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A NEW CHARACTERIZATION OF
BESICOVITCH ALMOST PERIODIC FUNCTIONS

ABDALLAH N.DABBOUCY and HENRY W. DAVIS*

1. Introduction and history.

The set of Besicovitch almost periodic functions, {B?-AP}, may be
defined as the closure of the Bohr almost periodic functions via the
Besicovitch norm |||z, where

— [ T 1/p
/1139 = lim [ﬁl f )P dx] :

T—>o00

and p €[1,00) is a fixed parameter. Several authors have given struc-
tural characterizations which assure that a function, known to be in
L,(—T,T) for all T>0, is also in {B?-AP}. The first was by Bohr and
Besicovitch [2]:

A set E of real numbers is called satisfactorily uniform if there exists
L > 0 such that the ratio of maximum number of elements of E included
in an interval of length L to the minimum number is less than 2. Then
fe {BP-AP} if and only if for every >0 the set of ||| g,-¢-translation
numbers,

BvE(e.f) = {ueR: ||fu—Flpm<e},

contains a satisfactorlly uniform subset,

Uy < Uy < Uy < Uy < Uy < ..y

[ | 180 f(t)l”dt] <er

whenever ¢>0. Here f,(x)=f(x+u),

such that

. [g(x) ]—hm— f.q ) de

T—)oo
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and

z[g("')] _—kl-lilom 2 9

In the case p=1 Besicovitch [1] has shown: fe {B-AP} if and only if
for every ¢> 0 there is a satisfactorily uniform set of numbers

iUy UG < Uy =0 < U < Uy < ...
such that

z+1

M, M, [ f Ifu®) = F(®)] dt] <e.

x

Incidentally, it is easy to see that a structural characterization of
{B-AP} may be turned into a structural characterization of {B?-AP} by
adjoining the condition

(1) 1imn—>oo”f—fn”B(p) =0

where
fal®) = f() if |f(@)<n,
x)/|f(x)] otherwise .

Alternatively, one may adjoin the condition
1y M(|fPxe) >0 as a(E)->0.

Here E is a measurable set, f is a measurable function, yg is the charac-
teristic function of £, and we define i(E)=M[yz].
E. Folner [5] has given the following characterization of {B?-AP}:

f e {BP-AP} if and only if f satisfies either (1) or (1)’ and

(2)  for every e>0 there exists a relatively dense set 7'=7T/(c)
and a set & = E(¢) such that G(E)>1—c¢and |f(x+¢)—f(z)| <e
whenever t€ T, and x,x+t € K.

(Actually Fglner did not require that fe L,(—7,T) for all 7>0 but
only that f be measurable. His characterization then has the third con-
dition that g({z: |f(z)|=o})=0.) Finally, R. Doss [4] has proven that

f e {B-AP} if and only if

) ”f”B(1)< oo and limu—)()”fu_f“B(l)= 0;
(b) fis ||*|lgy-normal, that is, from any sequence b, can be extracted

a subsequence c, such that

limm,neoo”fc,. "'fc,,.”B(l) = 0;
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(c) for any real 4,
a+L L

- —11: ff(t)e“‘ dt—%off(t)e‘” dt

z

(cd) limy_, M =0.

The conditions (cA) form an infinity of independent conditions.

Two other very interesting characterizations of {B?-AP} are in the
literature, one by R. Doss [3] and one by A.S. Kovanko [10]. These
involve certain functions f@ of period @, where a runs through the real
numbers. We shall not restate them here.

In this paper we show that f e {B-AP} if and only if

(A1) fis ||*||gnormal, and
(B) for all but a countable set of > 0 it is the case that

M M| f (w+2)—f (@) 2ppen@)] S eA(BE(.f)) .
(A1) may be replaced by the equivalent condition
(A2) for every ¢> 0, the set BE(e,f) is relatively dense and open.

The requirement in (A2) that BE(e,f) be open may be weakened to
require only that BE(e,f) be of positive measure or of second category.
However some sort of “width” requirement on BE(e,f) is necessary.
Examples illustrating this and other points are discussed in the last
section.

