —Py—>0 asn-—>co.

Since 4 has state I; we can choose #, such that Az, =y, and Pz,=Py.
Thus, by (2.6),

Ay = =N Awy—Pay) = —NA 1y, — Py),
and we have constructed a sequence {,}}° with Pz, = Py such that

Az, >0 asn-—>o0.

This proves that 4 is of minimal type, completing the first part of the
proof. We have also, in essence, proved that do(4)=III,(4) if and only

if e, & #(4,) for any 1 € d6(4). For assume that there exists a 4 € do(4)

such that e, € #(4,). Then from the second part of the above proof
it follows that given y € [, there is a sequence {z,}° such that 4, ,, - 0
and Px,=Py. But then, from the first part of the proof, it follows that
A, has the state II,, which is a contradiction.

We shall use this last fact to prove the second part of the theorem.
All that remains to be proved is that if do(A)=1II,(4), then 4 is of
maximal type. Therefore assume that 4 € d6(4). Then A-1e d0(4) and
hence there exists an ¢ >0 such that |4,y —e,||>¢ for all ye l,. Thus
if xel, and Px+0, we have

142 = M A Az~ Pa)|| Z e|a]|1P2] .

The conclusion follows readily from this inequality.

It shoﬁld be observed that a consequence of this theorem is that if
A is a weighted shift operator onl,, 1 £p < o, then 4 is either of maximal
type or minimal type.
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We now introduce a class of transformations which we call mized
weighted shift operators. If 4 and B are weighted shift operators such
that |o(B)| > 0, then the ordered pair (4, B) gives rise to a mixed weighted
shift operator M € [l,], 1 <p =< oo, defined by M= [4,B]-TP.

Our next theorems will deal with the fine structure of the spectrum
of a mixed weighted shift operator. Before stating these theorems we
shall prove certain properties of such an operator. In these proofs we
associate with the vector y= {7}, the pair of vectors y;= {9y _1}71
and y,= {1y 3>, Itis clear that y determines the pair y; and y, uniquely,
and conversely. Note also that

$(llyall+llgal) = llgll = llyall +llwall -

With this notation y= M,z if and only if y,=A4,x, and y,=B,2,+ Px,.
Using the identities (2.6) we also observe that y,=B,xz,+ Pz, if and
only if (AB —I)x,= By, and Pz, + APz,= Py,.

One of the properties of a mixed weighted shift operator is that

Po(M) = Po(4) n (Pa(B))*,

where we use the set notation §-'={1-1;1e8}. If we assume that
M,z=0 and x=0 then 4,2,=0, x,=1Bz, and Px,+APx,=0. If 2,=0,
then Px; =0 and therefore z, =0 contradicting the assumption that x = 0.
But z,+ 0 implies 1+ 0 and thus (1B —I)x,=0. Therefore Px,+ 0; which
implies that Px;=+0. Hence 4,x,=0, x;+0 and (AB—1I)x,=0, x,=*0.
On the other hand if A € Po(4)n(Pqs(B))-! we can choose nonzero vectors
z; and z, such that A4,z,=0, (AB—1I)x,=0 and Pz, +APxz,=0. Then
the vector x determined by z, and #, is an eigenvector of M correspond-
ing to the eigenvalue A.

A second property of a mixed weighted shift operator is that M, is
classified I i fand only if the mixed operator [4,,AB —I] has state I.
Let us first assume that M, is classified I. Then M,x=y implies that
A,x,=y, and (AB—I)z,= By,. Since |o(B)| >0, the operator B is classi-
fied I and therefore the mixed operator [4,;,AB —I] is classified I. More-
over, the state of [4,,AB —I] must be I, for if it were I,, then M,z =1e,,
would imply that x;,=24,"'e;=¢; and x,=(AB—1)0=0, which con-
tradicts the requirement that Pz, + APz,=Py,. On the other hand, if
[A;,AB—1I] has the state I,, then for arbitrary elements y, and y, we
can determine z, and z, so that 4,x,=y,, (AB—1I)z,= By, and, since at
least one of the operators A, and AB—1I is classified 3, so that Pz, +
APz,= Py, holds. If z is determined by z, and x,, and y is determined
by y, and y,, then M,z=y and our proof is complete.
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A direct consequence of the first two properties is that M, has the
state I, if and only if [A4,,AB —I] has the state I, and one of the operators
A, and AB—1 is not classified 3.

A third property of a mixed weighted shift operator M is that M, is
classified IIT if [4,,AB—1I] is classified III. This follows directly from
the following inequality

2|\ Mz —y|| 2 ||A;x— 4]l + 1By xy + Py — y
Z |42, —y4ll + ||B|| 7 || B(B, 2y + Pxy) — By,||

= [|dsz1 =9l + Bl (2B — I)2y — Bys,|| .

