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ESTIMATES NEAR DISCONTINUITIES
FOR SOME DIFFERENCE SCHEMES

PHILIP BRENNER and VIDAR THOMEE

Consider the initial-value problem

] ou _ ou 150
( ) Et- - Qa> = )
(2) u(®,0) = v(x),

where p is a real number, and a finite difference approximation consis-
tent with (1),

(3) Eo(x) = > a;v(x—jh), . > la;| < + o0,
j=—00 j=—00

where k/h=A is constant. We shall discuss the approximation of the
exact solution wu(x,t)=(E(t)v)(x)=v(x+ot) for t=nk of (1), (2) by Ejv
near a discontinuity of wu(x,f). More precisely, we shall assume that v
vanishes for positive x, so that E(t)v vanishes for x> —pf. The general
case of an isolated discontinuity at =0 can be reduced to this case by
subtracting a smooth initial function. Under this assumption we shall
estimate (Ejv)(x) in terms of the distance ¢ of x parallel to the z-axis
to the characteristic through the origin. To be specific, if y, denotes the
characteristic function of the interval (y,oo0) we shall estimate for p=2
and oo,

HXJ—QlE’l:U“p ’

where |||, denotes the L,-norm,

/P
lvup_(f[v [de) ,1<p< oo,

Wl = esssup,|o(@)| -

Notice that such estimates can also be interpreted as results on the do-
main of influence of the initial-values at a point. This problem has been
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treated previously by Hedstrom [3] and Apelkrans [1] when v=1—y,.
Hedstrom gave very precise estimates and his approach would, although
quite technical, permit more general conclusions. The technique used
by Apelkrans, which is due to Kreiss and Lundqvist [4], is simpler and
also suitable for variable coefficients, but his results were less precise.
Our aim here is to show that this latter technique can be used to give
sharper results even for more general initial functions v. Our paper can
be considered a continuation of our previous paper [2] and in the proofs
below we shall depend on the technique developed there.

Our results will be expressed in terms of the symbol of Z;, the abso-
lutely convergent Fourier series

a(§) = 3 a;eit,
J=—00
We shall assume that a(£) is analytic in a strip around the real axis.
In applications a is generally the quotient of two trigonometric poly-
nomials; if the operator is explicit, @ is a trigonometric polynomial.
We shall make the following general assumptions about the symbol:
The symbol can be written in the form

a(§) = exp(—ileé+y(£)) ,
where p(£) is also analytic in a strip around the real axis and

(4) (&) = ipE"(1+0(1)), B=+0, r>1, as é&->0,
(5) Rey(§) = —y&%, >0, |§[sin.

These assumptions mean that £, is accurate of order r— 1 and dissipative
of order s. If r #s, B has to be real.
The main idea in the proofs is to introduce for 7 >0 the operator
defined by
E, v = e Eie ),

and to notice that since y,_,(«) <exp(n(x+gt—0)), for any such 7, we
have for p=2 and oo,

(6) ”Xa-ntI':””p

IIA

=9 || B (€7 0)l

eI Bl lleolly -

IIA

In appraising the right hand side we shall use that the symbol of £, ,
is a(&£—thn). We shall therefore need estimates for the symbol a(£) in
a neighborhood of the real line.
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LeMMmA 1. There are positive constants ¢, C, and n, such that with
T=8(s—r+1)71,

(7 Rey(§—in) = —c&+ Opr, 0=n=mn,, |§|<in,

and such that if r is odd and p <0,

(8) Rey(é—in) = —cné™ 1+ Oy, 0=n=mn,, |£<in.
Proor. Since by (5), for any ¢> 0 and small ,

sup{Rey(§—in); e<|é[<dn} < 0,

it is sufficient to prove (7) and (8) for small & and 4. We have for such
& and 7,

Re (& —in) = p(&)) < On(lélr+ 7Y,
and hence by (5),

Rey(E—in) = —pé&*+ Onlé|™* + Cn7,
which clearly implies (7). When r is odd and g <0, we find

Rey(¢—in) = Re(p(é—in) — p(§)) < drfné + C* €2 +97)

and since the coefficient of the first term on the right is negative we can
estimate the middle term by the others.

We notice that Lemma 1 implies that there are positive constants C
and 7, such that

(9) la(é —in)| = exp(—Aen+Cn7), 0=n=n,, §real,
with
(10) B LY for r odd and <0,

s(s—r+1)-1, otherwise.

Apelkrans [1] calls operators for which (9) holds contractive of order 7.
In deducing the inequalities from (6) we shall want to choose # in an
optimal way. We shall then use the following lemma.

LemMa 2. Let 4,6,7,, and C, positive, x real, and ©>1 be given. Then
there are positive constants ¢ and C (with C=1 for x=0) such that with
x=1/(t—1), 6,=0t"1, t=mnhi,

infypn<qy (A1) exp(—on+ Con(hn)’) £ Cn=*/* exp(—cn min {6},4,}) .