2. The main theorem.

We begin with a few notational remarks, additional to those made
above. We denote by R the set of real numbers and by «(R) the set
of (continuous) Bohr almost periodic functions on R while u denotes
Lebesgue measure on R. If f is a measurable function on R, ||f]l is its
essential supremum and ||f] is its Besicovitch 1-norm:

T
— 1
11l = T ﬁl f) du
Also
BE(e,f) = {ze R: |If;—fll<e},
E(e.f) = (e R: If;—fllo<e}
L, 1,6(R) denotes the set of all complex-valued functions f on R such

that fe L,(—T,T) for all T>0. Notice that |f,/=]f] for all fe
L, 1,(R) and all a € R even when one side is oo, Indeed
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. '1 T+a
= Tim | — f
Ifall = Tim | !fldul

. —T+a
5 T+lal
— | 2(T
< im (274D Q(Tila]) mdu] = /1.
T—>00 | —(T¥lah)

which includes the opposite inequality. By a J-mesh in a metric space
is meant a finite set of points of the space such that every point of the
space is within § of one of the points of the finite set. Finally, we in-
troduce two conditions for a function fe L; 1,,(R):

(A3) for every ¢> 0, the set BE(e,f) is relatively dense and either of
positive measure or of second category;

(A4) for every &> 0 there exists a finite set w,,...,w, € R such that
R=UL,[w;+BE(e.f)].

2.1. ProPOSITION. For a function fe€ Ly 1,(R) the conditions (Al),
(A2), (A3), (A4) are equivalent.

Proor. Suppose f satisfies (A1) and take ¢>0. As ({f,: a € R},||]|) is
conditionally compact it is totally bounded so it contains an e-mesh,
8Y fups- + +ofu,- If w €R, then for some 5

”fu—ui_f” = ”fu—fm” <Eé&,

so u € u;+ BE(e,f). Thus R=U?_[u,+ BE(e,f)]. ¢ being arbitrary, f
satisfies (A4).

Suppose f satisfies (A4). For each ¢>0, the set BE(e,f) is clearly
measurable and it follows from (A4) that it is of positive measure and
of second category. To see that each BE(e,f) is relatively dense take
e>0and

L > 2sup{|w;|: 1=¢=n},

where the w; are as in (A4). We claim that BE(e,f) meets every interval
of the form (a,a+L), a € R. Indeed if a € R, then a+iL=w;+b for
some b € BE(e,f). Hence

b=a+3L—-w;e(a,a+L).

Consequently BE(e,f) is relatively dense, whence (A4) implies (A3).
Assuming f satisfies (A3) we show f satisfies (A2) by showing that
each BE(s,f) is open. Now

BE(e,f) > {w—y: x,y € BE(}e.f)} .
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It follows from the fact that BE(}e,f) is Borel and of positive measure
or from the fact that BE(}e,f) is of second category that the right side,
above, contains a neighborhood of 0 (cf. [7, 61.3], [9, Chap. 6, problem P]).
Thus each BE(e,f) contains a neighborhood of 0. Now for £>0 take
b e BE(¢e,f). Take ¢; >0 such that

Ifo—fll+e < e.
Let 6 >0 be such that (—8,6) = BE(e,f). Then, if |b—c|<d we have
Wfe=fIl = If-e =Sl = Ifo-c—Toll
S oo =Sl + I =Ll
<e+f=fll<e,

whence ¢ € BE(e,f). It follows that BE(e,f) is open and, ¢ being arbi-
trary, (A3) implies (A2).

Suppose f satisfies (A2) and take £¢>0. As 0 BH(e,f) and BE(e,f)
is open, there exists 6 >0 such that (—0,0) = BE(e,f). Take L >0 such
that every interval of length L meets BE(e,f). As

BE(2¢, ) = BE(e.f) + BE(e,f) ,

every interval of length L contains an interval of length é all of whose
points are in BE(2¢,f). Let n be an integer larger than 2L/5. Then

Ur__, [46+BE(2e,f)] = R.

f=—

Consequently {f};;: —n<i=<n}is a 2c-mesh in ({f,: a € R}, [[-]). As&>0
is arbitrary, ({f,: @ € R}, ||||) is totally bounded and (A1) follows. This
proves the proposition.

