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SOME THEOREMS ON DIRECT LIMITS OF
EXPANDING SEQUENCES OF MANIFOLDS

VAGN LUNDSGAARD HANSEN

If X is an infinite dimensional smooth manifold, it is often possible
to find an expanding sequence X, < X,<...<X, <... of smooth closed
submanifolds of X, such that the direct limit X, =lim X, is homotopy
equivalent to X through the natural map X — X. Filtrations like that
have already turned out to be very useful. Mukherjea showed in [17]
that every smooth separable Fredholm manifold with smooth partitions
of unity admitted such filtrations and used them to define a certain
cohomology theory on Fredholm manifolds. In the fundamental theo-
rem [5] on smooth embedding of a smooth separable Hilbert manifold
as an open subset of Hilbert space Eells and Elworthy use also such
filtrations in their proof.

These results are the primary motivation for the author to study ex-
panding systems in this paper. Of course expanding systems have al-
ways played a role in topology. They enter e.g. in the theory of CW-
complexes (skeleta filtrations) and in the construction of classifying
spaces.

We outline now the content of the paper. In section 1 we collect
some well-known results from the theory of function spaces which we
will use without proofs. Section 2 contains the main definitions, expand-
ing systems, and homotopy direct limits of such systems. These defini-
tions are modeled after the situation described in the very beginning of
the introduction. In section 3 we give examples of our definitions.

Sections 4 and 5 contain the main results. In section 4 the topo-
logy of the limit space X for an expanding system X,cX,c...c
X,<... of topological spaces is studied. In theorem 4.5 we show that
a smooth manifold structure on each of the spaces X, will induce a
smooth structure on X provided each space in the system is open in
the next. If each space is closed in the next the situation is more diffi-
cult. Now a smooth structure on each X, is no longer carried on to the
limit. Theorem 4.8 shows however that if each X,, is a finite dimensional
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6 VAGN LUNDSGAARD HANSEN

locally flat topological submanifold of X, ., and the dimension of the
manifolds is say strictly increasing, then X, is a topological manifold
modeled on R*, the real vector space of finitely nonzero real sequences
(%,)nz1 topologized with the finite topology.

Since R® is not metrizable a topological manifold modeled on R* can
never be metrizable. The direct limit of an expanding sequence of mani-
folds is therefore usually not metrizable, expecially not an ANR (abso-
lute neighbourhood retract) for the class of metrizable spaces. This
gain in interest if we compare with corollary 6.4 below. We show here
that the direct limit of an expanding sequence of ANR’s, each closed
in the next, has the homotopy type of an ANR. Up to homotopy type
the non-metrizability of the limits of manifolds will therefore not cause
trouble.

The theorems in section 5 deal with the behaviour of a homotopy
direct limit under mapping space constructions. Let the topological
space X be a homotopy direct limit of the expanding system of topo-
logical spaces X;=X,<...<X,<.... This means that X is homotopy
equivalent to X_ through a homotopy equivalence X —~ X induced
from given continuous maps X, — X. For a fixed compact space M
consider now the covariant functor C°(M,-) which to any topological
space X associates the space C%(M,X) of all continuous maps from M
into X topologized with the compact open topology. It seems then
natural to ask whether the functor C%(M,:) preserves the homotopy
direct limit X in the sense that the induced map

lim C°(M,X,,) > C%(M,X)

is again a homotopy equivalence. We answer this question in the affir-
mative under comparatively mild restrictions on the spaces involved.
If each X, is open in X, ,;, we need e.g. only to know that X, is a 7';-
space for all n. When each X, is closed in X, ,,, we need however all
spaces involved to be ANR’s in order to make the proof go. Finally in
section 5 we give similar theorems for the functors C7(M,-) for all r,
0=<r=<oo, in case M is a compact smooth manifold and the homotopy
direct limits are smooth.

Sections 6, 7 and 8 are devoted to the proofs of the theorems in sec-
tion 5. Section 6 contains however also proofs of some folklore theorems
about ANR’s, for example corollary 6.4.

Finally in section 9 we describe shortly how we can obtain theorems
like those in section 5 for other mapping space functors than just the
classical C7(M, ) for M a compact smooth manifold and 0=7r =< .
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1. Preliminaries.

In some of the main theorems we shall be dealing with spaces of con-
tinuous maps and, if smooth manifolds are involved, also with spaces of
differentiable maps. In this section we list some well-known results
(theorems 1.1 and 1.2) from the theory of such spaces. At the same time
we fix our notation.

Manifolds will always be Hausdorff and modeled on LCTVS’s (locally
convex topological vector spaces). Often a LCTVS will be metrizable
or even a Fréchet space (complete metrizable LCTVS). For a manifold
modeled on a metrizable LCTVS it is equivalent to be metrizable and
paracompact, see e.g. Palais [19, theorem 1]. Smooth manifolds will
always be modeled on Banach spaces. Often a model Banach space F
will be assumed to admit smooth partitions of unity. We say then that
E is C*-smooth. A metrizable (paracompact) smooth manifold modeled
on a C*-smooth Banach space allows smooth partions of unity. There-
fore the usual constructions in differential topology work for such mani-
folds, notably the constructions of sprays and tubular neighbourhoods,
see Lang [14].

We shall use extensively that a metrizable manifold is an ANR (abso-
lute neighbourhood retract), see Palais [19, theorem 5]. We use the
definition of an ANR given in this paper. Especially ANR’s will always
be metrizable, but not necessarily separable.

If M and X are topological spaces, C% M, X) shall denote the space of
continuous maps from M into X equipped with the compact open topo-
logy.

If M and X are smooth manifolds, we let C7(M,X) for each r, 0 <7 £ oo,
denote the space of differentiable maps from M into X of class Cf
equipped with the C7-topology. In this context M will always be com-
pact and may have a boundary.

If X and Y are topological spaces, we call as usual a continuous map
J:X - Y for an embedding if f is a homeomorphism of X onto f(X) con-
sidered with the subspace topology in Y. If furthermore f(X) is open
or closed in Y, then we call f an open, respectively a closed embedding.
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For X and Y smooth manifolds we have of course smooth counterparts
to these notions.

The results we shall use from the theory of spaces of continuous maps
are listed in the following theorem.

THEOREM 1.1. Let M, X and Y be arbitrary topological spaces.

i) If X vs Ty, Hausdorff or regular, then C%(M,X) is Ty, Hausdorff or
regular.

ii) If M s compact metrizable, then C°(M,X) s an ANR if and only if
X ¢s.

iii) If f: X - Y 48 a continuous map, then f,: C/(M,X) - CY(M,Y),
the map tnduced by composition of maps, is continuous.

iv) If f: X - Y s an embedding, then f,: CO(M,X) - CYM,Y) is an
embedding. If f is an open or closed embedding, then f, is an open respec-
tively a closed embedding.

For the proofs of these facts see e.g. Kelley [11, Chapt. 7] and Hu
[9, Chapt. VI, § 2, especially theorem 2.4].

In the differentiable context we need the following results. They can
be proved using the general construction principle for manifold struc-
tures on spaces of maps formulated by Eells [3, § 6]. This construction
works, since, as already remarked, we will have sprays and associated
tubular neighbourhoods under the assumptions listed in the theorem.
See also Eliasson [6] and Krikorian [12].

