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ON THE PRINCIPLE OF EQUIVALENCE
OF SPARRE ANDERSEN

D.FOATA and M.P.SCHUTZENBERGER!

1. Introduction.

The present paper is concerned with the algebraic study of the so-
called equivalence principle of Sparre Andersen [1] and of the theorem
of Bohnenblust as presented by Farrell [3]. We recall the former in its
simplest form and, letting X be a set of » distinct real numbers, we con-
sider the set F' of the n! sequences obtained when permuting the ele-
ments of X in all possible manners. To each sequence f=(z;,2,,...,%,)
€F', {x,,x,,...,2,}=X, we associate the sequence of the n+1 partial
sums

8 =0, 8 =2,

8 = 81+, for k=2,...,n,
and we use it to define the following two numbers:

L(f) = the number of strictly positive terms in the sequence
(80,31,. o :s'n);

II(f) = the index of the first maximum among the terms of the same
sequence, that is, JI(f)=m iff s;<s,, for j<m and s;<s,, for
m=<j, mj=0,1,...,n.

Thus for any permutation fe F’, both L(f) and II(f) are natural
numbers at most equal to ». In general they are different but Sparre
Andersen has discovered the surprising fact that their distributions over
the n! permutations of F' are identical. This is essentially the equiv-
alence principle. One of the proofs is due to Richards (quoted by Baxter
in [2]). It consists in constructing a bijective map ¢ of F’ to itself that
is such that II(of)=L(f) identically.

Bohnenblust’s theorem is not so easy to state here but its proof in-
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volves a similar idea. In the present paper we give a common algebraic
formulation of both theorems and proofs and we exhibit a large class of
cases in which Richard’s construction leads to a generalized “Equiv-
alence Principle””. For this purpose we use the terminology of free
monoids. Given a set X we identify the finite sequences of (non neces-
sarily distinct) elements of X with the elements (the ‘“words”) of the
free monoid X* generated by X. Then a subset F’ of X* such that it
contains together with any of its members every word obtained by per-
muting its letters will be called an abelian subset of X*.

With these notations, instead of starting with a set of real numbers,
we consider an abstract set X, a fixed morphism o of X* into the addi-
tive group of R and we identify any word of length n, f=x,2,. .., € X*,
%y, %,. . ., %, € X, and the sequence (ox,,0,,. . .,0%,) of R*. The image by
o of the left factor f’ of length m f'=x,2,...2,, 0<m=n, of the word
f is precisely the partial sum ox; +oxy+ ... +ox,. The empty word e
is a factor of any word of X* and oe=0 since ¢ is a morphism.

Thus if PP* denotes the subsemigroup of X* consisting of all g e X*
such that og >0, we have that L(f) is simply the number of left factors
of f that belong to PP*.

Further, let 4* denote the set of all words f such that of’ < of for any
proper (that is, =+f) left factor f’ of f. For the corresponding sequence
of partial sums, this means that the maximum is reached at the last term.

It is clear that 4* is a submonoid of X* and that every word f has
one well defined left factor @ of maximum length in 4* (possibly, it is
the empty word e, corresponding to an empty sequence). The number IIf
is precisely the length of @ and we have now the terminology needed to
state with greater generality the

EQUIVALENCE PRINCIPLE OF SPARRE ANDERSEN. Let F', PP* and A*
be as above. There exists a bijection o: F' — F' such that II(of)=L(f)
tdentically.

The sets PP* and A* have been defined here with the help of the
morphism ¢. We shall see that this can be done for a larger class of
objects. Interestingly enough, the submonoids 4* which we shall en-
counter appear also in a quite different context as special instances of
“synchronising variable length codes” ([4], [6]).