2.2. LEMMA. If f € {B-AP}, then f satisfies (A3). Hence f also satisfies
(A1), (A2) and (A4).

Proor. This is well-known and follows from the fact that if g € «(R)
then

Ifu=S1 S W= gull + lgu—9ll + llg =fII = 21f =9Il + [19u— 9o -

Thus if ||f—g||<3e we get that E(}e,g) =BE(e,f). The set E(}e,g) is
relatively dense and contains a neighborhood of 0, as g is uniformly
continuous. Since ¢ is arbitrary, f satisfies (A3).

2.3 LEMMA. Let fe Ly 100(R) satisfy (A2). For xzeR define h(z)=
\fz=Fll. Then ke x(R) and for every >0,

E(e,h) = BE(e,f) .
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Proor. By (A2), the set B(1,f) contains a neighborhood of 0, so A(x)
is finite for « near 0. As
h(nx) b3 ”fnx"'f(n—l)z” + ...+ ”f:c_f“ = nh(x) s
it follows that h(z) is finite for all z € R. Take £¢>0. From

”hu_h”oo = Supxekmfx+u—f“_“fz_fm s SupxeR”fx—m—fa:” = ”fu"f”
it follows that BE(e,f)<E(e,h). On the other hand, if w € E(e,h), then

SupxeR”Ifx+u"f”— ”fx—f[” <e.
Letting =0 gives ||f,—fll<e, so u € BE(e,f). Thus E(e,h) < BE(e,h).
As ¢>0 is arbitrary, we have KE(e,h)=BE(e,f) for all ¢>0. That
h € x(R) now follows from the fact that f satisfies (A2).

2.4 NoraTioNn. We let R denote the Bohr compactification of R and
consider R as a dense subset of R. For f € «(R) we let f denote its continu-
ous extension to R. Letting C(R) denote the set of continuous complex
valued functions on R, we get that f - f is a vector space isomorphism
from «(R) onto C(R). See, for example, [9, pp. 247-249]. If A<R, we
let A° denote its closure. If % € C(R), we define

E(e,h) = {xeR: |h,—hllo<e},
for each £>0. Finally, we let » denote Haar measure on R.

2.5 LEMMA. Let & € C(R). Then for all but a countable set of ¢>0 we
have
v(E(e, k) = v(E(e,R)°) .

Proor. Take ¢>0 and let 4,={xeR: |h,—%|l,=¢}. As % is uni-
formly continuous, ||k, — k||, is a continuous function of z € R. Thus

A, © E(e,h)° ~ E(¢,h) .

The sets {4,},., are pairwise disjoint. If »(4,)> 0 for uncountably many
¢, we would have that »(R) = oo, contrary to the compactness of R. Hence
for all but a countable set of ¢>0 we have »(4,)=0. Further
v(E(e,)°)=v(E(e,h)) for such e.

2.6 NoratioN. For & € «(R) we define
T(h) = {n>0: v(E(n,h)°) =v(E(n,h))} .

By 2.5, the set T'(k) contains all but a countable set of the positive
numbers.
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2.7 LemMA. If h € «(R) and n € T(h), then yg, n € {B-AP}.

Proor. Observe that E(n,h)=E(n,k)nR and E(n,k) is open in R.
Take @, € C(R) such that @, t yz(, p and @,(x) 20 for all z € R. Then

0= f(xE(,,,;;)—an)dv» 0 asn—>oo.

R
As n € T(h), we may apply Theorem 26.17 of [8] to conclude that
MIXE’(q,h)_a’nl = M[XE(rl,h)_a’n] ~0 asn-—>oo.
The lemma follows.
2.8 TuEOREM. If fe {B-AP}, then f satisfies (B)

Proor. Take fe {B-AP} and define h(x)=|f,—f| for all zeR. By
2.2, 2.3 and 2.5 it suffices to show that for all ¢ in 7'(h),

(1) M, M| f(w+2) = f (@) 1pme, n(w)] < eA(BE(e.f) .

Take any ¢ in T'(h). Take f, € x(R) (and not identially 0) such that
If=fal >0 as m —>oco. By 2.2, 2.3 and 2.7, ypg,pne€ {B-AP}. Take
b, € x(R) such that

(2) ”ZBE(e,f)_bn” = ll(n“fn”oo)’ n=12,....