THEOREM 1.2. Let M be a smooth compact manifold, and let X and Y
be smooth metrizable manifolds modeled on C*-smooth Banach spaces.

i) For 0=r<oo, C"(M,X) can be given the structure of a smooth metriz-
able manifold.

ii) C®(M,X) can be given the structure of a metrizable manifold modeled
on Fréchet spaces.

iii) C"(M,X) is an ANR for all 0<r =< oo (consequence of i) and ii)).

iv) 4 smooth map f: X - Y induces a smooth map fy: C"(M,X) —
C"(M,Y) for 0=r<oco by composition of maps. For r=oo, the map f, 8
continuous.

v) If f: X —» Y is a smooth embedding, then fy: C"(M,X) > C7(M,Y) is
a smooth embedding for 0 Zr < oo (continuous for r=o0). If f is an open
or closed embedding, then f, is an open respectively a closed embedding.

2. Expanding systems and homotopy direct limits.

This section contains the definitions of the main objects for our in-
vestigations. The reader will find a strong resemblance with the defini-
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tions given in the appendix in Milnor [15]. Our definition of a homotopy
direct limit is however slightly more general.

DEeFINITION 2.1. An expanding system of topological spaces (X,f,ny) =
{ X fn.n+1}nzn, 18 & system of topological spaces X, and embeddings
Jn.n+1: Xp = X, 4y indexed over the integers n = n,.

If all the embeddings f, ,., are open, then we call (X,f,n,) an open
expanding system. Similarly, if all £, ,.., are closed embeddings, then we
call (X,f,n,) a closed expanding system.

If all the topological spaces X, are smooth manifolds, and all the
embeddings f, ,,, are smooth embeddings, then we call (X,f,n,) a
smooth expanding system.

Remark 2.2. If (X,f,n,) is a smooth open expanding system, then we
can obviously assume that all the manifolds X,, are modeled on the same
Banach space E without loss of generality. We will always make this
assumption in the following.

The terms in definition 1.1 will occur so often in this paper, that we
will abbreviate expanding system, open expanding system and closed
expanding system to ES, OES and CES respectively.

If (X,f,n,) is an arbitrary ES, then we define its limst space X, as the
direct limit of the system {X,,f, ni1}nzngs 50

X, = li_I})ln{men,nﬂ}ngno :

As usual the direct limit X is the identification space obtained from
the disjoint union Vi°_, X, of the spaces X,, by identifying z, € X,, with
Ffrn+1(®n) € Xpyy. If f, o1 X, > X, denotes the composition of the in-
clusion of X, into V;._, X, followed by the projection of this space
onto X, then the topology on X can be described as the largest (finest)
topology making all the maps f, ., continuous.

The whole system is shown in the following diagram:

i
X Jn, 00

n
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We remark that a subset of X_ is open or closed in the direct limit
topology on X if and only if all the preimages of the set in the spaces
X, are open respectively closed.

For n<m we put for convenience f, ,,=fn-1,m° - .- °fn, n+1. Let also
fa.n be the identity map on X,,. :

We note the following lemma:

LemMma 2.3. Let (X,f,n,) be an ES.

i) The map f, : X, - X, 18 an embedding for all n = n,.

ii) If (X,f,n,) ts an OES or a CES, then all the maps f, . are open
respectively closed embeddings.

Proor. The map f, , is clearly continuous and injective. Therefore it
will be sufficient to prove that f, ., is also an open map onto its image
in order to finish the proof of i). For this purpose let U, be an open set

in X,,. Since f, ,,; is an embedding, there exists an open set U, in
X+, such that

fn,n+1( Un) = fn.n+1(Xn) n Un+1 .

Go on and choose sets {U,,};>; such that U, is open in X, ,, and

fn+k,n+k+1( Unir) = fn+k,n+k+1(Xn+k) NUpsgq for all £20.

Now U oo=U3 fnik, 00l Un+x) Will be open in X, and clearly

fn,oo(Un) = fn,oo(Xn) n Uoo .

This shows that f, ,(U,) is open in f, ,(X,). As remarked this finishes
the proof of i).
ii) is even easier and is left to the reader.

The n, in the definition of an ES (X,f,n,) is of course not important.
What matters is the limit space X, and it is clear that if we take the
same spaces X, and embeddings f, ,., but only from my=n, and up-
wards, then (X,f,m,) gives the same limit space as (X,f,n,).

We shall often use the following straightforward but important lemma :

LemwMa 2.4. Let (X,f,n,) be an ES of T,-spaces, and let g: M -~ X, be
a continuous map such that g(M) s a compact subset of X, .

Then there exists an n=n, and a continuous map g,: M — X, such that
the following diagram commutes:
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gn
_.___,Xn

M Jn, 00

X,

g (=]

ProoF. Observe that X =U_, f, (X,). Assume that g(M) is not
contained in any of the subspaces f, (X,) of X,. We can then find an

infinite subspace 8={z, }i, of X, such that
Tpp € (Koo \ frg00(Xnp)) Ng(M)  for all 1Sk =<oo.

Since an arbitrary subset of § by construction has at most a finite
number of points in common with any f, (X)), it is a closed subspace.
It is here we need that the spaces X, are T';-spaces. S is therefore a
closed discrete subspace of g(M). But since g(M) is compact, it cannot
contain any infinite closed discrete subspace.

This shows that there exists an n such that g(M)<f, (X,). Since
Sn, 18 an embedding of X, into X, by lemma 2.3, there exists therefore
a unique continuous map g,: M — X, such that g=f, ,og,.

Finally in this section we give the definition of a homotopy direct
limit.

DEerFInITION 2.5 (continuous case). Let (X,f,n,) be an ES of topo-
logical spaces, let X be a topological space and let (g,7y) = {gn}nzn, b€
a system of continuous maps g,,: X, - X.

Then X is called a homotopy direct limit of (X,f,n,) with respect to
(g ’no)’ if:

i) The following diagram commutes:

i
X gn

fn, a1 X

X'n+1

In+1
b
ii) The induced continuous map g.: X, - X is a homotopy equiv-
alence.
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DEeFINITION 2.5 (smooth case). If (X,f,n,) is a smooth ES, X is a
smooth manifold and (g,7¢)=1{gs}nzn, i8 & system of smooth maps
gn: X, > X, then we call X a smooth homotopy direct limit of (X,f,n,)
with respect to (g,n,) provided the conditions i) and ii) above are still
satisfied.

In the following we will abbreviate homotpy direct limit to HDL.
Examples of expanding systems and homotopy direct limits are given
in the next section.

3. Some examples.

The examples in this section are aimed to show that there are many
sources for interesting expanding systems and homotopy direct limits
of such systems.

ExampLE 3.1. Let X be a topological space with the homotopy type
of a CW-complex K, and let g: K — X be a homotopy equivalence.

If we now take K, to be the n-skeleton of K and f, ,.,: K, > K, ;
to be the obvious inclusion, then we get a CES (K,f,0). By definition
of the topology on K we get at once that K_=K.

Now let g,: K, > X be the composition of the inclusion K, <K fol-
lowed by g. Then X is a HDL of (K,f,0) with respect to the system of
continuous maps (g,0), since of course g, =g.

ExampLE 3.2. Let K be a separable Hilbert space with basis (e;);5;.
For each n put E,=spanf{e,,...,e,}.
If G,(-) denotes the Grassmann manifold of k-planes in a linear space,
then for all » >k we have natural inclusions
fn,n+1: Gk(En) - Gk(En+1) a‘nd gn: Gk(En) - Gk(E)

G.(E) is a classifying space for k-dimensional real vector bundles. In
the usual notation Gy (&)= BO(k). It is well known that BO(k) is a HDL
of the CES

(X.1,k) = {Gr(Br)ofn, neatnzk
with respect to the system of continuous maps (g,k). That is, the limit
map 9o lim Gy(E,) - BO(k)
is a homotopy equivalence.

