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ARCS OF LOCAL CYCLIC ORDER THREE

8. B. JACKSON

1. Introduction.

Differentiability properties of arcs of cyclic order three are quite
familiar having been studied, among others, by Lane and Scherk [3] and
M. Marchaud [5]. Such arcs have a unique pencil of general tangent
circles at each point, varying continuously with the point. The condi-
tion of cyclic order three is not quite sufficient to ensure unique general
osculating circles at each point, but there does exist a family of general
osculating circles. There is at least one general osculating circle for
every point p of the arc and the circle is unique except at a countable
number of points. It is also known [4] that for arcs of cyclic order three
this family of general osculating circles has essentially the same nesting
property as the family of osculating circles of an arc of differentiable
strictly monotone curvature. In this latter case the property is a trivial
result of the familiar “unwinding string’’ property of the evolute of such
an arc. It is the primary purpose of this paper to prove that this nesting
property is a necessary and sufficient condition that an arc have local
cyclic order three, i.e. that every point has a neighbourhood of ecyclic
order three (§ 2, § 3). Counter examples are given (§ 4) to two plausible
but false conjectures regarding arcs of local cyclic order three.

2. The nesting property.

In this discussion an arc will be a topological image in the conformal
plane (or on a sphere) of a closed interval. Let small letters p, ¢, etc.
be used to denote points of such an arc. Following Lane and Scherk [3],
a circle C is called a general tangent circle to an arc 4 at point p if there
exists a sequence of triples of distinct points (¢;,u;, R;) such that C'=
lim C(t;,u;, R;) where {t;} and {u;} converge on 4 to p, {R;} converges
and C(t;,u;, R;) denotes the unique circle through the indicated points.
If, in addition, {R;}={v;} and also converges on A4 to p, then C is called
a general osculating circle at p.

It will sometimes be convenient to give a non-null circle C an orienta-
tion. The remaining points of the conformal plane are then separated
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into sets C, and C* which denote respectively the sets to the left and
right of C.

Let A, be an arc of cyclic order three with endpoints ¢ and b. If u, v,
w are distinct interior points of 4, and if the circle C(u,v,w) is oriented
by the order of points u, v, w on 4,, it is an easy consequence of the
known properties of arcs of cyclic order three [3] that for all u, v, w
either (1) a e C*(u,v,w) and be Cy(u,v,w) or (2) ae€ Cylu,v,w) and
b € C*(u,v,w). The arc A; will be called positive or negative according
as case (1) or case (2) holds. In the limit these properties also hold for
the oriented general osculating circles at interior points of 4;. Thus if
C, is a general osculating circle at an interior point p of 4;, then for a
positive arc a € C,*, b € C,, while for a negative arc a € C,y, b€ O, *.
The obvious extensions for general osculating circles at the endpoints
also hold.

DEeriniTioN. The general osculating circles to an arc A are said to
have the nesting property if the following condition is satisfied: If ¢,,
¢, g5 are distinct points of 4 with ¢, separating ¢, and ¢; on 4 and if
C,, Cy, Cy are any general osculating circles at ¢,, g,, g; respectively,
then C, separates C,; and Cj.

DerintTION. If every sufficiently small neighbourhood of a point p
of arc 4 has cyclic order k for some finite &, then 4 is said to have cyclic
order k at p.

DerintrioN. If an arc4 has cyclic order three at each point, it is
said to have local cyclic order three.

The following fact has been established by Lane, Singh, and Scherk [4].

Lemma A. Let p, and p, be distinct points of an arc A4 of cyclic order
three, and let Cy and C, be general osculating circles at p, and p, respec-

By use of Lemma A it will be shown that the nesting property can
be extended to arcs of local order three.

THEOREM 1. The general osculating circles to an arc of local cyclic order
three have the nesting property.

Proor. By the Heine-Borel Theorem, arc A4 is the union of a finite
number of overlapping arcs, each of cyclic order three. If two such
neighbourhood arcs overlap they are either both positive or both negative,
whence it follows that all these neighborhood arcs of 4 are of the same



ARCS OF LOCAL CYCLIC ORDER THREE 357

kind. It will be sufficient to consider the case when they are all posi-
tive.

For a positive arc of cyclic order three, the definition together with
Lemma A shows that if p precedes ¢ on the arc and if C, and C, are
general osculating circles at p and g respectively, then C,,,UC,<C,y.
By an entirely routine argument this property can be extended to the
whole arc 4.