We shall show that

(3) M, M,[|f(w+x)—f @) 156 nw)]

For any fixed = € R, we have |f(w+x)—f(x)| € {B-AP} whence also

|f (w+2) — f (@) 1 5E6, n(w) € {B-AP}

(cf. [6, page 7]). Thus M,[|f(w+2x)—f(2)| xpme n(w)] exists for each
x e R. Also

M| M L[| f(w+2) = £ (@) 2556, n(0)] = Mol falw +2) = f()] b (w)]]
S MM fo=f @) = |fne—Ful® [)XBE(:/)]'
+Ma:|M Ifnw—fn(x leE(s,f) Ifnx fn Ibn)]
leIfz f(x) fnx'l'fn H+Mx|M[|fnz-fn (@)|( XBE(sf)_b i

az:[lea: fn:cl + M'f(x) fn x)]] +2 IIfn”oo“XBE(c,f) n“
2f—full +2/n >0 as m—>oo, by (2).

IA IIA ||

Thus, as a function of z,

M \|f (w+2) —f (@) xBre, n(w)] € {B-AP}
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and (3) holds. We now show that

(4) MM [|f(w+2)—f(@) xpre, n(@)]
For fixed w e R,
|f (w+2) = f ()| xpren(w) € {B-AP},

80 M, [|f(w+x)—f(%)|xpre n(w)] exists for each w € R. Arguing as before,

Mo\ M (| fro—=F | 286 (@) = M (| fro—Ful bn(w))]
< M| MI(|fo I = faw—=FaD 1856 ()]
+Mw|M(|fnw ntXBE(s f) ) (lfnw fnlb )
S M| M\ fo=F = Fuio+ Fall 4 Moo ML frs = ful (X 50, () = by (w)]|
M| M\ fio = Friol + M1 =Full + 211 fallooll 2 B, = Oal
2\f=fall+2/n -0 asn-—>oo, by (2).

IA TIA

Thus, as a function of w
M.[|f (w+x)—f (@)l pre,n(w)] € {B-AP}
and (4) holds. As f,,b, € «(R),
M, M[| f(w+2) —fr(@)| bp(w)] = My M L[| fr(w+ @) = fr(2)| ba(w
for all n=1,2,.... Applymg this to (3) and (4) gives

M, M1 (w0 +2) —f (@) 236, p(@)] = My M[1f (w+2) = f(@)| 2556 n(0)]
M, [Ilfw—=fI XBE(e,f)(w)]
sf(BE(s.f)) -

This proves (1), from which the theorem follows.

Al

2.9 LEMMA. Let f € Ly 1,(R) and suppose that for some ¢>0

(1) M M, \f(w+2) —f @) 1586 nw)] < .
Suppose 0<L; 1t oo as © - oo and let U be an open set in R. Then there
exists w € U and a subsequence {L,'} of {L;} such that

Ly

|
lim — f |ful 2BEG,n A1
t 002Li
Ly
exists and 1s finite.

Proor. We may as well assume U is bounded. We show first that
there exists u € U and a subsequence {L,"’} of {L,} such that
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L" ”

1
(2) lim - 3L |f (w+w) —f ()] % BEe n(w) du(w)

1—>00 Ly
exists and is finite. Otherwise

M\ f (u+w)—f ()| 1556 n(w)] = oo
for all w e U. Take Ty such that U< (—7,,7T,). Then for every T72T,,

o = 5 [ 01~/ @) 2220, @) S 7 j H(\f,~f @) 2550, 0) @)
U

contrary to (1).
From the fact that (2) exists and is finite it follows that there exists
N < oo such that
L;”

0=
- 2Lill

|fu| XBE(, 1) d‘u’
Ly
Ly

If (w+w) = ()| B, n(w) dp(w) +

=<

- n
2L ],

—4Ln

L

[f(w)] XBECG, j)(w) du(w)
—L;”
< N forall 1=1,2,....

+ ————
2Lill

Thus we may take {L,'} to be a suitable subsequence of {L;'’}, proving
the lemma.