ExampLE 3.3. Let £ be a LCTVS, and let B,<cB,<...cE,<...
be an increasing sequence of finite dimensional linear subspaces whose
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union UL, E, is dense in E. If X is a subset of E, put X, =XnE,.
Let also
fn,n+1: Xn - -Xn+1 and In: Xn - X

be the obvious inclusions. Assume now, that X is an open subset of E.
Then a theorem of Palais [19, corollary to theorem 17] can be restated as
follows:

If E is metrizable or, more generally, if X is paracompact, then X is a
HDL of the CES (X,f,1) with respect to the system of continuous maps
(g,1).

ExampLE 3.4. See Eells [4, § 8] for details in this important example.

Let X be a smooth, separable Fredholm manifold modeled on a C*-
smooth Banach space E.

Observe that, by a theorem of Elworthy [7], every smooth separable
Hilbert manifold can be given a Fredholm structure. Elworthy’s theorem
is actually more general than that.

A theorem of Mukherjea [17] can now be stated as follows:

There exists a smooth CES (X,f,1) such that each X, is a compact sub-
manifold of X of dimension n, say with inclusion g,: X, > X, and each
Sn,n+1 18 an tnclusion of X, as a submanifold of X, ;.

Furthermore, this system can be chosen such that UY_ X, is dense in X,
and such that X i¢s a smooth HDL of (X,f,1) with respect to the system of
smooth embeddings (g,1).

This finishes example 3.4.

The examples 3.1-3.4 dealt only with CES’s. These systems will how-
ever probably also be the most interesting, since it is in connection with
example 3.4 the theorems we will prove are most naturally asked for.
From a mathematical point of view CES’s are also much more difficult
to handle than OES’s.

Finally we give now an example of an OES. There are of course much
simpler examples than the one, we give here. Take e.g. an increasing
family of open balls in euclidean space.

ExampLE 3.5. Let E be an infinite dimensional Banach space, and let
L(E) denote the Banach space of continuous linear operators on E.
Consider then for each n =0 the subset L(#;n) of L(E) consisting of
those operators for which the cokernel has dimension <. This is then
an open subset of L(%), and L(Z; 0) is just the space of all surjective
operators on E. Obviously we have now an OES

LE;0) < L(E;1) < ... <« LB;n) = ....
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The limit space of this OES is precisely the open subset of L(%) ¢onsist-
ing of the operators with finite dimensional cokernel, the right Fred-
holm operators on E.

4. Topology of the limit space for an expanding system.

This section will mainly deal with the question, whether the limit
space for an ES of manifolds can be given the structure of a manifold.
The main results are theorem 4.5 and theorem 4.8. Only theorem 4.5
is needed in later sections.

The topology on the limit space X for an ES (X,f,n,) is a quotient
topology, a fact, which keeps one from expecting too much of it. For a
general ES we have however the following result. Recall that a topo-
logical space is a Lindelof space if every open covering of it contains a
countable sub-covering.

ProrosrTiON 4.1. Let (X,f,n,) be an ES of topological spaces.
(i) If all the spaces X, are Ty-spaces, then X, s a T'-space.
(ii) If all the spaces X, are locally compact Hausdorff spaces, then X,
18 a Hausdorff space.
(iii) If all the spaces X, are Lindeldf spaces, then X, is a Lindeldf space.

Proor. We leave the proofs of (i) and (iii) to the reader and concen-
trate on the proof of (ii).

By lemma 2.3 we can identify the spaces X, with the subspaces
Sn,00(Xyn) of X,. We can therefore assume that all the maps f, ,.,, are
inclusion maps.

Let now z,y € X, with z +y be given. We have to find disjoint open
neighbourhoods of these points in X,. Pick n, 2 n, such that z,y € X,
Since X, is locally compact and Hausdorff, we can find, in X, , open
nelghbourhoods U, and V, of x and y respectively such that the
closures U and V ,in X, are compact and disjoint. Since U, , and
V. , are also compact and dls]omt subsets of the Hausdorff space an .
they can be separated by open sets in X,, ,,. Using the local compactness
of X, ., it is then easy to find open sets U, ,, and V, ., in X, +1 which
extend U, and V, and have disjoint compact closures U, ., and
Vay+1. This indicates how we can construct expanding sequences
{Unlnzn, 80d {V,}n2p,, Where U, and V,, are disjoint open neighbour-
hoods of # and y in X,, for each n2n;. Then U,=Us,, U, and V,,
U,,z,,1 V, will be the wanted disjoint open neighbourhoods of z and Y
in X,
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We are particularly interested in the Lindelof property, since it is
known that a regular Lindel6f space is paracompact. For a connected,
locally compact space the converse statement is also true. See Kelley
[11]. We remark that compact and paracompact include the Hausdorff
axiom in this paper.

For an OES we can strengthen proposition 4.1 (ii) as follows. The
proof is trivial.

ProrosiTiON 4.2. If (X,f,n,) ¢s an OES of Hausdorff spaces, then X
18 a Hausdorff space.

In general the Hausdorff property is not carried on to the limit in a
CES. We have however this result:

ProposrrioN 4.3. Let (X,f,n,) be a CES of topological spaces.

(1) If all the spaces X, are normal, then X, 1s normal.

(ii) If all the spaces X, are regular Lindeldf spaces, then X, 18 a regular
Lindelof space.

Proor. Assume for a moment that (i) is proved. Then (ii) follows
in this way. Each X, is a regular Lindel6f space, hence paracompact
and therefore normal. By (i), X, is therefore also normal, in particular
regular. That X is Lindelof, follows by proposition 4.1.

We turn then to the proof of (i). By proposition 4.1 we get imme-
diately that X is a 7';-space. It will therefore be sufficient to show
that Urysohn’s lemma holds in X_,. For that purpose, let 4 and B be
closed, non-empty, disjoint subsets of X_. We have to find a continu-
ous function A: X_, — [0,1] such that 2|A=0 and A|B=1. To do this
we proceed as follows:

Choose a sufficiently high n, > n, such that both f,! . (4) and f,! .(B)
are non-empty. Using the normality of X, , we can now find a continu-
ous function A, : X, — [0,1] such that

nll ni, oo(A) 0 and hnl lfnl,oo(B) =
Consider then the closed subset
f'nl, ny+1 an) Ufn1+l oo(A) Uf ni+l, oo

of X, ;. Using Tietze’s extension theorem, it follows now immediately
that there exists a continuous function A, ,,: X, ;- [0,1] such that

hnl = hn1+1 ofnl, ny+1» hn1+1 |f1711+1, OO(A) = 0’ 7L1+1 {f ni+1, OO(B =1.

This indicates how we can construct a family {A,},-,, of continuous
functions 4, : X, — [0,1] such that

1l
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hn = hn+1°fn,'n+1’ hn[f;,loo(A) = 0: hn |f;,oo(B) =1.

But then we get an induced continuous map h=h_: X — [0,1], which
by construction will satisfy the conditions |4 =0 and A|B=1.
As already noted this finishes the proof.

Theorem 4.8 below will produce lots of examples of CES’s where all
the spaces in the systems are metrizable manifolds but the limit spaces
are not metrizable (see remark 4.10). We will now give an example of
an OES of smooth metrizable manifolds, where the limit space is a
smooth manifold which is Hausdorff but not regular. The statements
in the propositions 4.1-4.3 seem therefore to be about the best one can
hope for in general.

ExamrLE 4.4. We follow closely an example given by Palais [20].

Let Z be a separable Hilbert space of infinite dimension with inner
product (-,-), and let e, € £ be a unit vector in E. Let E+ denote the
closed half-space {e € E | (e,¢,) 2 0}, E+° its interior, and 0E+ its bound-
ary. Let S={s,},5;, be a countable dense subset of 0E+, and put X, =
E+°u{s,,...,s,} for each n>1. Give X, the induced topology from E
and let f, ,,,: X, - X,,; be the obvious inclusion. It follows easily
that (X,f,1) is an OES and that the limit space X_, is Hausdorff. X_
is however not regular. To see this, observe that E+°u{s} is an open
subset of X for each se€ 8, and that every open neighbourhood of
s e X, in X will have other points from 8§ in its closure since § is dense
in 0E+.