2. F-partition and F-factorisation.

We consider a fixed set (‘“‘alphabet’”) X and the free monoid X*
generated by X. The empty word is noted e and XX*=X*\{e} is the
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free semigroup generated by X. More generally, for any subset S of XX*,
S* (resp. SS8*=_8%*\ {e}) denotes the submonoid (resp. subsemigroup)
of X* generated by S. If M is a submonoid of X*, the basis
(M {e}) \ (M \ {e})? of M, is the least subset of X X* that generates M.

We also consider a fized non empty abelian subset F of XX* having
the property (#):

(#) F contains every left and every right factor e of any of its
members.

DEerInNITION. 1. A pair (P*,Q*) of submonoids of X* is an F-partition
iff
FcPxu@*, O =FnP*nQ@*.

DEFINITION 2. A pair (4*,B*) of submonoids of X* is an F-factoriza-
tion iff every word f of F' has exactly one factorization f=ab with a € 4*,
b e B*.

In this section we discuss the relationship between F-partition and
F-factorization. The assumption (&) is only introduced for convenience
since we can always take the minimal abelian subset F satisfying (&)
and containing F. Then clearly any F-partition (F-factorization) is an
F-partition (F-factorization). Furthermore all our statements have a
trivial symmetric counterpart obtained by exchanging P* and @*, A*
and B* and left and right.

1. Let (A*,B*) be an F-factorization. Then A* satisfies the condition
acA* feX* afed*nF, imply feAd*.

ProorF. Let a and f as above. If f=e, the conclusion f € A* is trivially
verified. If f is not the empty word, we have fe F since F contains
every factor of its members. Since (4*, B*) is a F-factorization we have
f=a'b’ with o’ € 4*, b’ € B*.

Thus af=a" € A* and af=aa’b’. Because of the unicity of the fac-
torization, this implies b'=e, that is f=a' € 4*.

We call right F-prefiz any submonoid of X* that satisfies the condi-
tion stated in 1. and, we call left F-prefiz any submonoid B* that satis-
fies the symmetric condition b € B*, fe X*, fb e B*n F imply f e B*.

This terminology comes from the fact that, for F=XX*, the right
F-prefix submonoids are precisely the prefix submonoids of the theory
of variable length codes.
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2. Let A be the basis of a right F-prefix monoid A*. Every f€ F has
exactly one factorization in the form f=a,a,...a,c with m=0; a,,a,,.. .,
o, €A;ce X*¥NAX*

Proor. We proceed by induction on the largest m =0 such that
fe AmX*. If m=0, there is nothing to prove. If m >0, suppose f=a,9=
a,'g’ with a,,a," € A. One of a, and a,’ must be a left factor of the other,
say a,=a,'h, h € X*. We have a, € F, and since A* is right F-prefix,
it follows that % e 4*. By the hypothesis a,,a," € 4 =the basis of 4*;
this implies A =e that is a,=a,’.

3. A n.a.s.c. that (A* B*) be an F-factorization is that A* and B* be
submonoids that satisfy the following three conditions:

3.1. g=A*nB*nF;

3.2. A* is right F-prefix and B* is left F-prefix;

3.3. FcA*B*,

Proor. The necessity of these conditions follows from the definition
for 3.1. and 3.3. and from 1. for 3.2. To prove that they are sufficient
we have only to show that under 3.1., 3.2. and 3.3. any relation ab=
a'b' € F (a,a’ € A*, b,b' € B*) implies a=a’, b=>". Indeed, if ab=a'd’
the word ¢ must be a left factor of @’ or ¢’ must be a left factor of a,
say a=a'h for instance. Then b'=hb. We have h € {e}UF. Thus h e 4*
since A* is right F-prefix. Also h € B* since B* is left F-prefix. By
3.1. we conclude that h=e.