The proof of the theorem is now easily completed. Let q,, ¢,, q; be
three distinct points in this order on 4, and let C;, C,, C; be any general
osculating circles at these points. By the property noted above since ¢,
precedes g, and g, precedes q;, we have C,UCy, ©Cyy and C3UCs, < Cyy .
This first relation, by taking complements, is equivalent to C,*>
C,uC*. Thus C;<=Cy* and C3<=Cyy so C, separates C; and C,. This
completes the proof.

3. Some properties of arcs.

In the following discussion it is to be established that the nesting
property is not only a necessary condition for 4 to be of local cyclic
order three (as is proved in Theorem 1) but that it is also sufficient.

Lemma B. If at point p of arc A the null circle is not a general osculating
circle, then the general tangent circles at p form a unique pencil of the
second kind with p as fundamental point.

Proor. Consider a sequence of circles C(p,r;,r;') where {r;} and {r;,'}
converge on A to p. We may assume (by choosing a subsequence if
necessary) that this sequence converges to a limit circle C which is, by
definition, a general osculating circle at p. By hypothesis (' is not a
point circle. Let P #p be any other point of C. There exists therefore
a sequence {P;} converging to P such that C(p,r;r;)=C(p,r;P;) so
that C=limC(p,r;,P;). Moreover, the angle between C(p,r;,P;) and
C(p,r;, P) approaches 0 whence it follows that C=1imC(p,r;, P).

Let K now be any non-null general tangent circle to 4 at p. Then
by definition K =1imC(g;,q,’,@Q;) where {g;}, {¢;'} converge on 4 to p
and {Q;} converges. Without loss of generality we may suppose se-
quence {Q;} chosen to converge to a point @ +p on K. Since, as above,
the angle between C(g;,q,’,Q;) and C(g;,q;,/,Q) approaches 0, we may
conclude that K =1imC(g;,¢;’,@). We may also assume, without loss of
generality, that g¢;, ¢, +p for all 4.

Consider next the sequence C(p,q;,q;') which we may assume con-
vergent to a limit circle €', and since C’ is a general osculating circle it
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is non-null. If R +p is a point of ', then, using again the argument
above, it follows that ¢’ =1imC(g,,q,’, R) and also that ¢’ =limC(p,q,, R).
Since the angle between C(g;,q;’,R) and C(g;,q;’,Q) approaches 0, it
follows that their limit circles C' and K are tangent at p.

Consider finally the sequence C(p,q,,r;) which, as before, we may as-
sume convergent to a non-null circle C”. If S +p is a point of C'’, the
same argument as before shows that C''=1imC(p,q;,S) and C"=
limC(p,r;,8). Since the angle between C(p,q;,S) and C(p,q;, R) ap-
proaches 0, the limit circles ¢’ and C’ are tangent at p. Similarly, since
the angle between C(p,r;,8) and C(p,r;,P) approaches 0, circles C"’
and C are tangent at p. This discussion shows circles K, C', ", C to
be mutually tangent at p. Since K was an arbitrary general tangent
circle at p, it follows that all such circles belong to the pencil of circles
tangent at p to the fixed circle C. Since it is trivial that all circles of this
pencil are general tangent circles, this completes the proof of the lemma.

Lemma C. If the general osculating circles of arc A at point p do not
contain every point of the plane, then there 18 a neighbourhood B of p on A
such that if q, r, 8, t are distinct points of B which occur in this order on A
and which also lie on a circle C, then q, r, s, t are in cyclic order on C.

Proor. Suppose the lemma is false. Then there must be a sequence of
quadruples of distinet points g¢;, 7;, s;, {; which have the following prop-
erties: (a) each of the sequences {g;}, {r;}, {s;}, {t:;} converges on 4 to p;
(b) for each ¢ the points g;, r;, 8;, ¢; belong to a circle C;; (c) for each ¢
the points g;, 7;, ;, ¢; are in this order on 4 but are not in cyclic order
on C;.