Proor. Choose 7, <7, such that CyAi-19,*-1 <} and set
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hy = ny = min{n,, (}46,Cy"H)V*V}  for a20,
hn = max{n-17,n,} for a<0.

We begin with a simple estimate in L,.

THEOREM 1. There 18 a positive constant ¢ such that for v € L, vanishing
for positive z,
Ixo-otBzvlle = exp(—cn min {5}, 6}) [olly ,

where nk=t, 6,=06t"1, and

(11) o |7lr=1), ifrisoddand p<0,
~ s/(r—=1), otherwise .

Proor. By (9) we have with 7 defined in (10), for 0 < hn=<7,,
1Esealle = exp(—Aghn + O(hn)7) ,
and hence by (6), since exp(znx) <1 where v is non-zero,
st Bivlls = exp(—n+On(hy)?) [lvlly -

The result now follows by Lemma 2 with «=0.

We now turn to maximum-norm estimates. As was the case in [2],
our main technical tool will be the following form of the Carleson—Beur-
ling inequality.

Lemwma 3. Let ¢ € C° have support in (— 3, 3x) and be identically 1
for |&| =n. Then there is a constant C such that for any operator E,, of the
form (3) with symbol a, the following inequality holds:

[Billeo = Clipa,lls? [D(pa)llst, D = D, = dfd¢ ,

where a (&) =exp (ixA€)a(f) and « s an arbitrary real number.
Proor. See [2, Lemmas 2.1, 2.5 and 2.7].

REMARE. Lemma 2.7 in [2] is somewhat exaggeratedly claimed to be
a trivial consequence of the closed graph theorem. The proof by the
closed graph theorem depends on the fact that if a is 1-periodic and
n € €, is such that =1 in an interval of length 1 then an € M, implies
a€ M,. By means of a finite periodic partition of unity this in turn
can be reduced to the following statement: If ¢ € M, has its support
in an interval of length <1 and if
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o0
P(x) = 3 p(x+j)
J=-—00

is its 1-periodic extension then @ e M,. For the purpose of this paper
and in fact also in [2] it is sufficient to have this result for p=oco. But in
that case the result follows from Theorems 1.5.1 (a) and 2.7.6 in Rudin

(5].

We can now state and prove the maximum-norm analogue of Theorem
1. In doing so we include the possibility of a discontinuity in a deriva-
tive of v rather than in v itself; we shall see that if » tends to zero at a
certain rate as x — 0, a corresponding improvement of the estimate
can be obtained.

THEOREM 2. Assume that v vanishes for positive x and that |x|~*v(x) € L,
for some «20. Then for given T >0 there are positive constants ¢ and C
such that for t< T,

[%o-ot Bkvlloo < Ch** m® exp(—cn min {57, 6;}) [[l|=*vlloo
where x i3 defined by (4) and
o =0, if r is odd and f <0,

= }(1 —r[s), otherwise .

Proor. Let ¢ be the function in Lemma 3. Assume first r odd, g <0.
By (8) we then have for n=<7,,

lp(&) ap(é —in)"| = C exp(—cnné '+ Cny") ,
IDL(&) a&—imm)| S On(g™=14+97-1) exp(—cnnt™1+ Cmy’) ,
and hence
lpa,(. —in)"ly < C(nag)=H=Dexp(Cny"),
ID@ay(. —in)")ls = Cn(na)~¥=D [(nn)~1+ 5] exp(Cny") .
Consequently by Lemma 3,

1% alle = Cn} (nhag) =41 [(nhm)~# +

+ (hn)¥-V] exp( — nihno + Cn(hn)T) .
For >0 we have
€70]y < SUD, <o [/} [zl =0l = Cn== |20 ,

and hence by (6) for 0 <hn=7,,
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st Bx?llee = Cm=ont (nha)=4/ =D [(nha) =t + (ha)r—1]-
-exp(—on+ Cn(hn)’) .

The result now follows by Lemma 2 in this case. In the opposite case
we have by (7) with t=s(s—7r+1)-1 for 5 =7,,

lp(&)ay(é —in)"| £ C exp(—cnés+ Cni) ,
[De(@(&)ay(& —in)™)] = On(|§|™-*+n"-1) exp(—cné®+ Cny) ,

and hence

IIA

lpay(. —in)*lly = Cn=¥® exp(Cna)

IDpay. —in)")l;

IIA

Cnl-¥/s(n~r-D/s 4 pr=1) exp (Cray*) .
By Lemma 3 we therefore obtain for hn=<n,,
1B gllo S Cn¥=779) [14ndr=0/s (h)¥r=1] exp ( — nAhme + Cn(hn)) ,

and the result follows as above.

