ON MODELS WITH UNDEFINABLE ELEMENTS

A. EHRENFEUCHT and G. FUHRKEN

The following problem was posed by C. Ryll-Nardzewski (cf. [3]): Is there a complete theory T formulated in a first order language with only finitely many non-logical symbols and which has the following properties:

(i) T has a model \mathfrak{A} every element of which is first order definable in \mathfrak{A}; hence \mathfrak{A} is a prime model of T.

(ii) For every set \mathcal{X} of non-principal (dual) prime ideals of $F_1(T)$ — the Boolean algebra of formulas with v_0 as only free variable taken modulo equivalence in T — there is a model \mathfrak{B} of T (which can be taken to be an elementary extension of \mathfrak{A}) such that the non-principal prime ideals of $F_1(T)$ which are realized in \mathfrak{B} are exactly those in \mathcal{X}; furthermore those prime ideals are realized by exactly one element each.

This problem is an extension of an earlier problem which had been solved in [2]. We give a partial answer to the extended problem in the following

Theorem. There is a complete extension T of the first order theory of linear orderings such that: (i) holds; and there is a set \mathcal{Y} of non-principal prime ideals of $F_1(T)$, \mathcal{Y} being of the power of the continuum, such that (ii) holds for subsets of \mathcal{Y}.

The theory T will be described as the elementary theory of a particular model \mathfrak{A} which we are now going to describe. Let Q be the set of rational numbers; $\langle r_n : n \in \omega \rangle$ be an enumeration (without repetition) of Q; $\langle t_n : n \in \omega \rangle$ a family of positive irrational numbers which are linearly independent over the rationals. For $n \in \omega$ put

$$B_n = \{r_n - t_n \cdot (i + 1)^{-1} : i \in \omega \}.$$

Note: (i) the sets B_n are pairwise disjoint; (ii) each B_n has order type ω; (iii) $\sup B_n = r_n$; (iv) for any real numbers x and y, if $x < y$ then there are arbitrarily large $n \in \omega$ such that for some $z \in B_n$, $x < z < y$.

Put $Q' = Q \times \{0\}$, and for $n \in \omega$, $B'_n = B_n \times \{1, \ldots, n+2\}$; finally put

Received May 19, 1970.
$A = Q' \cup \bigcup \{B_n' : n \in \omega\}$ and $\mathcal{A} = \langle A, \prec \rangle$, where \prec is the lexicographical ordering. Note:

(1.1) \mathcal{A} is a linearly ordered system.

(1.2) The subsystem of \mathcal{A} determined by Q' is isomorphic to the ordered system of the rationals.

(1.3) The sets B_n' are pairwise disjoint.

(1.4) Each B_n' has order type ω.

(1.5) For each $n \in \omega$, $\sup B_n' = \langle r_n, 0 \rangle$.

(1.6) For any $x, y \in A$, if $x \prec y$ and if the interval from x to y is not finite, then there are arbitrarily large n such that for some $z \in B_n'$, $x \prec z \prec y$.

By definition \mathcal{A} is a model of T. Hence in order to establish part (i) of the theorem it suffices to show that every element of A is first order definable in \mathcal{A}. This is seen as follows:

(2.1) For each $n \in \omega$, the set B_n' is first order definable in \mathcal{A}, viz. by the property of belonging to a maximal discrete subset of power $n + 2$.

(2.2) For each $n \in \omega$, each element of B_n' is first order definable in \mathcal{A}; this follows from (2.1) and (1.4).

(2.3) For each $n \in \omega$, $\langle r_n, 0 \rangle$ is first order definable in \mathcal{A}; this follows from (2.1) and (1.5).

In order to show part (ii) of the theorem we shall proceed as follows: Let I be a set of irrational numbers. Proceed as in the construction of \mathcal{A} except for taking $Q' = (Q \cup I) \times \{0\}$. Call the resulting model \mathcal{B}. We shall show:

1° \mathcal{B} is a model of T.

2° For each $i \in I$, the prime ideal defined by $\langle i, 0 \rangle$ in \mathcal{B} is non-principal.