4. Let (A*,B*) be an F-factorization. Then:

4.1. Every right factor of a word of A*nF is in A*;

4.2. Every proper left factor of a word of AnF is in B*;
4.3. (BrA")nF<Aud?u...udA"uBuB2y...uB™, 0<n,m.

Proor. Consider a word a=fge A*nF. Clearly g is in 4A* if either f
or g is the empty word. If f and g are different from e, we have f,g e F
hence f=a'b’, g=a""b", a',a" € A*, b',b"" € B*. Further a’'b’'a’’ e F,
hence a’'b’a’’ =a,b,, a; € A*, b, € B*. Thus we can write a=ae € A*B*
and a=a,b,b"" € A*B*. Because of the unicity of the factorization, this
implies b,b" =e, that is g=a'’ € A* and it proves 4.1. In similar fashion,
we have b'a’’b” =a,b, € A*B*, and from a=ae=a'a,b, we conclude
that b,=e. Since g +e¢ and b"' =e, it implies a'’ +e, hence a, #¢ because
of b,=e. Thus a=a’a, belongs to the basis 4 only if a’=e, that is, only
if f=b" € B* and 4.2. is proved since the empty left factor of a obviously
belongs to B*.
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Now let a € A, b € B be such that ba € F. We have ba=a,b,, a; € A*,
bs € B*. By 4.1., either b;=e or b, is not a right factor of a,, that is, it
admits ¢ as a proper right factor. Symmetrically either a;=e or it
admits b as a proper left factor. Thus one of a; and b; must be the
empty word e. Suppose for instance b;=e. We can write a;=a’a’
where a’' € 4, o'’ € A*. By the symmetric version of 4.1. and ba=a,=
a’a’ we see that b must be a proper left factor of a’, that is o’ =bh, where
h +e and where h € A* by 4.1. However ba=bha’’ shows that a=ha'".
Since a € 4, 4.2. asserts that A € B or h=a. Since the first case is ex-
cluded, we have a=h, hence a”’ =e and finally ba=a’ € A. This proves

BAnF<AuB and 4.3. follows by induction on m and n.

Recall that two words g,g’ € X* are conjugate iff one can find b,k € X*
satisfying g=hh'; g'=h"h. Clearly conjugacy is an equivalence relation.
It is in fact the restriction to X* of the usual conjugacy relation in the
free group generated by X.

5. Let (A*,B*) be an F-factorization. A word fe F has a conjugate
in A* iff it has no conjugate in B*.

Proor. Let fe F. We have f=ab, where ae A*, be B*. By 4.3.
the conjugate ba of f belongs to A* or to B*. Thus it suffices to show that
none of the conjugates of a word a € A*nF belongs to B*. Indeed we
can write a=a,a,...a,, m>0, a,,a,,...,a, € 4, and any conjugate of a
has the form f'=h'a;, 1a;.5...0,0,0,...a;_1h, where b’ e and hh'=
a,€A. By 4.1. and 4.2. we know that A’ € A* and that » € BB* unless
h=e, in which case f’ € A*. Thus f' € A A* BB* & B*.

We now relate F-factorization and F-partition. To this effect, given
a submonoid M of X*, we call right (resp. left) associate of M the set of
all words in X* such that any of their right (resp. left) factors belongs
to M.

The reader can verify that the monoid 4* mentioned in the intro-
duction is the right associate of the monoid P*={e}u{fe X*: 0<af}.

6. The right associate of a submonotd P* is a right prefix monoid whose
basis A is such that X*\ AX* is contained in the submonoid (X* \ P*)*
generated by X*\ P*,

Proor. Let ¢ and o' belong to the right associate of P*. Any right
factor of aa’ is a right factor of a’ or a product ka' where % is a right
factor of a. Since P* is a monoid this shows that its right associate A*
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is also a monoid. Further 4* is right prefix since by definition it satis-
fies the stronger condition that f'f € 4* implies f € A* for any f,f’ € X*.
t Finally if fe XX*\ AX*, it does not belong to A*. Thus it has a
right factor f'’ e which belongs to X* \ P* and letting f=f'f" we have
also f’' € X*\ AX*. Induction on the length of f completes the proof.