AsserTION. Each X, is a metrizable smooth manifold modeled on E,
and X, is a smooth manifold modeled on E, which is Hausdorff but not
regular.

Proor. The manifold X,, is a subspace of the metrizable space £ and
is therefore itself metrizable. The purely topological statements in the
assertion are therefore now all proved.

To show that X, and X are smooth manifolds, it will suffice to define
a homeomorphism 6,: E+°uU{0} - E which restricts to a smooth diffeo-
morphism of E+° onto E\ {0}. For then we can define smooth atlasses

{Bs}se( 81y0e0y 8p} a'nd {0 a}seS

on X, and X_ respectively, where 0,: E+°u{s} > E is defined by
0(x) = 0y(x —s). To define O, we recall that, by a theorem of Bessaga [1],
E is diffeomorphic to its own unit sphere X={ec £ | |le|=1}. Now
0E+ is linearly diffeomorphic to £ and hence diffeomorphic to 2. On
the other hand 9E+ is also diffeomorphic to D={vedE* ||v|| <1},
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which by stereographic projection from —e, is mapped diffeomorphically
onto XnE+°. Altogether there exists therefore a diffeomorphism
g: 2nE+° - 2. Now define

0,: E+°u {0} - E
by
Oo(@) = llzll g(x/llell) ~ for =40

and 64(0)=0. Then 0, is a bijection with inverse given by
0o7(@) = llll g7 (x/ll=l)  for x+0

and 0,71(0)=0. Clearly 6, and 0,! are continuous, and since z — ||z||
is a smooth map of '\ {0} into the reals, it follows, that 6, maps E+°
diffeomorphically onto  \ {0}.

This finishes the proof of the assertion and ends the example.

We start now our investigation of the limit space for an ES of mani-
folds.

For an OES one could have hoped for nothing better than

THEOREM 4.5. Let (X,f,n,) be a smooth OES with the Banach space E
as the model for all the manifolds X,,.

Then X, has a unique structure as a smooth manifold modeled on E,
such that all the maps f, : X, - X, are smooth open embeddings.

Furthermore, if the smooth manifold X is a smooth HDL of (X,f,n,)

with respect to the system of smooth maps (g,n,), then the induced map
Joo: X, ~> X 18 smooth.

Proor. We use again that X, =Uy_, f, o(X,). Since f, ., is a homeo-
morphism of X, onto f, ,(X,), there is a unique smooth structure on
fn,o(X,) making f, . a smooth diffeomorphism. Consider now f, ..(X,)
with this smooth structure for all n>n,. Observe then that f, (X,)
is a smooth open submanifold of f, ., (X,;) for each nx=n, since
fn, n+1 18 & smooth open embedding. When we now use that the subsets
fn.o(X,) are open subsets of X, it follows immediately, that there
exists a unique smooth structure on X_, which induces the above smooth
structures on the subspaces f, . (X,). This proves clearly existence and
uniqueness of the wanted smooth structure on X,

The second part of the theorem is obvious, since g,  f,, ., = ¢, is smooth
for all n=mn,.

Results like theorem 4.5 for a CES of smooth manifolds are much
more delicate and far more than one can hope for. The main reason is
that the direct limit of topological vector spaces (TVS) is not always a

Math, Scand. — 2
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TVS. Before we state our result for a CES of manifolds, we investigate
therefore this problem a little.

Let B, <K, ,<...<E,=... be an increasing sequence of Fréchet
spaces K, such that E, is a subspace of E, ; in the sense of TVS’s for
aln=n,. Put E_ = U‘,’,°=,,0E’,,. Then Z_ has a natural real vector space
structure, and it is known that it can be given the structure of a Haus-
dorff LCTVS by taking as neighbourhoods of 0 convex sets which inter-
sect each E, in an open neighbourhood of 0 € £,. With this LCTVS
structure F is a socalled LF-space. See e.g. Treves [25] for the result
just mentioned. The topology in this locally convex structure on E,
is usually different from the direct limit topology (the weak topology)
with respect to the topological spaces Z,,. We have however this result:

Lemma 4.6. Let B, <K, .,<...cHE,<... be an increasing sequence
of finite dimensional vector spaces with their canonical Hausdorff TVS
structures. The inclusions are inclusions as linear subspaces.

Then the locally convex topology and the direct limit topology on E =
Us. o B with respect to the subspaces E,, coincide.

In particular, E,, will therefore be a LCTVS in the direct limit topology
with respect to the subspaces E,, .

Proo¥. The locally convex topology is always smaller than the direct
limit topology, so it is in the proof of the converse statement we need the
vector spaces E, to be finite dimensional. To prove that an open set
in the direct limit topology is also open in the locally convex topology,
it will be sufficient to prove the following. If U< X is an arbitrary
subset of £, such that Unk, is open in E, for each n=n,, and x € U,
then there exists a convex neighbourhood K of z in £ such that KnZ,
is open in K, for each n=n, and x € K< U. On the other hand this
statement is easily proved using the local compactness of the finite
dimensional vector spaces E,. One merely starts in the space X,
with the lowest index n2=n, such that x € ¥,, and then builds a K
with the wanted properties step by step.

If F is an arbitrary vector space, the finite topology on E is the direct
limit topology on E with respect to the directed set of finite dimen-
sional subspaces of E considered with their unique Hausdorff TVS topo-
logies. A subset U< E is therefore open (closed) in the finite topology
if and only if UnF is open (closed) in F for every finite dimensional
subspace F of E. When the subspaces £, of E are finite dimensional
as in lemma 4.6, it is obvious, that the finite topology on Z, coincides
with the direct limit topology with respect to the subspaces &, and thus
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also with the locally convex topology. Under the assumptions in lemma
4.6, E_, will therefore be a LCTVS in the finite topology. In general it is
known that a vector space £ is a TVS in its finite topology if and only
if £ is at most countable dimensional. See Palais [19] and the reference
there to a paper by Kakutani and Klee [10]. There is however a slight
mistake in Palais’s argument for his lemma 6.10. (The convex neigh-
bourhood N(z° {¢;}) is not necessarily contained in U.) This rather
trivial mistake is corrected by our lemma 4.6.

We have a canonical countable dimensional LCTVS in its finite
topology, denoted R*. It is the vector space of real sequences (x,),>,
such that z, +0 for at most a finite number of indexes.

If £ is an arbitrary countable dimensional TVS in its finite topology,
then it is isomorphic to R* as topological vector spaces, since it is ob-
viously isomorphic to R* as vector spaces, and the topologies cause no
trouble in this case, because we have the finite topology on both spaces.

The following lemma is now easily proved.

Lemma 4.7, Let B, <E, ,,<...<H,<... be an increasing sequence
of finite dimensional vector spaces with their canonical Hausdorff TVS
structures. The inclusions are inclusions as linear subspaces. Assume
also that the dimension of the spaces E, is unbounded.

Then E,=Uy_, E, is a LCTVS in the direct limit topology with respect
to the subspaces E,. Furthermore E, is tsomorphic to R* as topological
vector spaces.

The result we have for a CES of manifolds is strongest when formulated
entirely in the topological context. We recall therefore a few definitions.
Let E be a TVS and let F and G be closed linear subspaces of £ which
split £ into Z=F x @. A subset X of a topological manifold ¥ modeled
on ¥ is then called a topological submanifold of ¥ modeled on F if for
each x € X there exists a coordinate chart (U,0) on Y centered at x
(6(x)=0) such that 6(U)=E and 6(UnX)=F. If X and Y are topo-
logical manifolds modeled on the TVS’s F and E respectively, then an
embedding f: X — Y is called a locally flat embedding if f(X) is a topo-
logical submanifold of ¥ modeled on F. Observe that a smooth em-
bedding is always locally flat in finite dimensions.