3° For each $i, j \in I$, if $i \neq j$ then the prime ideals defined by $\langle i, 0 \rangle$ and by $\langle j, 0 \rangle$ are distinct.

Part (ii) of the theorem will then be proved by taking I the set of all irrational numbers and Y the set of all non-principal prime ideals realized in the corresponding \mathcal{B}. Note that these are not all non-principal prime ideals of $F_1(T)$; in fact there are continuum many others. Those have the property that if they are realized in a model, then they are realized by infinitely many elements.

Let us recall Fraisse's relation \equiv_n, $n \in \omega$. Let \mathcal{A} and \mathcal{B} be as above. For $m \in \omega$, $a \in ^mA$ and $b \in ^mB$, put
\[a \equiv_0 b \] iff \[
\{ \langle a_i, b_i \rangle : i \in m \} \text{ establishes an isomorphism between } \mathcal{U} \upharpoonright \{a_0, \ldots, a_{m-1}\} \text{ and } \mathcal{B} \upharpoonright \{b_0, \ldots, b_{m-1}\};
\]

\[a \equiv_{n+1} b \] iff \[
\text{for each } x \in A \text{ there is a } y \in B \text{ such that } \langle x \rangle \equiv_n b \langle y \rangle \text{ and for each } y \in B \text{ there is a } x \in A \text{ such that } a \langle x \rangle \equiv_n b \langle y \rangle.
\]

The two important properties of this relation which we need are (e.g. see [1]):

(3.1) If for each \(n \in \omega, \mathcal{O} \equiv_n \mathcal{O} \), then \(\mathcal{U} \equiv \mathcal{B} \).

(3.2) For each formula \(\varphi \) in \(F_1(T) \) there is an \(n \in \omega \) (which is given by the quantifier depth of \(\varphi \)) such that for any \(x, y \in A \), if \(\langle x \rangle \equiv_n \langle y \rangle \), then \(x \) satisfies \(\varphi \) in \(\mathcal{U} \) if and only if \(y \) satisfies \(\varphi \) in \(\mathcal{U} \).

For the formulation and proof of the next lemma it is convenient to expand the language of \(T \) by the following defined symbols:

(i) \(Sv_0v_1 = v_0 < v_1 \land \neg \exists v_2 [v_0 < v_2 \land v_2 < v_1] \),

(ii) \(Snv_0v_1 = \exists v_2 \cdots \exists v_n [Sv_0v_2 \land Sv_2v_3 \land \cdots \land Sv_nv_1] \), \(n = 2, 3, \ldots \),

(iii) \(L_nv_0 = \exists v_1S^nv_0v_1 \), \(n = 1, 2, \ldots \),

(iv) \(R_nv_0 = \exists v_1S^nv_0v_1 \), \(n = 1, 2, \ldots \),

(v) \(Dv_0v_1 = v_0 < v_1 \land R_1v_0 \land L_1v_1 \land v_2 [v_0 < v_2 \land v_2 < v_1 \rightarrow L_1v_2 \land R_1v_2] \).

(The intuitive meaning of the latter is that the interval from \(v_0 \) to \(v_1 \) is discrete; in \(\mathcal{U} \) or \(\mathcal{B} \) this implies that the interval is finite.) For \(k \in \omega \), put \(\mathcal{U}_k = (A, S^i, L^i, R^i, D^i) \) and define \(\mathcal{B}_k \) similarly.

Lemma. Let \(n, m \in \omega \), \(a \in \mathcal{N}A \), \(b \in \mathcal{N}B \), \(k = 3^n \). Assume

(i) \(\{ \langle a_i, b_i \rangle : i \in \omega \} \) establishes an isomorphism between \(A_k \upharpoonright \{a_0, \ldots, a_{m-1}\} \) and \(B_k \upharpoonright \{b_0, \ldots, b_{m-1}\} \); say, the \(a_i \)'s are in increasing order.