2.10 LemMA. If h € a(R), then j(E(e,h))>0 for every £>0.
Proor. Take ¢>0. Take 6 >0 such that (—48,8) = E(}e,h). Take L>0
such that E(}e,h)n(kL,(k+1)L) +0 for all k=0, +1,.... Then

] nl *+1L
A(E(e,h)) 2 hm—— > f X EG, ) T

n->o0 20.L k=—n ip

— 1
> lim — = .
2 lim 5 L(2n6) 0/L >0

n—»oo

2.11 THEOREM. Let f € Ly 1o,(R) satisfy (A2) and (B). Then f € {B-AP}.

Proor. Take arbitrary 6 >0. For x € R define i(z)=|f,—f|l. By 2.3,
h e x(R) and E(e,h)=BE(e,f) for all ¢>0. By (B) and 2.5 there exists
¢ in T'(h) such that
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(1) e <8 and I I,0f(@+w)—f @) 1p5en@)] < eA(BEE.S) -
By 2.10 we have j(BE(s,f)) >0 so we may define

() 9 = xBuenl A(BE(z.f)) .

By 2.7, g € {B-AP}. Hence

Mg exists and Mg=1;

®3) 0= g@) =< |9l < o forall zeR.

From (1), (2) we get that

(4) M, M[|f (@ +w)—f(2) gw)] < &.
Take je {1,2,...}. By (A4) there exists a finite set F; <R such that
for every y € R there is some v € F; with y =w+ v for some w € BE(1/j,f).

Hence Wy =Fll = Waro—Fill = Ifu=fll < 1/j-

As BE(1]j,f) contains a neighborhood of 0, there is a neighborhood U,
of each v € F; such that the following holds: if y € R then there is some
v € F; such that

(5) Ify—Fful < 2[j forall ueU,.

Let F=U$,F;. We shall apply lemma 2.9. By (1), the hypotheses of
2.9 are satisfied. The role of U in the lemma is to be taken by the sets U,
veF. We enumerate the sets U,, say U,,U,,.... Take any sequence
{T';} such that 0 <T'; $ o0 as = — co. By applying 2.9 inductively and using
a diagonal argument we get a subsequence {L;} of {7} and a set
{xy,%5,...}=R such that z;e U;, j=1,2,..., and

1 7
lim [ \fo| % BEte, 1) it
e 2L T REE
exists and is finite for all j=1,2,..., Let D={x,,x,,...}. Because of (5)

and the way D is formed, we have that for every >0 and every y e R
there exists # € D such that

(6) Ify=Fall <.
If x € D, then (2), (3) and the above considerations show that

0 <11m

ffzg i

—L;

= |9l [;hm 3L, f |f,c|XBE(a n dﬂ] < .

—> 0 —L‘
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As D is countable, we may use a second diagonal argument to get a
subsequence {L,} of {L,'} such that

) lim — j 129 du
1—>oo iy
is finite for all z € D.
We now show that (7) exists and is finite for all x € R. Indeed take
any y € R and any >0. Take x € D such that (6) holds. There exists
1y such that

1k
— —f.1d
2L{_L|fu fzldp < 7

for all ¢=4,. Thus, for 121,

oL, ffyg H3L, [:fxgdﬂ

ol £ Wyledd < el

Consequently, for large values of 1,

1
— d
3 Li_fL_f"g ©

is within 27||g||,, of the finite number

hm—— ff gdu .
v 2Ly I

As >0 is arbitrary, we get by the Cauchy criterion that

o) =tim [ 0

1—>00 2-L1, Li
is a finite number for all y € R. Now for x,u € R we have

|lp(w+2) = @@)| = glloo [ furza—Fell = 9lloo lfu—FII -

Thus for every 5> 0,
BE1/119)lesS) < E(n, @) .

Using (A2), it follows that ¢ € x(R).
We now show that |lp—f||<d. As M[g]=1, we get for any x € R that
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L;

g}ji _fL‘ [f (@ +w) —f(x)]g(w) du(w)

< M [|f(@+w)—f@)|gw)] .

lp(z) —f(2)] = lim

1—>00

Hence,

lp=fIl = Mlpl@)—f ()] £ M M0 f(x+w)—f(@)gw)] < 8,
by (4). As 6> 0 is arbitrary, and ¢ € x(R), the theorem follows.

MaiN THEOREM. Let fe€ L, 1,,(R). Then fe{B-AP} if and only if f
satisfies (Al) and (B). The condition (Al) may be replaced by any of the
equivalent conditions (A2), (A3) or (A4).

