MATH. SCAND. 28 (1971), 257—264

EXISTENCE OF CONDITIONAL PROBABILITIES

J. HOFFMANN-JORGENSEN

1. Introduction.

Let (2,%,P) be a probability space, (S,2) a measurable space and
p a measurable map from (£2,%) into (S,2). Given p we then want to
construct a regular conditional probability of P, that is, we want to con-
struct a map, R, from %A x 8 into [0, 1] satisfying

(1) R(-,s) is a probability measure on (2,%) Vse S,

(2) R(4,-) is a @-measurable map VA e U,

(3) P(Anp-i(B)) = fR(A,s) Qs) VBeX VAeU,
B

where @ =p- P, that is, @ is the image measure of P under p. Sometimes
it is useful to demand that R has the following additional property

(4) R(p~(s),s) = 1 Ysep(Q).

It is known (see for example [2, p. 370]) that it is not always possible
to construct regular conditional probabilities. So one has to put re-
strictions on the probability space (£, %, P) in order to derive the desired
result. In this connection the notion of regularity of P plays an essential
role.

Suppose that 2 is a Hausdorff space, A a o-algebra in 2, and P a
probability measure on (£2,%). Then P is called regular if for all A we
have P(A) = sup {P(K) | K compact, Kc 4, K eU}.

It is well known that, if P is regular and 9 is countably generated, then
a regular conditional probability exists for an arbitrary measurable
map p.

A. and C. Ionescu Tulcea have recently proved that a regular condi-
tional probability exists, if £ and S are locally compact spaces, P is
regular, and 9 and X' are the Baire o-algebras (that is the o-algebras
generated by the compact %,-sets in £ and S, respectively). See [I,
Theorem 5 on p. 150].
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The aim of this paper is to show that a regular conditional probability
exists whenever 2 is a Hausdorff space and P is a regular probability
measure on (2,%(R2)), and to find conditions which assure that (4) can
be obtained.

The tool of the proof is the notion of a lifting. Let (8,2, u) be a posi-
tive measure space, and let 2, denote the Lebesgue extension of X' with
respect to 4. Then we introduce the following spaces:

L (u)=the space of all u-measurable, u-essentially bounded real func-
tions on S. In this space two functions are identified if they coincide
p-a.e.

B(8,ZX,) =the space of all 2 -measurable, bounded real functions on S.
In this space no identification is made.

In L_(n) we introduce an ordering <, by saying f<g, if and only if
f(s)=g(s) for u-a.e. s €8, and a norm is introduced by the formula

Ifll6 = m—esssupyes|f(s)]  Vf€ Le(u) .

In B(8,2,) we introduce an ordering <, by saying f<g, if and only
if f(s)=g(s) Vs €8, and a norm is introduced by the formula

Iflec = suPseslf(s)l  VfeB(S,Z,) .

A lifting of L (u) is then a map, I, from L,(u) into B(S,Z,), which
satisfies

(8) Uf) < Ug) if f<g pae.,

(6) k) = al(f)+0bl(g) if h = af+bg u-a.e.,
(7) Ur) = U(f)-Ug) if h=fg p-ae.,

(8) W) =1 if h =1 p-ae.,

(9) I(f)=f pae..

Notice that a lifting becomes an isometric order and algebra isomorphism
from L,(u) onto a subspace of B(S,Z,). It is well known (see for ex-
ample [4]) that a lifting for L_(u) exists whenever y is g-finite.

2. Some properties of liftings.

In this section (8,Z2,@Q) will denote a probability space, and ! a lifting
on L (@). The image in B(S, ZQ) of L (Q) under ! is denoted by 2.

It is well known that (L,(Q), <) is a complete vector lattice (see for
example Corollary 7 of [5, IV. 11]) Hence (&, <) becomes a complete
vector lattice.
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If L, is a subset of % which is bounded above, we define V(L,)=
V{f | f € Ly} to be the lattice supremum of L, in £, and we define

sup (Ly)(s) = sup{f(s) |fe Ly} VseSl.
Our first lemma explores the connection between V and sup.
Lrmma 1. Let Ly be a subset of &£ which is bounded from above. Then

(a) sup(Ly) < V(L,) everywhere on S,
(b) sup(Lg) ts u-measurable, and

sup(Ly) = V(L,) u-ae..

Proor. Let hy=V(L,) and h,=sup(L,). Then hy(s)=f(s) YseS
VfeL,, hence hy>h, everywhere on S, and so (a) is proved
By Corollary 7 in [5, IV.11], there exists {f,}<L,, such that

ho = v{fn|ngl}

Put hy=sup{f, |n=1}. Then obviously h,<h,<h, everywhere on S,
and h, is p-measurable. So it suffices to show that h,>h, u-a.e.. Now
hy>f, ¥n21, and so I(h,) > f, everywhere on S ¥7n > 1, which means that
l(hg) = hy. But this 1mp11es that hy >k, u-a.e., and the lemma is proved.