Condition (c) means that the orientation induced on C; by g;, 7;, $;
is opposite to that induced by g¢,, s;, t;. Consider the family of circles
C(g;;w,v). If the pair of distinct points u,v vary continuously on A4
from r,, s; to s,, ¢;, the circle C(g,,u,v) varies continuously from C; with
one orientation to C,; with opposite orientation. In such a variation the
circle C(g;,%,v) must pass through every point of the plane since the right
and left sides of C; have been interchanged. Thus if z #p is an arbitrary
point, there must exist points u,;, v; between ¢; and ¢; on 4 such that
z € 0(g;,%,v;). As usual, we may assume this sequence of circles converges
to a limit circle C. Clearly z € C. Since, from condition (a), {«;}, {v;}, {g;}
converge on 4 to p, C is a general osculating circle to 4 at p. Thus
there is a general osculating circle at p through every point of the plane.
But this contradicts the hypothesis on p and thus is impossible, Hence
the lemma cannot be false and the proof is complete,
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If at a point p of an arc A the general tangent circles form a unique
family of the second kind, it is easy to show that arc 4 induces a uniquely
determined orientation of the circles, so it is meaningful to speak of the
oriented general tangent pencil. The following lemma uses this concept.

Lemma D. Let A be an arc whose general tangent circles at any point
form a unique pencil of the second kind, and let K, be an oriented circle
satisfying the following conditions:

(a) K, contains the endpoints a, and by of A and does not meet A else-
where ;

(b) K, belongs to the oriented tangent pencils to A at a, and b,.

Then there is an interior point p of A and a general osculating circle
C at p such that A never crosses C.

Proor. We shall give a proof by contradiction. Thus we assume that
every general osculating circle to 4 at an interior point has points of 4
on both sides of it. In particular, no null circle at an interior point can
be a general osculating circle.

Since 4 meets K, only at a, and b,, then 4\ {a,,b,} is a subset either
of K or Ky*. For definiteness suppose that 4 \ {a,,0,} < Ky*. Let S,
denote the simple closed curve which is the union of 4 and the directed
arc bya, of K,. It is readily seen that S, has a unique pencil of general
tangent circles at every point. The only question might be for points
a, and b, where it follows by hypothesis (b). Curve §, divides the plane
into two parts. Let Sy4 be the set containing K, . Thus Sy, is the region
to the left of §,.

ay r

Let ¢ be the midpoint of the arc 4, i.e., the point corresponding to
the midpoint of the parameter interval. In the pencil 7 of general tangent
circles at ¢ there must be some whose interiors are subsets of Sy, , for
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otherwise the null circle at ¢ would be a general osculating circle. If a
variable circle moves to the left through the pencil 7, let K, be the first
such circle for which K UK, <8SyuS,. Clearly K, belongs to the
oriented general tangent pencil at any point where it meets S,. More-
over, K, can contain no point of arc bya, of K,, since a circle tangent
to K, on this arc and contained in S,US,, would necessarily be a subset
of K UK, while K, contains the point ¢ in K,*. Thus K,nA contains
only interior points of 4.

Since 4 does not cross K,, it follows from the contradiction assump-
tion that K, is not a general osculating circle at g. Let @, be a sequence
of circles of = converging to K, from the right, i.e., such that K,, < Q4.
Then, by definition of K,, each circle @; must contain a point u; of 4
different from g. By choosing a subsequence if necessary we may as-
sume that sequence {u;} converges to a point r of A. We may conclude
that r #¢ since if =g, the circle K; would be a general osculating circle
contrary to the assumption. Thus K;nA contains the distinct points
g,r but does not contain the entire arc gr since K, is not a general oscu-
lating circle. It is then possible to find points a,,b, of the subarc gr of 4
such that a,,b; € K;, but no other points of subarc a,b, belong to K.
Thus circle K; and subarc a;b, of 4 satisfy the same hypotheses (a)
and (b) as circle K, and arc A. The procedure above may then be
iterated so that S, is the simple closed curve which is the union of subarc
a,b, of 4 and arc b,a, of K, while S,, is the region bounded by S, which
contains K,,. Note that by its definition S;US;, =S,USyx and that
the parameter length of a,b, does not exceed half the parameter length
of 4.