Above we have only considered the behavior to the right of the dis-
continuity. Clearly a corresponding analysis holds to the left. This
case may be reduced to the one treated above by a change of sign in .
Notice that since the symbol of the corresponding operator is a(—£),
the coefficient of &7 for » odd then changes sign, so that the values of
7, 2, and w above are altered accordingly. Consequently for odd r, the
estimates will be different on the two sides of the discontinuity.

We shall finally prove that when r <s, even if we are not in the case r
odd, B<0, the factor nt1-7/9 in Theorem 2 can be suppressed if v is
smooth for # <0. The proof of this fact will be somewhat technical and
will depend heavily on the presentation in [2]. The first step is the next
lemma, the proof of which will be modelled after that of Theorem 5.1
in [2]. We shall express the result in terms of the standard norm on %,

sup, | Div(a)], =0,

Wex = Wleot | sup, , 1Div(@) - Divy)| |-yl 0<ao<1,

where « is positive and x=j+w&,, with j non-negative integer and

0=saxy<1.
We assume from now on that r<s. In particular, § is real in (4).

LeEmMA 4. For given « with §r<o<r—1} there are positive constants ¢



ESTIMATES NEAR DISCONTINUITIES FOR SOME DIFFERENCE SCHEMES 335

and C such that for ve €*, vanishing for positive x, we have for §,<1,
t=nk, with x=s[(r—1),

(12) x6-et Evllc = CEA*0=1" exp (= cnd}) [[v]lgpn -

Proor. By Theorem 2 it is sufficient to prove (12) for v with compact
support and it will then clearly be enough to consider v in €,*. As in
[2] the technical work will be carried out in a different norm. For «
positive, let w,({)={_* be the branch which is positive for ¢ =¢ positive
and analytic for n=Im{ <0, { 0. Let then L , be the completion of
%,° with respect to the norm

[0]%,e = IIF @0l »

where Fv=17 denotes the Fourier transform of v and w, is taken along
the real axis. Notice that although the definition of L% , is slightly
modified as compared to that in [2] for « non-integer, the embedding
and interpolation results described in Lemmas 2.9 and 2.10 in [2] and
their proofs remain unchanged. Consequently, it is sufficient to prove
(12) for v € %, and with |jv|,« replaced by |[jv]l% ,. We shall use the
multiplier norm M(a)=M (a) defined by

|F ~1a % vl

M(a) = suPgoeqee Il

Assume now that v € €, and v vanishes for > 0. For #>0 we then
have

(13) F(eF Yw,D)) = w,(&—1n) D(E—in).

By our assumptions on » the right hand side is analytic for > 0, and since
D(&—1n) is bounded there it follows by the Paley-Wiener theorem that
e”F 1w, D) also vanishes for >0. Hence

(14) e F H0d)loo £ IF M@ D)lloo = 12112, -
Introducing the operator defined by

E,(tw = e E(t)(e—™) = e~ E(tyw
we have for >0,

lI%8-t (B — E(®)lloo
e (B = Ey(£))(€%)llo -

“x&—elEzv”oo

IA
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Taking Fourier transforms we get
‘g"((E;:‘,q - En(t))(enzv)

= ettt (q (hE —inh)™ — 1) D(& —in)

ay(h(E—im))m — 1

== e“iﬂft-ﬁ”lt Q(
w,(&—17)

s o (§—in)d(é—in) .

Hence, by (13) and (14)

h(.—1ip))*—1
(15) -t Bl e-m’M(“‘-’( . (.’1”2”)

) ol .

Let h,=h1-1/7 and let
a (W7 E —ighyr — 1
wa(é - mhr)

Ua,h,n,n(g) =

With { =& —inh, we have by a simple computation that, nh < 7,, D,=0/0¢,

lag(BV/rE)m—1| < Ot exp(Cn(nh)*) min{1,[¢]7},
[De(aq(hl/rC)n_ l)| < Ct eXP(Cn(nh)’) &1,

Choosing an even function ¢ € €, with support in {y; 4 <|y| <2} such
that

ey =1, y+0,

J=—0

(cf. Lemma 2.8 in [2]), and letting
@iq(8) = @(2791C]), j=1,2,...,

Fon(E) = 1 §¢<2—f|cn ,

J
{DJ,,,(S) = z (pj,q(f) )

J=0
we have for 0 <« <r—} that
919 Oupmalls = Ot exp(Cn(nh)) 214-2),  j=0,
IDe(@14Oapmn)lls = Ct exp(Cn(nh)) 290=4=2,  j=0.

Actually, except for j=0 in the second inequality, these estimates hold
for 0= x<r. Lemma 2.5 in [2] now yields
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M(@;,,00nmy) < Ctexp(Cn(nh)7) 206r-,  j>0.
Adding these estimates we get for jr<a<r—1,
M(D;,00nn,) S Ct exp(Cn(nh)7) ,
and letting J tend to oo we obtain
M(oypp,) < Ctexp(Cn(nh)).
Using (15) this implies
-t Eivlloo = Ot exp(—nd +Cn(nh)?) b7 o], .
The result now follows by Lemma 2.