(ii) For each \(z \in B_0 \cup \ldots \cup B_{k-1} \) the following conditions hold: (a) if \(z \preceq a_0 \) or \(z \preceq b_0 \), then \(a_0 = b_0 \); (b) if \(a_m-1 \preceq z \) or \(b_m-1 \preceq z \), then \(a_m-1 = b_m-1 \); (c) if, for \(i = 0, \ldots, m-2 \), \(a_i \preceq z \preceq a_{i+1} \) or \(b_i \preceq z \preceq b_{i+1} \), then \(a_i = b_i \) and \(a_{i+1} = b_{i+1} \). Under these conditions \(a \equiv_n b \).

The proof is by induction on \(n \). We shall only treat a typical case. Assume the lemma holds for \(n \) (and all \(m \)). Given \(a \) and \(b \) satisfying conditions (i) and (ii) with \(k = 3^{n+1} \) and \(x \in A \) with \(a_i < x < a_{i+1} \). (Other cases are: \(x < a_0 \); \(a_{m-1} < x \); \(x = a_i \); and the cases with the roles of \(x \) and \(y \) interchanged.) We shall find a \(y \in B \) such that \(a \langle x \rangle \) and \(b \langle y \rangle \) satisfy conditions (i) and (ii) with \(k = 3^n \). There are various possibilities:

(I) \(x \in B_p \), for some \(p < k \), or more generally, \(a_i = b_i \) and \(a_{i+1} = b_{i+1} \). In this case take \(y = x \).
(II) $x \in B_p'$, for some $p \geq k$. Again various possibilities have to be distinguished:

(IIa) $\langle a_i, x \rangle \in D^M$. If there are at most 3^n elements between a_i and x, say h of them, take as y the $(h+1)$st element to the right of b_i; if there are more than 3^n elements between a_i and x take as y the 3^nth element to the right of b_i.

(IIb) $\langle x, a_{i+1} \rangle \in D^M$ and the previous case does not apply. Proceed similarly.

(IIc) Neither (IIa) nor (IIb) holds though (II) holds. Let x be the hth term of its discrete component. If $h \leq 3^n$ take as y the hth term of a discrete component between b_i and b_{i+1}, using (1.6); if $p-h \leq 3^n$ proceed similarly; in the remaining case take as y the $\lfloor p/2 \rfloor$th term of a discrete component between b_i and b_{i+1}, again using (1.6).

(III) $x \in Q'$. Take as y any element between b_i and b_{i+1} belonging to the Q' (of B).

Corollary. (i) $\mathfrak{A} \equiv \mathfrak{B}$, hence \mathfrak{B} is a model of T.

(ii) Let $y \in B$, $y = \langle i, 0 \rangle$, where $i \in I$. Then the prime ideal of $F_1(T)$ which is defined by y in \mathfrak{B} is non-principal.

Proof. Part (i) follows from the lemma and (3.1). For part (ii), let φ be an element of $F_1(T)$ satisfied by y in \mathfrak{B}. Let n be the number obtained for φ from (3.2). Put $k = 3^n$ and let $x \in Q'$ such that for no $z \in B'_0 \cup \ldots \cup B'_{k-1}, z$ is between x and y. Let χ be a formula with a single free variable which defines according to (2.3) x in \mathfrak{A} and hence in \mathfrak{B}. Then by the lemma and (3.2) y satisfies $\varphi \wedge \neg \chi$ in \mathfrak{B} while $\varphi \wedge \neg \chi$ is not equivalent in T with φ.

Finally let $i, j \in I$ and $i \neq j$, say $i < j$. Let $r \in Q$ with $i < r < j$. By (2.3), $\langle r, 0 \rangle$ is definable in \mathfrak{A} and hence in \mathfrak{B}, say by the formula χ. Then $\langle i, 0 \rangle$ satisfies $\exists v_1[v_0 < v_1 \wedge \chi(v_1)]$ in \mathfrak{B} while $\langle j, 0 \rangle$ does not. Hence the prime ideal defined by those elements are distinct.

This concludes the proof of the theorem. We may remark that every element of B is definable in B by formulas of $L_{\omega_1\omega}$.

Literature