Proor. This follows from 2.1, 2.2, 2.8 and 2.11.

3. Further comments.

The most natural ways of weakening (A3) and (B) fail to give a charac-
terization of {B-AP}. For example, (A3) alone will not characterize
{B-AP}, as is illustrated by the example on page 5 of [5].

By the phrase “BE(e,f) has width”” we mean that it is either of posi-
tive measure or of second category. We have seen that if BE(e,f) has
width for every ¢ >0, then each BE(e,f) is in fact open. Condition (B)
plus the requirement that each BE(e,f) have width fails to characterize
{B-AP}, as is illustrated by the function f(z)==x: it is certainly not
B-AP, while BE(e,f)=(—¢,¢) and

M, M [\ f (@ +w)—f (@) xprenw)] = 0
for all ¢>0.

If for some ¢>0, the set BE(e,f) has no width, then, by the main
theorem, f ¢ {B-AP}. It is conceivable, however, that if f satisfies (B)
and each BE(e,f) is relatively dense, then each BE(e,f) has width,
whence fe {B-AP}. In other words it is conceivable that the width
requirement can be removed from (A3). We show that this is false by
giving a function f such that for every ¢> 0 the set BE(e,f) is relatively
dense but has no width. (Hence u(BE(c,f))=0 so that f satisfies (B)
trivially.) The function f will also satisfy

;) Z
(1) lim ﬁ_Tf du  exists .

T—>

We define f as follows: On [0,3) and on all intervals of the form
[8n,3n+1), ne{+1,+2,...}, we define f=0. Suppose k=3n+1 for
some n€{+1,+2,...}. Then on [k,k+1) we define f to be
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(2) 2Dy kvt (2%2) 302, kv - -+

+ (2% 1) 2172+ ... 41720001, k41724 . 4172001 -

If k=3n+2 for some ne{+1,+2,...}, we define f on [k,k+1) to be
the negative of (2).

Let S(n)=1+1/2+...+1/n and for 7>0 let n(T") be the smallest
positive integer such that 7'<3#n(7"). For T'>0 we have

T

-;Tffdu

1
< S5 28(n()]

n(T) S(n(T))
= (3n(T)—3>( n(T") )
- log(n(T))+1
N n(T)

-0 as T —>o.
Thus f satisfies (1).

Take any 7 € {0, +1,...}. Due to the cancellations which occur when
we subtract the graph of f from the graph of f;;, we get that for 7'>0

T
.2% _fT | @+ 36) —f (@)] dp()

IA

(1/20)[; + 4 3] S([¢] +n(T))]

| +n(T) ) S(Is] +n(T))
6n(T)—6/ (|i|+n(T))

< (ki/2T)+4lz'l( >0 as T - oo;

here k, is a constant which covers the behavior of the graph of f,,—f
near zero. It follows that {0, +3, +6,...}<BE(ef) for every >0,
whence each BE(e,f) is relatively dense.

Take £¢>0. We shall show that BE(e,f) does not contain a neighbor-
hood of 0. Otherwise, there exists 0 <d <1 such that

(3) Ifs—fIl < &.

For positive integers n,k with n>k, let S(k,n)=1/k+... +1/n. If k>1
is such that

1/24 1[4+ ... +1/2k1 > §
and n >k, then
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1 8n in > 1 n St
o | Vomfldez g 3 S
—8n
L s 1 log k]
2z — [logs —log
6ni=zk+1
n
2

1
= kf(logx) du(x) — (n—k—1) logk

Ylogn—1—logk+ (k+logk)/n] > as n—>oo.

This contradicts (3). Hence BE(e,f) does not contain a neighborhood
of 0. As ¢ > 0 is arbitrary, none of the sets BE(e,f) have width, as
was to be shown.

We do not know if (B) can be replaced by the stronger condition

(B)’ for every ¢>0

M, B[ f(@+0) = f (@) 1 506,0(w)] S ef(BE(e.f)) -
Nor do we know if {B?-AP} can be characterized by inserting the
parameter p into (As) and (B), 15¢<4, 1<p<oo.

The authors wish to thank the referee for pointing out a serious error
in the original manuscript.
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