7. A n.a.s.c. that (4%, B*) be an F-factorization s that there exists an F-
partition (P*,Q*) such that FnA* and FnB* coincide respectively with the
intersections with F of the right associate of P* and of the left associate of @*.

Proor. Let (4* B*) be an F-factorization; we set P* =the submonoid
generated by X*\ B* and @Q*=B*.

We have F'< P*u@*. Let f belong to FnP*. By the definition of P*
we have f=f\f,...f, where m>0 and f..f,,...,f,, € F\B* Since
(A*,B*) is an F-factorization we have f;=ab with a € 44* and b € B*.
Thus f € aA*B* and accordingly f ¢ B*. This proves that =FnP*nQ*
and consequently that (P*,Q*) is an F-partition.

The fact that B*nF is the intersection of F with the left associate of
@*(=B*) follows from the symmetric version of 4.1.

By 4.1. and A*nF < P*, A*nF is contained in the right associate of
P*, Finally let fe F belong to the right associate of P*. We have
f &€ A*BB* since every word of A*BB* has a right factor in B* and since
B*nFcF\P* Thus fe A* since f\ A*BB*<A* and the necessity of
the condition is proved.

Reciprocally let (P*,Q*) be an F-partition and let 4 and B be the basis
of the associated monoids. We show that (A4*,B*) satisfies the condi-
tions of 3.

First FnA*nB*<FnP*n@*. Since this last intersection is empty
this gives 3.1. Condition 3.2 follows from 6. and its symmetric. Thus to
verify 3.3 it suffices by induction on the length to consider a word f
satisfying the condition fe F\ AX* and to show that it belongs to B*.
Indeed, the condition f¢ AX* implies f' ¢ AX* for any left factor f’
of f. Thus, by 6., f and any of its left factors belong to (X*\ P*)*.
Since F \ P*<@* because (P*,@*) is an F-partition, we see that f and
any of its left factors belong to @*, that is, that fe B* by definition.

3. Richards’ construction.

We keep the same notations and the same set F. We let (P*,Q*) be
a fixed F-partition and (4*,B*) be the associated F-factorization.

We introduce the restrictive assumption that P*nF (hence @Q*nF)
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are abelian sets. (Counter examples show that Richards’ map g is not
always bijective without this hypothesis.)

DEeriNiTION 3. Let the map ¢ of {e}UF to itself be defined by induction
on the length by:

oe =e and for f = f'zeF, xeX,
of = xof' or = (of )x depending upon fe€ P* or fe @Q*.

8. The map g is a bijection.

Proor. It is clear that of is a word obtained by permutation of the
letters of f. Thus by our assumption that P*nF is abelian, f and of
always belong to the same monoid P* or Q*.

Assume the result proved for every word shorter than fe F. If of =
g € P*, we know that fe P* and there exists one and only one pair
(@,f") € X x X* such that g=xg’, ¢'=0f' and f=f'x. In similar fashion,
if of=g € @* we have f=f'x with of'z=g¢ in a unique manner.

9. For any f € F, the number L(f) of left factors in PP* of f is equal to
the length I1(of) of a in the factorization g=ab, a € A*, b € B*, of g=of.

Proor. The result is true for fe FnX and we can suppose that it is
proved for any word shorter than f.

Let f, be the left factor of maximal length of f that belongs to @* or
to P* depending upon f e P* or fe @*. If f=f,h, it is a straightforward
consequence of the definition of ¢ that of=hof; for fe P* and of=
ofih for f € Q*, where b=, %p_; ... %, if h=2,25...2,, m>0,2,,2,,. ..,
Z,, € X. Further any left factor A’ #e of k belongs to the same monoid
P* or @* as f does. Thus by our definition of 4* and B* as the asso-
ciated monoids of P* and Q*, we have h € A* (resp. h € B¥*) for fe P*
(resp. € @*). Now letting A% be the length of 4 and recalling 4, we have

L(f) = L(fy) + M and II(ef) = 2h+IT(efy) for feP*,
L(f) = L(f,), Mef) = M(ety) for fe @,

I

4. Concluding remarks.

This completes our proof of the generalized equivalence principle.
For F consisting of the words in which each letter of X appears at most
once, the reader will recognize in P*n F the set ¢~10 of Bohnenblust and
Farrell, for a function ¢ taking only values 0 or 1. The general case
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follows since one can always represent the “set function” & used by
these authors as finite sums ¢=3r;e; where r; is real and the range of
the set function ¢; is the set {0,1} for all 4.