We can now state and prove

THEOREM 4.8. Let (X,f,n,) be a CES of finite dimensional topological
manifolds X, , where all the maps f, ,., are locally flat embeddings. As-
sume also that the dimension of the manifolds X,, is unbounded.

Then X, is a topological manifold modeled on R*.
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Proor. Let E, be a finite dimensional model for X,. We can assume
that E, is a linear subspace of E, ,, for each n 2> n, such that we have an
increasing sequence

E,<E,,<..<E,<...

as in lemma 4.7. By this lemma we know already that B, =Uy_, E,
with the direct limit topology with respect to the subspaces E, is iso-
morphic to R® as topological vector spaces. Since we know from propo-
sition 4.1 (ii) that X, is Hausdorff, it will therefore be sufficient to prove
the following assertion in order to finish the proof of the theorem.

Assertion. Each point of X has an open neighbourhood homeo-
morphic to an open subset of Z_,.

In order to prove this assertion we proceed as follows: By lemma 2.3
we can identify the spaces X, with closed subspaces of X,. We can
therefore assume that the CES is an expanding sequence

X

no © Xngt1 © .. € X, < ... X

with X ,=U_, X, and each space closed in the next. Since the maps
Sn,n+1 are locally flat embeddings, X, is a topological submanifold of
X, 4+, for each n2n,. Now let 2 € X, be an arbitrary point in X_,, and
let n(x) be the smallest index n =n, such that x € X,,. Choose a co-
ordinate chart (U, Opm) On X, centred at x such that 0,,(U, )=
E,,,. Using a result of Lacher [13, theorem 2.2] one proves easily that
there exists a coordinate chart (U,y.1, Oney1) O0 Xpye1 centered at

such that

0r11(Un@+1) = Fawr Un = Xaw N Unsy Onw = On+1| Uney -

It is obvious that we can continue this extension procedure ending up

with charts (U,,0,) on X, centered at z for all n > n(x) such that 6,(U,) =

E, and such that (U,,,,0,,,) restricts to (U,,0,). Put then U, =
% ayUpn and define 6: U — E_ by

n=n(x)
0|U, =0, forall n2n(x).

By definition of the topologies on X, and E, it follows now imme-
diately that 0: U, — E, is a homeomorphism from the open neigh-
bourhood U, of x € X onto E .

This proves the assertion and therefore the theorem.

ExampLE 4.9. Let as usual S* and RP" denote the n-sphere and the
n-dimensional real projective space respectively.

We have the following closed expanding systems using the standard
inclusions
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Slefc...cl8rc. ..
RP' <« RP*<c ... < RPr < ....
Consider the limit spaces
8% =lim S8 and RP® = lim RP".

By theorem 4.8 both S8 and RP* are topological manifolds modeled
on R*®,

This statement is of course also valid for the limit spaces in examples
3.2, 3.3 and 3.4.

. REMARK 4.10. A topological manifold modeled on R® can never be
metrizable since R* itself is not metrizable.

. The manifolds X modeled on R* obtained from theorem 4.8 are
therefore never metrizable but nearly always paracompact by proposi-
tion 4.3. Remember that a regular Lindelof space is paracompact, and
that these conditions actually are equivalent for locally compact, con-
nected spaces.

REMARK 4.11. In a recent paper Henderson and West [8] have ob-
tained a theorem like our theorem 4.8. They work however with metriz-
able topologies in the following sense:

Let X,=X,=...<X,<... be a sequence of metric spaces such that
all inclusions are isometries. In our terminology a metric expanding
system. Let XX2° denote the direct limit of this sequence in the cate-
gory of metric spaces and isometries. X2 jg then just the union
U X, with the unique metric topology such that all inclusions
X, cXmetrle are isometries. Call XT°r® the metric direct limit of the
sequence. Let X7 denote the usual direct limit of the sequence. The
identity map (as sets) X7k . Xmetric jg clearly continuous. When deal-
ing with manifolds it is usually a homotopy equivalence. '

If 1,/(X,) denotes the metrizable LCTVS of finitely non-zero real se-
quences (z,),-; With its standard pre-Hilbert structure, then the result
of Henderson and West can be formulated as follows:

If MicM?c...cMrc... ts a sequence of metrizable manifolds
(dim M™=mn) without boundary, each bicollared in the next, then the mans-
folds may be metrized, so that it ts a metric expanding system whose metric
direct limit is an 1/ (R,)-manifold of the same homotopy type as the usual
direct limst.

As Henderson and West remark, it is not all choices of metrics making
the sequence a metric expanding system which give the metric direct
limit the structure of an I,/(X,)-manifold.
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This theorem together with example 4.9 shows e.g. that 8 and RP®
are topological manifolds in both their direct limit topologies and their
metric direct limit topologies inherited from the defining (metric) se-
quences.

5. Induced expanding systems and induced homotopy direct limits

of spaces of maps.

In this section we state our results concerning the behaviour of the
covariant functors C%(M,-) and C"(M,-) when they are applied to ex-
panding systems and homotopy direct limits. The proofs of the theorems
stated will be given in sections 7 and 8.

Let (X,f,7n,) be an ES of topological spaces, and let M/ be an arbitrary
topological space. Then we get an induced system

> O%M,X,) YD ooy X, ) > ...

starting at n=mn,. Let us denote this system by (C°(M,X),f,,n,) and
call it the induced system.
From theorem 1.1 we get immediately

LemMA 5.1. An induced system of an ES is itself an ES. If (X,f,n,)
18 an OES or a CES, then (CO(M,X),fx,n,) 48 an OES or a CES.

Similarly, if (X,f,n,) is a smooth ES, and M is an arbitrary smooth
compact manifold, we get for each 0 <r <o an induced system

> C"(M,X,) s on M X, ) > .

starting at n=mn,. We denote this system by (C"(M,X),fx,n,) and call
it again the snduced system.
Using theorem 1.2 we get

Levmma 5.2. Let (X,f,n,) be a smooth ES, and let M be a smooth com-
pact manifold.

Then for all 0<r= oo the induced system (CT(M,X),fy,n,) ts an ES,
smooth for 0 <r < oo,

If (X,f,n,) is @ smooth OES or CES, then (C7(M,X),f,,n,) t8 an OES
or a CES, again smooth for 0 <r < .

Assume now, that X is a HDL of the ES (X,f,n,) with respect to the
system of continuous maps (g,n,).
For an arbitrary topological space M we get then an induced diagram
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¢0 Gn)e
U, nte CYM,X),, 2= (M, X)
1
OO, X, ) L2222
J, (Gn+De

In this diagram C%(M,X), is the limit space of the induced system
(C%M,X),fx,M9), [, o is the inclusion of CO(M,X,) into the limit space
and gy, is the limit map for the induced system of continuous maps
(g*ano) = {(gn)*}n?__no‘

Dealing with smooth HDL we get of course similar diagrams for all
0=7r=oo.

The main theorems in the continuous context can now be formulated.
We have a theorem for each of the cases OES and CES. For a CES the
theorem is not so general, but general enough to cover many interesting
examples.

THEOREM 5.3. Let (X,f,n,) be an OES of T,-spaces and let M be a
compact space. Furthermore, let X be a HDL of (X,f,n,) with respect to
the system (g,m,) of continuous maps.

Then CYM,X) is a HDL of the induced OES (CYM,X),fy,n,) with
respect to the induced sysiem (gy,n,) of continuous maps.