LemMma 2. Let Ly be a subset of L, which is bounded and filtering to the
right, that is

(a) Vf.ge LyAh € Ly, such that h>sup(f,g).

Then
fsup(Lo) dQ = sup de@ |feL0}.
8 K]

Proor. By Corollary 7 in [5, IV.11], we can find {f,}< L,, such that
V(L) = V{fy |n21} = hy.

By assumption (a) it is no loss of generality to assume that f,<f,....
By Lemma 1, we have that

sup (L, ) = h = Supnfn = hmnfn p-a.e.

So by Lebesgue’s dominated convergence theorem we have that
f sup(Lo) 4@ = lim_, f £,4Q < sup l f FaQ|fe Lol,
K] 8 5

and since the converse inequality is trivially true, the Lemma is proved.
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3. Existence of regular conditional probabilities.
We are now ready to prove the main theorem of this paper.
THEOREM 1. Let 2 be a Hausdorff space, A=RB(2), P a regular prob-
ability measure on (2,U), (S,2) a measurable space and p a measurable
map from (2,U) into (S,X). We put @Q=p-P. Then there exists a map, R,
Jrom B(Q)x 8 into [0,1], such that

(a) R(-,8) is a regular probability measure on (2,A)Vse S,
(b) R(A,") s @-measurable VA € ¥,

(c) f R(4,s) Q(ds) = P(Anp-'(B)) VAeUAVBeZ.
B

Proor. First we suppose that 2 is compact. If fe C(2), we define

1/(B) = f f(w) Pdw) VBeX.
p~X(B)

Then u, is a finite signed measure on (8,2), such that u, is absolutely
continuous with respect to @, f~> u, is linear and positive, and
(10) lusd(B) < [flo@(B) VfeC@)VBelX,
(11) H1g = Q ’
where |u,;| denotes the total variation of u;. Now let p(s,f) be a Radon-
Nikodym derivative of u, with respect to @, and let I be a lifting of

L. (Q). By (10) we then see that p(-,f) is u-essentially bounded by ||f||.
Hence we may define

p(-.f) = Up(-.f)) Vfel@Q).

From the properties of u, it follows that 7(s, ) is a positive continuous
linear functional on C(2) for each s € 8, and furthermore

p(s,1p) =1 Vsel,
P < Ifle VseSVfeC(Q).

Hence there exists a regular probability measure R(-,s) on (2,%), such
that

(12) f f(0) Bdw,s) = B(s,f) VseSVfeC@),

Q

13)  [f() glp(w) Pdo)

- f g(s) f f(®) R(dw,s) Q(ds) VfeC(R)Vge B({S,Z2).
S 0
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We now show that R has the properties (a), (b) and (c) of the theorem.
By the very definition of R, we see that R satisfies (a).
Let & be the class of all bounded real Borel functions, f, on 2, satis-

fying
(14) f f(w) R(dw, ) is @-measurable,

(15) g [#(0) Rido,s) @s) = [1-gop) AP Vg e BHS.2).
s Q X

Q
First we notice that C(2)=%. Let U be an open subset of 2. We shall
then show that 1, € #. Let g € B+(8,2) and put
= {feC@)|0=f<1y},
G* = {p(-./) Ug) | fe ¥}
Then ¢ and @* are families of functions, which are filtering to the

right and bounded above, so by regularity of R(-,s) and g(p(w))P(dw),
we find that

(186) R(U,s) = sup{p(s.f) |fe ¥} VseSlS,
(17) fgode = sup{ff-(gop)dPlfe ?},
U °

since 1;; =sup (%) and ¢ consists of continuous functions (see for example
[3,1I, Theorem 35]). Now we notice that

P(NUg) € ULo(@))  for all fe C(2)

so by Lemma 1 and (16), 1, satisfies (14), and by Lemma 2 we have

fg R(U,s) Q(ds) —sup“g p(s,f) Q(ds) Ing}
Inserting (13) and (17) in this we find that
fgode fg R(U, s) Q(ds)

which means that 1, satisfies (15). That is, 1y € #.
Now & is obviously a linear space which is closed under pointwise uni-
formly bounded sequential convergence, and so from Theorem 20 in

[3,1I] it follows that % contains all bounded Borel measurable functions
on 0.
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This proves Theorem 1 in the case that £ is compact. In the general
case we choose compact sets K,cK,c...<K,<..., such that
P2\ K,) >0 as n > co. The argument above shows that there exist
positive measure kernels R,, such that for n>1

(18)  R,(-,s) is a positive regular measure on (2,%(Q)) ¥s€ S,

(19) R,(2,s) = R,(K,,s) = P(K,) VseS,

(20) R, (4, ") is @-measurable VA € #(Q) ,

(21) f R,(A,5) Qds) = P(K,nAnp(B) VAecBQ)VBeX,
B

(22) f f() Ry(dw, ) e YL (Q) Vfe O(K,).
o2

Let n21 and let fe B+(Q2,%(2)), such that f|K,,, is continuous.
Then

FdP
Knnp~X(B)
fdp

Kp1np~UB)

- [ @) [ 1(@) Byfdo,s)
B 2

[ @ds) [ (@) Bydor,s)
B Q

IIA

for all Be 2. This shows that

[1@) Budo,s) < [£(@) Byldo,s)  Qae.