For this reason it would be quite interesting to be able to give ex-
plicitly all the abelian F-partitions of an arbitrary abelian subset F con-
taining the factors of its members. We limit ourselves here to the case
of F=XX*, that is to the case where Richards’ construction gives the
validity of the equivalence principle for any abelian subset of X*. To
simplify notations we suppose Card X =k finite and we recall Hahn’s
Theorem [5].

THEOREM. Let M be a submonoid of R* and < a total preorder on M.
There exists a morphism v: R¥ — R* and a lexicographic order < on R¥
such that for m,m’ € M one has m <m' iff vm <vm'.

We prove

10. A n.a.s.c. that (P*,Q*) be an abelian XX*-partition is that there
exists a morphism u of X* into the additive group R* and a lexicographic
order < on R¥ such that P*={fe X*: 0<f}; QQ*={fe X*: uf <0}.

Proor. The condition is sufficient. Any lexicographic order < on R¥
is compatible with the additive group structure (that is, <7’ implies
r+r" <r'+r", identically for », #', " e€R¥). Thus in particular
{reR¥: 0<r} (=R;) and {r e R¥: r<0} (=R,) are respectively a sub-
monoid and a subsemigroup. These two sets are disjoint and, since <
is a total order, their union is R*. It follows that P*=yu-!'R, and @*=
u 1R, satisfy P*n@*={e} and P*u@Q*=X*. Finally, P* and @* are
abelian subsets since they are inverse images by a morphism u into a
commutative monoid.

The condition is necessary. Let « be the canonical homomorphism
of X* onto the free abelian monoid X+ generated by X and suppose
that the abelian submonoids P* and Q* give an X X*-partition. Then
aP* and «@Q* are submonoids of X+ such that aP*ux@*=X* and
aP*na@*={0}. Thus we are left to show that there exists a morphism
6: X+ > RF and a lexicographic order < on R* such that «P*=
{ae X+:0<0a} and «Q*\ {0}={z € X+: 6a<0}. First we define a bi-
nary relation < on X+ by letting a <a’ iff for any b€ X+, a+b € «P*
implies a'+b € «P*. Clearly < is a preorder and we can then find a
morphism 6: X+ — R* and a preorder < on R* such that a <a’ iff 0a < 6a’
in Rk,

Now we have aP*={a€ X+:0<a} since on one hand, 0<a and
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0 € oP* imply a+0 e xP* proving {a € X+: 0<a}<«P* and on the
other hand, for any ¢ € xP* we have 0<c because 0+b € xP* implies
beaP* and c+b e xP*. Thus we can write «P*={a € X+: 0<0a} and
we have only to show that the preorder < (on X+, hence on RF) is total.
Again this is equivalent with the statement that for a,a’ € X+, not
a<a' implies a’ <a that is a+b € «P* for any b such that a’' +b € aP*.
Suppose not a<a’ and a’+b € «P*. The first relation entails the exis-
tence of at least one ¢ € X+ such that a +c¢ € «P* and a’ +¢ ¢ «P*. Thus
a'+b+a+ceaP*. Since a’+c ¢ aP* implies a’ +¢ € x@Q*\ {0} and since
«@* is a submonoid we cannot have a+0b € xQ* because it would give
@’ +b+a+ceax@*\ {0} in contradiction with a'+b+a+ce«P* and
the relation «P*na@* = {0}.
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