Proceeding inductively we may therefore define a sequence of circles
K,, with a corresponding sequence of arcs a,b; on 4 and a resulting
sequence of simple closed curves S;. As noted above, the sequence of
regions S;US,, is a decreasing nested sequence, the subarcs a;b; of 4 are
also a decreasing nested sequence whose parameter lengths approach 0,
and each K, is tangent to 4 at the distinct points a;,b;. By choosing a
subsequence if necessary, we may assume that the arcs a;b; converge to
a point p of A and that the circles K, converge to a limit circle C.
Point p belongs to all the arcs a,b; and is therefore an interior point of A
since none of these arcs after the first contains a, or b,. Circle C is
clearly a general osculating circle at p since the points of tangency a,,b;
converge to p. Moreover, by the nesting property of the regions ;U S,
circle C is a subset of S,U S, and hence A never crosses C. This contra-
dicts the intial assumption that A crosses every general osculating circle
at an interior point. Thus the contradiction proof of Lemma D is com-
plete.
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It may be noted that for the special case when arc A has continuous
curvature this lemma is a familiar result. It is, for example, an immediate
consequence of Lemma 4.1 and Corollary 2.1.1 of reference [2].

It is now possible to prove the following result.

THEOREM 2. Let A be an arc satisfying the following conditions:

(a) At each interior point A crosses each general osculating circle;

(b) At neither endpoint does the set of general osculating circles cover
the entire plane.

Then A is of local cyclic order three.

Proor. The proof will be by contradiction. Assume therefore that
there exists a point of 4 for which the cyclic order is greater than three.
Then any neighbourhood of p on A contains at least four concyclic
points. If p is an endpoint, then by (b) the general osculating circles do
not cover the entire plane. Suppose that p is an interior point of 4.
Since, by (a), arc A crosses any general osculating circle at an interior
point, there is no null osculating circle at such a point. It follows from
Lemma B that the general tangent circles at any interior point form a
pencil of the second kind. In particular this holds at p. The general
osculating circles at p are a subset of this pencil. Hence the only way
the set of general osculating circles at p could cover the plane would
be for the entire pencil, except perhaps the null circle, to be general
osculating circles. But the null circle would be a limit of general osculat-
ing circles and hence a general osculating circle itself. Since this is false,
it follows that the general osculating circles at p cannot cover the plane.
Thus in any case, the hypothesis of Lemma C is satisfied at p. By
Lemma C, therefore, there is a neighbourhood of p within which the order
of any set of concyclic points on A agrees with their cyclic order on
circle C. Let four such common points be selected g, r, s, . It is clear
that the selection can be made in such a way that subarc gr of 4 meets
C only at ¢ and r. For definiteness suppose this arc is contained in
CuC, where the orientation of C is induced by the cyclic order of g, 7,
8, t. Note also that C may be selected so that all points of arc gt are
interior points of A.

It was established above by the use of Lemma B that the general
tangent circles at any interior point of 4 form a unique pencil. This
holds therefore for all points of ¢g¢. As noted just before Lemma D, these
pencils have a unique orientation induced by A.

Consider the pencil of circles tangent to C at ¢ and given the orienta-
tation induced by C. Let a circle of this pencil move continuously
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through C, from C to the null circle at ¢. In this motion there is a last
position, ¢, for which the circle contains a point of ¢gr. Let w be such a
point. Since (", by definition, has no points of gr to its left, it is a member

of the pencil of general tangent circles at w. Moreover C’ clearly has
the orientation induced by A4 at w, so C’ belongs to the oriented general
tangent pencil at w. Now let a circle of this tangent pencil at w move
continuously through C,' from position C’ to the null circle at w. Since
all such circles meet gr only at w, and since ¢ € €, there is a last position
K for which the circle has any point other than w in common with wt.
Let = be the first point of 4 NK following w on 4. Then, as before, K
is a member of the oriented tangent pencil at . The arc wz and the
circle K satisfy the conditions of Lemma D. By Lemma D there is a
point of wxz at which some general osculating circle fails to cross A.
This is impossible since, by (a), arc A crosses every general osculating
circle at an interior point. This contradiction establishes the theorem.

It is now a trivial matter to verify the following converse of Theorem 1.

THEOREM 3. If the general osculating circles of an arc A have the nesting
property, then A is of local cyclic order three.

Proor. If the general osculating circles have the nesting property,
then two points on opposite sides of p on A4 are separated by any general
osculating circle at p, so condition (a) of Theorem 2 holds. Moreover,
at any point, endpoint or otherwise, a general osculating circle can
never contain any other point of 4. Hence the general osculating
circles at a point can never cover the entire plane, so condition (b) also
holds. Theorem 3 then follows from Theorem 2.

For the special case of arcs of continuous curvature the following,
fairly obvious, result follows readily.
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THEOREM 4. If A s an arc of continuous curvature, a necessary and
sufficient condition that the arc be of local cyclic order three is that the
curvature be strictly monotone.