THEOREM 5.4. Let (X,f,n,) be a CES of ANR’s, and let M be compact
metrizable. Furthermore, let X be an ANR which 18 a HDL of (X,f,n,)
with respect to the system (g,mn,) of continuous maps.

Then CO(M,X) is a HDL of the induced CES (C(M,X),fs,n,) with
respect to the induced system (gy,ng) of continuous maps.

In the differentiable context we have analogous results. There is
nearly no difference between OES and CES in this case.

TaEOREM 5.5. Let (X,f,n,) be a smooth OES or CES, and let X be a
smooth manifold which is a smooth HDL of (X,f,n,) with respect to the
system (g,n,) of smooth maps. Assume furthermore, that all the manifolds
are metrizable and modeled on C*®-smooth Banach spaces. For an OES
assume also that X, is metrizable.

Then for every smooth compact manifold M and all 0 <r < o, C7(M,X)
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is a HDL of the induced OES respectively CES (C7(M,X),fy,n,) with
respect to the induced system (g,,m,) of continuous maps.
For 0=r< oo the induced HDL s actually smooth.

Remark 5.6. Example 4.4 shows that the metrizability of X, for the
smooth OES (X,f,n,) is not a consequence of the metrizability of the
manifolds X, .

6. Homotopy theory of closed expanding systems.

The material in this section is probably well known. In the literature
there seems, however, not to be a completely adequate treatment along
the lines we need. This is the excuse for the details we give here.

DerivtTION 6.1. Let (X, f,7,) and (Y,g,n,) be expanding systems of
topological spaces. A map between expanding systems h: (X,f,ny) -
(Y,g,n,) is a system of continuous maps k,: X, — Y, making the fol-
lowing diagram commutative

Cs X, T L ox
hn hnt1
} ¢
> Y, Yoy oe

gn,n+1

When composition of maps is defined in the obvious way, it is clear
that we get a category consisting of ES’s starting at n=mn, as objects and
the maps in definition 6.1 as morphisms.

Call a map h: (X,f,ny) - (¥,g,n,) for a homotopy equivalence between
ES’s if each &, is a homotopy equivalence in the usual sense.

A map h: (X,f,ny) > (¥,g,n,) induces in the usual way a continuous
limit map hy: X - Y.

Theorems 6.2 and 6.3 below are the main theorems in this section.
The author owes the basic idea in their proofs to lectures by Tammo
tom Dieck (Aarhus, fall 1968). See also the Springer lecture notes
by Puppe et al. [24]. If one takes into account lemma 6.7 below, then
the theorems will also be immediate consequences of the corresponding
theorems in the appendix in Milnor [15]. We give however nearly all
details here.

THEOREM 6.2. Let (X,f,n,) and (¥,g,n,) be CES’s of topological spaces,
such that all the maps fy ;.1 and g, n41 are cofibrations.
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Then a homotopy equivalence h: (X,f,n,) - (¥,g,n,) between ES’s in-
duces an ordinary homotopy equivalence h: X —~ Y.

THEOREM 6.3. Let (X,f,n,) be a CES of topological spaces, such that all
the maps f, n+1 are cofibrations.
Then, if each X, has the homotopy type of a CW-complex, X, has too.

Before entering in the proofs of these theorems we mention a corollary,
which we shall use in the proofs of the theorems in section 5.

CoroLLARY 6.4. Let (X,f,n,) be a CES of ANR’s. Then X, has the
homotopy type of an ANR.

Notice, that homotopy type is the most we can hope for by remark
4.10.

Corollary 6.4 is an easy consequence of theorem 6.3 and lemmas 6.5
and 6.6 below. Lemma 6.6 has some interest in itself. As pointed out
to me by J. Eells, separability of ANR’s is not needed in the statement
of this lemma.

Lemma 6.5. Let A and X be ANR’s, and let f: A - X be a closed em-
bedding.
Then f is a cofibration.

Proor. See e.g. Palais [19, theorem 7].

Lemma 6.6. It is equivalent for a topological space to have the homotopy
type of an ANR and of a CW-complex.

Proor. Assume first, that X is an ANR. Then by an extension of
Hanner’s result in the separable case Palais proves [19, theorem 14] that
X is dominated by a simplicial complex. Then by a theorem of Milnor
[16, theorem 2] X has the homotopy type of a CW-complex.

Next assume, that X is a CW-complex. Then by the above mentioned
theorem of Milnor, X has the homotopy type of a simplicial complex
with the metric topology. But a simplicial complex with the metric
topology is an ANR, see Hu [9, theorem 11.3, p. 106].

We begin now the proof of theorems 6.2 and 6.3. For that purpose
we introduce the tferated mapping cylinder (or telescope) of an ES
(X,f,n,), denote it by Z(X,f,n,), and define it as the quotient space of
the disjoint union V;_, (X, x [#,n+ 1]) modulo the relations (z,,n+1) ~
(fa,n+1(,),m+1) for all z, € X,, and all n2mn,.
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Z(X:f:no)3

[ X’no+3
Xﬂo+2

» » L] >
g ng+1 ne+2 ng+3 ny+4

fig. 6.1

The projections X, x [n,n+1] - X, induce a canonical projection
p(X>f>n0): Z(X’f1n0) - Xoo

LemwMa 6.7. Let (X,f,ny) be a CES of topological spaces such that all the
maps fp, n.1 are cofibrations.
Then the canonical projection p(X,f,n,) 1s a homotopy equivalence.

Proor. By lemma 2.3 we may assume that all the maps f, ,,; are
inclusions and that all the spaces X, are closed subspaces of X . We
have then the tower

Xpg © Xppr1 € ... X, <. =X,

The telescope Z(X,f,m,) can now be identified with a subspace of
X, % [ng,o0[, and the canonical projection p(X,f,n,) is just the compo-
site map

Z(X,f,ny) © X x[ng,00] 5 X,

00 *

Since the projection is trivially a homotopy equivalence, it will be suf-
ficient to prove, that Z(X,f,n,) is a strong deformation retract of
X, % [ng,0[. To prove this we use a theorem of Puppe [23, Satz 4,
p. 87] to construct a strong deformation retraction

Tnt Xn+1x[n07n+l] - an[no’n+1]UXn+1x{n+1}

for all n=>n,. As observed by Puppe, the existence of such a strong
deformation retraction follows just from the fact that the inclusion
X, - X, 18 a cofibration. Using these strong deformation retractions,
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it is easy to construct a strong deformation retraction of X x [n,, o[
onto Z(X,f,n,). See fig. 6.1.

Let now (X,f,n,) and (Y,g,n,) be ES’s of topological spaces and let
h={h,}n2n, 304 @ = {p,},>n, be systems of continuous maps h,: X, - ¥,
and homotopies ¢,: X, x[0,1] - Y, such that (¢,)o=0s n+1°k, and
(Pr)1="Pp41°fn n+1 for all n=n,. The following diagram is thus homo-
topy commutative with the homotopies ¢, as the homotopies in the
squares

fn,n41
. .-—>Xn_.’—._>Xn+1—)-..
bn 9] hnt1
Pn
...-—-).Y - — Y —> e e
n n+l

In, nt+1
To the systems of maps h and ¢ we associate a map

Z(h’ ¢) Z(X,f>n0) - Z(Y,g,’)lo)
defined by

Z(h, P)(@p,n+1) = (hy(x,),n+20), for 0st<%,
= (pa(@n,2t—1),n+1), for §}<t<1
for all z, € X,, and all n=n,. With these assumptions we have

Lemma 6.8. If all the maps h, are homotopy equivalences, then the map
Z(h,@) 18 a homotopy equivalence.