We shall need the following version of van der Corput’s lemma.
LEMMA 5. Let u e €, and let p € €% be real and satisfy |§"'|20>0 in
an interval containing the support of w. Then

[F (exp (i)u)llo < 80 Hu'lly .

Proor. See Lemma 2.4 in [2].

In our next lemma we shall estimate the coefficients in E7,,

(16) 20(@) = 3 anyln) oa—3h) .

j=—o0

Lemma 6. With a,;(n) defined by (16) there is a positive constant C
such that for hn<n,,

la,;(n)| £ Cn-Y7 exp(—mnot+ Cn(hn)) .

Proor. Since a,;(n) are the Fourier coefficients of a(§&—thy)™ it is
sufficient to prove that for any real y, and 0<#n=<7,,

T

[eiev ae—iny

-

By (4) there is an ;>0 such that for || <S¢y and 09 =¢8],

17 < Cn~V7 exp(Cny?) .

|D2 Imy(é—1in)| = clé|™2, ¢>0.

Further, by Lemma 1 for 0<n=<7, and |§|S<n we have with 7=
s(s—r+1)-1,

Math. Scand. 28 — 22
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(18) Rey(f—in) = —c&* + Oy,
and also
(19) |De Rey(&—1in)| = C(|&]*1+7]&|"2+9"1).

Let for small positive ¢, h, € €, be a function with support in 3=
|€] < ¢, which satisfies the following:

(i) hy=11in e || = 35,
(i) |A,| =1,
(iii) |A,|£Ce™! in |[£|Ze and |B,|SC in } g =|£ Z¢, for some con-
stant C.

If we set x,(£,9)=h,(&) exp(n Rey(&—1in)) we have by (18) and (19),
IDexal->mlly = C’J'[n(lfl‘“1+nlfl"2+n"1)+lh.'|] exp(—cng®+ Onr) dé
and hence after a simple computation,

[Dexn(- .l = C exp(Cnyr) .

It follows by Lemma 5 that since |£|> 3¢ in the support of y,(&,7), we
have for 7 < {¢y¢,

n

[ e 1) ay(—in de

-7

(20)

= ’ f exp (— i€y +ni Imyp(§ —in)) zn(&,m) d&
< Ceir-2 p-t exp (Cnry) .

On the other hand

J. e~V (1 —h(£)) a (£ —in)" dE
Choosing e=n"Y" we may conclude from (20) and (21) that (17) holds
for n=<4egn~V7. For }en-l7<n=<m, we have my*=cn'-*/* and since
7 <r we obtain

(21) < (Ce+exp(—cne,®)) exp (Cna) .

f |a (& —in)"| dE < Cexp(Cny®) < Cn-Yexp (Cray¥)
-z

which completes the proof of the lemma.
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LeMMA 7. There are positive constants ¢ and C such that if v € Ly, has
support in [—¢,0] and 6,51, t=nk,

s-etBrvlleo = CE7Y7 & h=4-17 exp (—cndy) [Iv]leo -

Proor. We have by Lemma 6 for 5 <7,,

B2 €)oo £ 3 lans(m)] €72l
a—jhe[—e, 0]

IA

Ct=17 & h=0-1/7 exp (—ngt + On(ha)?) [0l »
so that

45—t Evlloo S Ct717eh=4=10 exp(—nd + Cn(nh)") [l -

The result now follows as above.

We can now state and prove the above mentioned improvement of
Theorem 2. We shall denote by %> the set of functions » which are in
%> for <0 and vanish for >0 (notice that they may have a discon-
tinuity at x=0). We set with « as above,

SUPg <o [Div(x)], &5=0,

e = et (L0 ) Dl fo—yi-™, 0<np<1.

THEOREM 3. For any «>4r and T >0 there are positive constants ¢
and C such that for ve €% and 6,21, t<T, we have with x=s/(r—1),
Vo-a B30l S C exp(—cnd}) g -
Proor. We may clearly assume that r<s and jr<a<r—43. Let

e>0 and let v, € ¥* vanish for >0, coincide with » for 2 < —¢ and
satisfy an inequality of the form

lVgllga = C’e“"“””@i'
We then obtain by Lemma 4,
[%8-otBEvelle S Cte==h=3=117 exp(—cnd}) [[vllga ,
and since v — v, has its support in [—¢,0], by Lemma 6,
20—t B2 (v = Vo)l < CtH7eh~4-17 exp (—ond}) ||v]los -

The result now follows at once by the triangle inequality from these
last two inequalities if we choose e={1/7p1-1/r,
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