But from (22) one deduces that this inequality holds everywhere on S.
So by (18) and (19) we find that

R, (A,s) £ R, ,(A,s) VseSVYAeHR).
Now put R(4,s)=lim R,(4,s) for se 8, 4 € #(2). Then it is easily

Nn—>00""n

checked that R has the properties (a), (b) and (c) of Theorem 1.

THEOREM 2. Let (2,U,P) be a probability space, (S,2) a measurable
space and p a measurable map from (2,A) into (S,X). Suppose that a
reqular conditional probability, R, of P given p exists, and that the graph
of p defined by

@(p) = {(,p(0) |0 € 2}

belongs to the product o-algebra A x X. Then we have (@ denotes the tmage
measure: p- P)
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(a) p(2) is Q-measurable, and has Q-measure 1,

(b) {s}€Z Vsep@),

(c) R(p~(s),s)=1 Q-ae.,

(d) There exists a regular conditional probability, R,, of P given p,
such that

Ry(p~Y(s),s) =1 Vsep).
Proor. If A<Q xS, then we define
A'(s) = {wel|(w,s)eA} VseS,
A" (w) = {se8|(w,8)eA} VYwef.

It is well known that if 4 e Ax 2, then 4A'(s) e U VYse S, and 4" (w) €
2 Yo e, and that

f R(A'(s),5) Q(ds) = P(w € 2 | (w,p(w)) € 4) .
S

Now put 4 =G(p). Then 4" (w)={p(w)}, and A’(s)=p-(s), hence (b)
is proved. Furthermore R(p-(s),s) is @-measurable, and

j R(p-(s),s) Q(ds) = 1.
S

That is, (c) is proved. Let
Sy = {s€ 8| R(p~(s),s)=0}.

Then 8, is @-measurable, @(S,)=0 and S\ p(2)<=S,, which proves (a).
Since (d) is a trivial consequence of (a) and (c), the theorem is proved.

THEOREM 3. Let (2,U) and (S,2) be measurable spaces and p a measur-
able map from (2,N) into (S,2). Put Sy=p(L2), and define the graph of p by

G(p) = {(0,p(@)) |0 2}.
Then the following b statements are equivalent:

(a) 3{B,} <=2, such that if s,=%s,, s, €Sy, then s, € B,, s, ¢ B, for some
n=1.

(b) 3f a measurable map from (S,2) into [0,1], such that f(s;)=f(s,)
if 8, €8, and 8y%s;.

(¢) ICS(SN\Sy) x (S\8y), such that AguUCeXxZ, where Ag =
{(0,6) | s 8.

(d) G(p)e Ax 2.

(e) 3 a sub o-algebra X, of X, such that X, is countably generated and
{s}eXyVsel§,.
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RemARks. (i) From (b) it follows that the cardinal of S, is at most
that of the continuum, if G(p) e Ax 2.

(ii) If Ag={(s,s) |seS}e2xZ, then (c) and so (a), (b), (d) and (e)
holds.

PRroOF OF THEOREM 3.
(a) = (b): Let

f(s) = 2101 (s), sef.
n=1
Then f satisfies the hypothesis of (b).
(b) => (¢): Let 4 be the diagonal of the unit square: [0,1] x [0,1], and
put
F(s,t) = (f(s),f(t), se8,teS.

Then F-(4) is of the form Ag UC, for some C<=(S\8,) x (S\8).
(c) = (d): Let
9(w,8) = (8,p(w)), s€8, wef.

Then ¢-1(Cudg)=G(p), if C is the set in (c).
(d) = (e): Since Ax 2 is generated by the sets A x B, with A e
and B e X, we can find {4,}<% and {B,}<Z, such that

Q(p) € o{d,xB,} = Axo{B,},

where o{%} denotes the least o-algebra containing &%, when % is a
family of subsets of a given set. Put 2y=¢{B,}. Then 2, is countably
generated and
G(p)'(w) = {plw)}eZ, Ywel

which proves (e).

(e) = (a): Let {B,} be a countable algebra generating X,. Then it is
easily seen that, since {s} € 0{B,} Vs € 8,, {B,} has the required property
in (a).
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