A fourth property of a mixed weighted shift operator M is that M,
has the state III, if [4,,AB —I] has the state I,. This follows directly
from the above inequality with y=0.

A fifth property of a mixed weighted shift operator M is that M, is
classified II if [4,,AB —1I] has the state II,. Assuming that the state of
[4,,AB—1I]is II,, we see that given any vector y and positive number ¢,
there exist vectors x,, x,, 2, and 2, such that

Az = Y1 +2, [lall < 3 '
(AB—I)xy = Bys+2,, 2]l < 3¢||B||!
and
Pz, + APz, = Py, .

The last two identities give B,x,+ Pz, =y,+ Bz,, and hence
18,2 ~yl| < [ 4s2, =3l +[Bywa+ Pry—y,l| < e

Since M, cannot be classified I it must be classified II.
These several properties of a mixed weighted shift operator imply the
following two theorems,

THEOREM 2.10. Let M €[l,] be the mixed weighted shift operator gen-
erated by the weighted shift operators A and B and let |6(4)||e(B)|> 1.
Then o(M)=o(4)n(o(B))" and I (M)=Inte(M). Moreover, if 1 <p< oo,
then

II(M) = II,(4) u (IIy(B))*,
I, (M) = II4(4) u (II4(B))*,
and, if p= oo, then
III,(M) = III4(A) u (IIIy(B))*
and
III,(M) = III4(4) u (I114(B))1.
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Note that Theorem 2.10 gives the complete fine structure of the spec-
trum of M.

THEOREM 2.11. Let M €[l,] be the mixed weighted shift operator gen-
erated by the weighted shift operators A and B and let |o(4)||o(B)|=1.
Then o(M)=0o(A)N(o(B))™ and Into(M)=40.

If 1 = p<oo and II,(A)N(ILy(B))2 is empty, then o(M) is the set I1,(M)
or the set I13(M), according as II3(A)n(IIg(B))-1 is empty or not.

If p=oo, then o(M) is the set II1,(M) or the set I114(M), according as
III5(A) n(I114(B))-! is empty or not.

For the case o(M)=1I,(4)n(I1,(B))-2, which was omitted in the pre-
ceding theorem, knowledge of the fine structure of o(4) and ¢(B) is not
sufficient to determine the fine structure of ¢(M). In this case the fine
structure also depends on the types of the operators 4 and B.

THEOREM 2.12. Let M € [l,] be the mixed weighted shift operator gen-
erated by the weighted shift operators A and B and let o(M)=1I,(4)n
(IIy(B))~t. Then o(M) is the set III,(M) or the set IL,(M) according as
both A and B are of maximal type or not.

Proor. First assume that both 4 and B are of maximal type, and let
A€ 00(A)=(90(B))~1. Now assume that e, € #(M,). Then there exists a
sequence {z™} such that lim, | M,x™=e,. Since

2||Mx— eyl Z |4, + ”Bsz —e +Pzy| ,

it follows that lim, , A,2,"?=0 and therefore lim,_, Pz, "=0. An-
other use of the inequality shows that lim,_, . B,z,™=e¢,, contradicting
the fact that e, ¢ #(B,). (Cf. proof of Theorem 2.9.)

Next we assume that A4 is of minimal type, that 4 € do(4)=(0a(B))"1,
and that y is an arbitrary element of l,. Then, given &> 0, there exists
a z €l, such that

NAB—I)z—y,|| < 3.

We now determine an x, such that Br,=z—Pz. Since 4 is of minimal
type, there exists an z, € [,, such that

|42, —y4)) < 3¢ and Pxy,+Pz=0.
Thus
Mz —yll < 1A%~ 91l + |Bizs+ Py —y5]
= |42, =91l + (AB ~I)(Bzy — Pzxy) — 3|
= [[A;2 =yl + (AB—-1)z—y,l| < ¢.
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Hence 1 e Il (M) and therefore o(M)=1I,(M). The case when B is of
minimal type follows from the same inequality since in that case do(B)=

I1,(B).

Using the same techniques employed in the proofs of the preceding
theorems one can prove the following theorem.

THEOREM 2.13. Let M € [1,] be the mixed weighted shift operator gen-
erated by the weighted shift operators A and B and let |o(A4)||o(B)| < 1.
Then II1,(M)=0(A)n(o(B)) and o(M)=1I1,(M). Moreover, if 1 <p < oo,
then the set 0o(A) is a subset of II1,(M) or I1y(M) according as A is of
mazximal type or not, and the set (9o(B))~! is a subset of II1,(M) or I1,(M)
according as B is of maximal type or not. If p=co, then d5(A)U(0c(B))1=
111, (M).