Proor. For an arc of continuous curvature it is well known that the
general osculating circles are precisely the ordinary circles of curvature.

Let A4 be of local cyclic order three. It follows from Theorem 1 that 4
crosses every general osculating circle, i.e. every circle of curvature.
But it is known [2, Cor. 2.1.1] that at any extremum of the curvature
the arc does not cross its circle of curvature. Hence the curvature has
no extremum and must be monotone. Moreover, it must be strictly
monotone since otherwise the arc would contain circular arcs where A
would not have local cyclic order three.

Conversely, let 4 have strictly monotone curvature. By [2, Cor.
2.1.2] at each interior point 4 crosses each circle of curvature. Hence
condition (a) of Theorem 2 is satisfied. But at all points including end-
points, A has a unique circle of curvature i.e. a unique general osculating
circle. Thus condition (b) of Theorem 2 holds also and the desired result
follows from Theorem 2.

4. Counterexamples.

It is a natural question to ask whether the awkward appearing condi-
tion (b) of Theorem 2 could be deleted, as it appeared to play a very
minor role in the proof. The answer is in the negative. Consider the
following arc:

x(t) = t cos(nft)
y(t) = t sin(n/ft)

This is merely the curve which in polar coordinates would be r=x/0
with the origin adjoined as an endpoint. It is readily verified that for
t>0 it has continuous monotone decreasing curvature and hence at
each interior point is of cyclic order three by Theorem 4. Hence it
crosses each general osculating circle at an interior point and therefore
satisfies condition (a) of Theorem 2. But is is not of local cyclic order
three because of trouble at ¢=0. As ¢ approaches 0 the arc spirals in-
finitely often about the origin. Hence every non-null circle through
the origin is met by the arc in an infinite sequence of points converg-
ing to the origin. Thus every circle whatever through the origin is a
general osculating circle so condition (b) is not satisfied. But since the
arc has unbounded cyclic order at the origin the conclusion of Theorem
2 is false, Thus it is not possible to delete hypothesis (b) in Theorem 2.

X =
for 0<t=1,
4(0)=0.



364 8. B. JACKSON

Lane and Scherk [3] in discussing conformal differentiability intro-
duce the concepts of tangent circles and osculating circles to an arc 4
at a point p as follows. If P is any point different from p, then C is
called the tangent circle at p through P if C=1imC(p,q;, P) where {g;} ap-
proaches p on A and the relation is to hold independent of sequence
{g;}. If this limit exists for some P, then it exists for all P and the
tangent circles at 4 form a pencil 7 of the second kind with fundamental
point p. Circle K is called the osculating circle at p provided K=
limC(7,q;) where, as before, {g;} is an arbitrary sequence converging to
p on 4 and where C(7,q;) denotes the circle of pencil v which contains g;.
When the tangent circles and osculating circle exist at p, then arc 4 is
said to be conformally differentiable at p. If 4 is conformally differenti-
able at every point, there are therefore sets of tangent circles and osculat-
ing circles which are subsets of the general tangent circles and general
osculating circles. For conformally differentiable arcs, it is a natural
question to ask if Theorem 3 would be true if the nesting property were
required only for the osculating circles, rather than for the (possibly)
larger set of general osculating circles. In other words if an arc is
conformally differentiable and if the osculating circles have the nesting
property, is it of local cyclic order three? The answer again is in the
negative. The following arc provides a counterexample:

r = |t|’

M iy

To verify the properties, consider first the arc y=a3 with — =<4
On this range it is easily verified that the arc has continuous and strictly
increasing curvature. It is therefore, by Theorem 4, of local cyclic order
three and its general osculating circles, which are its circles of curvature,
have the nesting property. For =0, the general osculating circle is the
line y=0. The arc given by (1) is obtained by leaving the part of y=a3
in the upper half plane alone but reflecting the lower half in the y-axis.
The osculating circles for (1) are precisely the images of those for the
corresponding points of y =x3. The only question might be for ¢=0, but
it is readily verified that the required limit for ¢ =0 exists and is the line
y =0 whether one takes the limit for positive or negative . The nesting
property for the osculating circles of (1) follows from the known nesting
property for y=a3. But arc (1) has a cusp at t=0 and hence a cyclic
order at least four at this point. Hence arc (1) does not have local cyclic
order three. It may be noted that for ¢=0, because of the cusp the point
circle is a general osculating circle, so the general osculating circles of (1)
do not have the nesting property.
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