Proor. The proof is analogous to the proof of Hilfsatz 7, p. 314 in [22].
Puppe proves here the corresponding fact for the ordinary mapping
cylinder.

Proor or THEOREM 6.2. Define the homotopy ¢, as the constant
homotopy
(Pn)e = gn,n+1°hn = hpi °fn,n+1

for all t € [0,1]. Then we have the commutative diagram

Z(X,f,mg) LT X,

(=]

Zh, ) ho

Z(Y,f,m0) oY, g,no) Yo, .

Lemmas 6.7 and 6.8 finish now the proof.
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Proor or THEOREM 6.3. It is easy to construct a homotopy eommu-
tative diagram

Jno,no+1 Sro+1,n0-+2
bng hngta hngta
i

K,, _tmonott Ko _tnottmota Kz -+
where each K, is a CW-complex, each 4, ,,, i8 an inclusion of K, as a
subcomplex of K,,; and each k, is a homotopy equivalence.

Let @ ={p,}n=n, be the system of homotopies in the squares. Con-
sider then the diagram

Z(X,f,ng) ELIO, x|
Z(h, 9)

. K, i,
Z(K,i,ng) 224", K

All the maps in this diagram are homotopy equivalences by lemmas 6.7

and 6.8. Therefore X, is homotopy equivalent to K, which by con-
struction is a CW-complex.

7. Proof of theorems 5.3 and 5.4.

Let (X,f,n,) be an ES of topological spaces, and let M be an arbitrary
topological space. Consider then the induced ES (C°(M,X),fx,n,).
Utilizing the universal property of a direct limit we get an induced con-
tinuous map 6: C%M,X),, — C°(M,X,) as shown in the diagram

s (fn, o)
coM, Xn) oo
o'n,m).l (M, X),,— 0°(M ) -
Sfont1,00 T
OC(M,X, ) ————
V (fn+1, 00)e
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LemMa 7.1. Let M be a compact space.

i) If (X,f,ny) 98 an OES of T,-spaces, then 0 is a homeomorphism.

ii) If (X,f,n,) s a CES of T',-spaces, then 0 is a weak homotopy equiv-
alence.

Proor. Assume that g e C%M,X_). By lemma 2.4 there exists then
an n and a map g, € C°(M,X,) such that g=f, ,og, or equivalently
(fn,00)%(g5) =g. This shows, that 0 is surjective. It is also easy to show
that 0 is a monomorphism. Therefore 0 is always a continuous bijection
in both cases.

i) Let O <C%M,X),, be an open subset. Put 0, =(f°, ,,)~*(0). Observe
then, that 0 =U}_ ., %, o(0,), and therefore, that 6(0) = U5, (fr,c0)%(0y).
Since (fy, o)« i8 an open embedding by lemma 2.3 and theorem 1.1, it
follows, that 6(0) is open. This shows that 6 is an open map, and therefore
together with the remarks preceding i), that 6 is a homeomorphism.

ii) Let @ be an arbitrary compact space. It will be sufficient to prove
the assertions A° and B° below. Assertion A° will prove, that the in-
duced map 0, in homotopy is surjective in all dimensions. Assertion B°
will prove, that 0, is injective in all dimensions.

A° For each continuous map A: @ - C%(M,X_) there exists an n and
a continuous map 4, : @ - C°(M,X,), such that k= (f, )xo%k,.

B° If h,: Q - C°(M,X,) is a continuous map, such that h=(f, ,)xoh,
is homotopic to a constant map in C°(M,X_), then there exists
a k=0, such that &,.,;=(fs n+rx)x©h, is homotopic to a constant
map in CY(M, X, ,.).

To prove assertion A°, observe that A is continuous if and only if
the map h:QxM - X, is continuous when ﬁ:Evo(hle), and
Ev: O(M,X_)x M — X, is the usual evaluation map. Since @ x M is
compact, b can be factored continuously through X, for some n by
lemma 2.4, This factorization provides us in the obvious way with the
needed map k,: @ > C%(M,X,).

Now we prove assertion B°. From the hypothesis in B° it follows by
arguments similar to those under A°, that there exist a k>0, a map
ce CY(M,X, ) and a homotopy H: @ x[0,1] - C%(M,X,,,) such that

(fn+k.oo)*(H(q’0)) = h(Q) and (fn+k,oo)*(H(q’1)) = (fn+k,oo)*(c)

for all ¢ € Q. But then it follows that A, ;= (fn, n+x)x © by is homotopic
to the constant map @ - C%M, X, ,,) with value ¢ under the homotopy
H.

This proves lemma 7.1.
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LemMma 7.2. Let M be a locally compact Hausdorff space, and let f:
X — Y be a homotopy equivalence.

Then the induced map fy: C°(M,X) - CY(M,Y) is a homotopy equiv-
alence.

Proor. Let g: ¥ — X be a homotopy inverse to f. Then we have
homotopies gof~1x and fog~1y. From sublemma 7.3 and the func-
toriallity of the mapping space construction it follows now easily that
these homotopies induce homotopies

gxofx ~ Loou, x) and fyogy ~ Yoo, v) -
SuBLEMMA 7.3. Let M be a locally compact Hausdorff space, and let

X, Y and T be arbitrary topological spaces. For a map H: X xT — Y we
define an induced map

Hy: OOM,X)xT - C(M,Y)

by (Hy(f,0))(@) = H(f(@).1)
forall fe C°(M,X), xe M and teT.
Then, if H is continuous, H, is continuous.

Proor. Consider the composite map H, defined by the diagram
OM,X)xTx M~ OM,X)xMxT 2, xx7 2, 7.
This map sends (f,t,2) into H(f(x),t). If H is continuous, then A, is
continuous, since the evaluation map Ev: C%M,X)x M - X is con-
tinuous. Since A, induces H, in the obvious way, H, is therefore also
continuous if H is continuous.

Assume now, that the topological space X is a HDL of the ES
(X,f,n,) with respect to the system of continuous maps (g,n,). If M
is an arbitrary topological space, we have then the induced system
(C%M,X),fy,m) and the induced system of continuous maps (g4,n,).
Utilizing the following commutative diagram, it is obvious that the limit
map of the induced system g, factors as g, = (g, )« 0.

1‘ 0 (Gn)s
O (M:Xn) __f_o_n__z: (fn, Oo)tl
(fn, ntDa CM, X),——s COM,X,,)- 22 (M, X) .
SfOn+1, 00 I
COM, X ) ——— oo

1A : @n+Ds
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Proor or THEOREM 5.3. We have to show, that the limit map
Jxoo: O°M,X), > C%M,X) is a homotopy equivalence. This follows
however immediately from the factorization g,.=(g.)x°0, lemma
7.1 i) and lemma 7.2.

This proves theorem 5.3.

Proor or THEOREM 5.4. From lemma 7.1, ii), lemma 7.2 and the
factorization g,.,=(g)« o 0 it follows that g, is at least a weak homo-
topy equivalence. If we can show that the spaces C°(M,X), and
C%M,X) have the homotopy type of ANR’s, then it follows from a
theorem of Whitehead [26] (see also Palais [19, theorem 15]), that g,
is a homotopy equivalence. Under the assumptions listed in the theorem,

this follows however immediately from theorem 1.1, ii) and corollary
6.4.

This proves theorem 5.4.

8. Proof of theorem 5.5.

In this section (X,f,n,) is a smooth ES, and M is a smooth compact
manifold. Assume also, that the smooth manifold X is a smooth HDL
of (X,f,n,) with respect to the system (g,n,) of smooth maps. All mani-
folds will be metrizable and modeled on C*°-smooth Banach spaces, such
that the spaces of maps we deal with have manifold structures.