3. Spectral decomposition.

In this section we prove the statements made in the Introduction con-
cerning spectral decompositions for compact and bounded operators.

That six of the seven conceivable types of fine structure for compact
operators do occur is an immediate consequence of the following theorems.

TaEOREM 3.1. A weighted shift operator A € [l,] is compact if and only
if lo(4)|=0.

THEOREM 3.2. If A €[l,] is a weighted shift operator and |o(A4)|=0,
then the operators A, A’, [A,A"], AT, [AT,A) and [AT,A’'] are all compact
elements of [l,] with fine structures of types {11}, {I1L,}, {I113}, {II,,111,},
{113, I11;} and {I1I,,I11,}, respectively.

The necessity of the condition in Theorem 3.1 follows from Theorem
2.7 and the fact that the spectrum of a compact operator is at most
countable. To prove the sufficiency of the condition one uses standard
techniques to show that if S is a bounded subset of /,,, then the image of
S under A is conditionally sequentially compact.

That all of the operators considered in Theorem 3.2 are compact is
easily verified. The remaining conclusions of Theorem 3.2 follow from
Theorems 2.5 and 2.7 and the state diagram once we have shown that
the fine structure of A7 is {II,(AT),III4(47")}, which is an immediate
consequence of the facts that

RAT) = B(A), RT)nN(4) = {0}

and e, is an eigenvector of A7 corresponding to the eigenvalue aya,~%.
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We shall now exhibit a compact operator with fine structure of type
{IL,).

Let 4 €[l,], 1 =p < oo, be a compact weighted shift operator generated
by a sequence {a,}y’, such that {a; @, '}°€l,, and let P €e[l,] be
defined by P e, ={a;_ 0,7} and P e, =0 for k>1. Then the operator
A — P, is compact,

RA)NRP,) = {0}, and R(A-P,) > RA).

These facts imply that the operator 4 — P, has the state II,. To see
this assume that Ax=P 2. Then P 2=0 and therefore Px=0. Hence
Ax=0 and Px=0, which implies that x=0. Since the frame of the spec-
trum of any compact operator on an infinite dimensional space contains
the origin, the operator 4 — P, is classified 2. Moreover, since 4 has
the state II;, the range of A — P, is dense in l,,. Thus 4 — P, has the
state II,.

If we now impose the additional condition on the sequence {a,};> that
the entire function

£&) = S agek
E=0

has no zeros, then Pg(4—P,) is empty and o(4—P,)=1I,(4—-P,).
It is easy to see that sequences satisfying these conditions exist. For
example, if 1 <p< oo, the sequence {n!} will do.

We now consider spectral decompositions for bounded operators.

THEOREM 3.3. The only types of fine structure that can never occur for
a bounded linear operator on a complex Banach space are {15}, {II1,} and
{I, 111, }.

Proor. That the types of fine structure given in the theorem are
impossible is a direct consequence of the fact that the frame of the
spectrum of a bounded linear operator on a complex Banach space is
nonvoid (Cor. 2.4.).

To prove that all other conceivable types of fine structure are possible
we shall work with elements of the algebra [l,], where 1 <p<oco. Let 4,,
v=1,2,3, be weighted shift operators with spectral radii 1 and fine
structures of types {I3,1I;}, {I;,II,} and {I5,II,}, respectively. More-
over let A, be of minimal type and A, of maximal type. Then, by
Theorems 2.11 and 2.12, the mixed weighted shift operators M,,»=1,2,3,
generated by the pairs (4,,4,) have circular spectra, centered at the



ON THE FINE STRUCTURE OF SPECTRA 49

origin, of radii 1, and fine structures of types {II;}, {IL,} and {IIL,},
respectively. By Theorem 2.5, the mixed operator M,=[M,, M,] has a
circular spectrum, centered at the origin, of radius 1, and fine structure
of type {IIl;}. TFinally, by Theorem 2.13, the mixed weighted shift
operator My generated by the ordered pair (4,,34,) has an annular
spectrum, centered at the origin, with radii 1 and 2, and a fine structure
of type {III,,IL,}.

Operators with all possible types of fine structure can now be ob-
tained by mixing multiples of the operators 4, and M,, v=1,2,3,4,5.
For example, the mixed operator [A4,,2M,,3M,, M, M;] has a fine
structure of type {I, II,,II;, I1T,, 111, III,;}.
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