Although the statement of theorem 5.5 is the same for an OES and a
CES, the proof proceeds a little different in the two cases.

PRrooF oF THEOREM 5.5 FOR AN OES. We consider X, with the unique
smooth structure from theorem 4.5. We get then a factorization gy, =
(goo)s © 0 Of gy just as in the continuous case, but now for all 0 <7 < co:

| (gn)s
r
C (M) -Xn) ____W.;l (fn, Oo)ﬁl l
b Da (M, X),, —>— C"(M, X, ) 2= Or(M,X) .
f'n+1,oo[ " ]‘ [
O (M, X ) =—— oo
{ @nt+1e

Just as in the proof of lemma 7.1, i) we can show that 0 is a homeo-
morphism.
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The proof is therefore finished, if we can prove, that (g, )« is a homo-
topy equivalence. For that purpose consider the diagram

oM, X,) —2 . on(M,X)

|

OO(M,XOO) ——T 00(M7X) .

(gos.
We have labelled the induced maps with » and 0 respectively just to
distinguish between them.

The vertical maps are the obvious inclusions. By a theorem of Palais
[21, theorem 13.14] stated below these inclusions are known to be homo-
topy equivalences. Since we know that (g),° is a homotopy equivalence
(lemma 7.2), it follows then that (g.)," is a homotopy equivalence. As
already remarked, this finishes the proof of theorem 5.5 for a smooth
OES.

REMARK 8.1. Strictly speaking we use in this paper the slightly gen-
eralized version of Palais’ theorem ([21, theorem 13.14]) stated below.
If X in this theorem is a separable smooth manifold modeled on a separ-
able Hilbert space, then Palais’ method of proof described in [21] will
go through with minor obvious changes as e.g. substitution of the use
of Whitney’s embedding theorem in lemma 13.13 with McAlpin’s gen-
eralization of this theorem to the Hilbert case ([3], § 4).

TarEorEM (Palais, [21, theorem 13.14]). Let M be a compact smooth
manifold and let X be a metrizable smooth manifold modeled on a C*-
smooth Banach space.

Then the inclusion map C"(M,X) - C%(M,X) is a homotopy equivalence
Jor all 1 =7 = oo,

Proor. A direct but clumsy proof that the map is a weak homotopy
equivalence, and therefore a homotopy equivalence since the spaces
involved are ANR’s, can be given using standard theorems on approxi-
mation of continuous maps with differentiable maps. Proofs of the
necessary theorems can be adapted from the proofs given in say Munkres
[18]. The following more elegant proof is of course essentially Palais’
argument in [21].

Without loss of generality we can identify X with a smooth submani-
fold of a Banach space E via a smooth closed embedding. The proof of
this fact is an almost “classical’”’ application of smooth partitions of
unity and has been carried through in all details by J.-P. Penot in his
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thesis (Univ. Paris, 1970). Since any Banach space admits a spray it
follows that X has a tubular neighbourhood in £ (the proofs in Lang [14]
works without changes). There exists therefore an open neighbourhood
U of X in E and a smooth strong deformation retraction n: U - X.
From the fundamental theorem of Palais ([19, theorem 16]) it follows
now easily that the inclusion map C"(M,U) - C%M,U) is a homotopy
equivalence. Obvious use of the smooth strong deformation retraction =
finishes then the proof.

Proor oF THEOREM 5.5 FOR A CES. In this case X does not in general
carry a smooth structure, so we have to proceed differently.
Consider the following diagram:

O°(Jl}, X,) ——ﬂl

¥
f’n’m Or(lu-l’ Xn)

CT(M,X)OO (fn, n+1)"s (fn, n+1)0% CO(M,X)OO

Y o pone]
PRS0 X, OO, X, )

The horizontal maps are the obvious inclusions. By the theorem of
Palais they are homotopy equivalences. Using theorem 6.2 and lemma
6.5 in connection with theorem 1.2, iii), it follows then, that the limit
map C7(M,X),, - CY(M,X), is a homotopy equivalence.

Consider now finally the commutative diagram

Cr(M,X)y — L2 C"(M,X)

v
CO(M,X)OO _—Q'Tacc_—) CO(M,X).

The right vertical map is again just an inclusion and a homotopy equiv-
alence. The left vertical map is the limit map from before. From theorem
5.4 it follows, that ¢°, ., is a homotopy equivalence. Altogether it follows
then immediately, that g, is & homotopy equivalence. This is exactly,
what we wanted to prove.

Math. Scand, — 8
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9. Concluding remarks.

ReMARK 9.1. In section 8 it became clear that all the work in proving
theorem 5.5 was associated with the continuous case. The result for the
functor CT(M, -) when r>1, was derived from the corresponding result
for C°(M,-) just using that the inclusion C*"(M,X) > C%M,X) was a
homotopy equivalence. It is therefore clear, that we get a ‘“theorem 5.5”
for all mapping space functors with this property. Palais gives in [21]
a lot of functors of this sort. As remarked in remark 8.1, Palais’ method
of proof will go through not only when the range manifold is finite
dimensional, but also when it is a separable manifold modeled on a
separable Hilbert space. Let us here just mention one of these functors.

When M is a compact Riemannian manifold of dimension #n, and X
is a smooth separable manifold modeled on a separable Hilbert space,
we can define the Sobolev space L,P(M,X) of differentiable maps of
class Cr from M into X all of whoose differentials of order <r are of
class L?. Here 1<p=<o and 07 =< . For r>n/[p, the space L ?(M,X)
can be given the structure of a smooth manifold. See Eells [3, § 6] for
a more detailed definition and references to the literature. Since the
inclusion L,?(M,X) - C%M,X) is a homotopy equivalence for r>n/p,
we get the following theorem:

TaeorEM. Let (X,f,n,) be a smooth OES or CES and let X be a smooth
manifold, which ts a smooth HDL of (X,f,n,) with respect to the system of
smooth maps (g,n,). Assume furthermore, that all the manifolds are separ-
able and modeled on separable Hilbert spaces.

Then for every smooth compact Riemannian manifold M of dimension n
and all r>n[p, the space LP(M,X) is a HDL of the induced system
(L,»(M,X),fy,m) with respect to the induced system of continuous maps

(g % no)-
For 0=r<oco the induced limit is actually smooth.

REMARK 9.2. Results similar to those in section 5 and remark 9.1
can of course also be obtained for spaces of sections in smooth locally
trivial fibre bundles over a fixed compact base manifold. We have
chosen to do the whole programme just for the mapping spaces in order
to make the presentation a little simpler.

REMARK 9.3. In stead of the space C"(M,X) for r=1 one could also
be interested in the subspace of embeddings Emb” (M, X) or the subspace
of immersions Imm* (M, X) from M into X. A result of Dax [2] indicates
that in the highly stable range in which we work, when the dimension
of the manifolds X, tends to infinity, the limit spaces Emb"(M,X),
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and Imm"(M,X),, will have the homotopy type of C%(M,X), for any
smooth CES (X,f,n,).

Although the author has not carried through all the details, he feels,
that the following conjecture is likely to be a theorem.

CoNJECTURE. Let (X,f,n,) be a smooth CES of finite dimensional
manifolds of increasing dimension, and let X be an infinite dimensional
smooth metrizable manifold modeled on a C*-smooth Banach space.
Assume also, that X is a smooth HDL of (X,f,n,) with respect to the
system of smooth embeddings (g,n,).

Then for all compact smooth manifolds M and all 2<r=<

Emb"(M,X) and Imm"(M,X)
are HDL’s of the induced CES’s
(Emb™(M,X),fx,n,) and (Imm"(M,X),f,n,)

with respect to the induced system of continuous embeddings (g,,n,).
For 2 <r< oo the induced limits will actually be smooth.
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