# THE MULTIPLIERS FOR FUNCTIONS WITH FOURIER TRANSFORMS IN $L_n$

#### R. LARSEN

#### 1. Introduction.

In a previous paper [12] the author, together with T. S. Liu and J. K. Wang, began the study of certain subspaces of the group algebra  $L_1(G)$  of a locally compact Abelian group G. These subspaces  $A_p(G)$ ,  $1 \le p < \infty$ , were defined to be the spaces of all  $f \in L_1(G)$  whose Fourier transforms  $\hat{f}$  belong to  $L_p(\hat{G})$ , where  $\hat{G}$  denotes the dual group of the locally compact Abelian group G and  $L_p(\hat{G})$  is the space of complex valued functions on  $\hat{G}$  whose pth powers are integrable with respect to Haar measure on  $\hat{G}$ . If for each p,  $1 \le p < \infty$ , we set

$$\|f\|^p = \|f\|_1 + \|\hat{f}\|_p, \quad f \in A_p(G)$$
,

where

$$||f||_1 = \int_G |f(t)| \ dt \,, \quad ||\hat{f}||_p = \left(\int_{\hat{G}} |\hat{f}(\gamma)|^p \ d\gamma\right)^{1/p},$$

and dt and  $d\gamma$  denote integration with respect to Haar measures on G and  $\widehat{G}$  respectively, then  $A_p(G)$  is a Banach algebra with the indicated norm and the usual convolution product. It is then possible to study the relationship between various Banach algebra properties of  $L_1(G)$  and  $A_p(G)$ ,  $1 \leq p < \infty$ , as was done in [12]. Since the appearance of [12] a number of writers have further investigated the algebras  $A_p(G)$  or their generalizations [6], [8], [9], [10], [11], [13], [14], [15], [16], [19]. In particular, we asserted in [12] that if G is a noncompact locally compact Abelian group, then the multipliers for the algebras  $A_p(G)$ ,  $1 \leq p < \infty$ , correspond precisely to the Fourier–Stieltjes transforms of bounded regular Borel measures on G, that is, the multipliers for  $A_p(G)$  are the same as those for  $L_1(G)$  [17, p. 73]. The proof of this assertion given in [12] is defective, but a correct proof has subsequently been given in [6]. However, as indicated in [12], when G is compact there in general exist multipliers for  $A_p(G)$  different from those defined by Fourier–Stieltjes

Received March 1, 1968; in revised form January 20, 1970.

transforms of measures. The main purpose of this article is to investigate more fully the nature of the multipliers for  $A_p(G)$ ,  $1 \le p < \infty$ , when G is a compact Abelian group.

Let us first recall that a multiplier for  $A_p(G)$  is a bounded linear operator T on  $A_p(G)$  which commutes with translation, that is,  $T(\tau_s f) = \tau_s(Tf)$  for each  $f \in A_p(G)$  and  $s \in G$ , where  $\tau_s f(t) = f(ts^{-1})$ . Clearly the translation operators  $\tau_s$  are themselves multipliers of norm one. Since  $A_p(G)$  is semi-simple [12] to each multiplier T there corresponds, a unique bounded continuous function  $\varphi$  on  $\widehat{G}$  such that  $(Tf)^* = \varphi \widehat{f}$  for each  $f \in A_p(G)$  [18, p. 1135]. It is well known that these two descriptions of a multiplier are equivalent and so we shall interchange them at will.

When G is compact and  $1 \le p \le 2$  it is elementary to prove that every bounded function  $\varphi$  on  $\widehat{G}$  defines a multiplier for  $A_p(G)$ . But if p > 2 the subspace of  $A_p(G)$  whose Fourier transforms are invariant under multiplication by all bounded functions is the space  $A_2(G)$ , and this implies that not every bounded function defines a multiplier for  $A_p(G)$ . In this case, however, we shall show that the space of multipliers for  $A_p(G)$  is linearly isomorphic to a proper subspace of the space of pseudomeasures on G [1], [2], [3], and that this subspace properly contains the space of all bounded regular Borel measures on G. Finally, for each p > 2 we shall norm the linear space  $A_1(G)$  in such a way that its completion is a Banach space of continuous functions such that there exists a continuous linear isomorphism from the space of multipliers for  $A_p(G)$  onto the dual space of this Banach space.

Throughout the paper  $M_p$  will denote the Banach space of multipliers for  $A_p(G)$ ,  $1 \leq p < \infty$ , and  $\|T\|_p$  will denote the norm of the multiplier T as an operator on  $A_p(G)$  [18]. C(G) is the space of complex valued (bounded) continuous functions on the compact group G, and  $L_p(G)$ ,  $1 \leq p < \infty$ , the space of complex valued functions on the compact group G whose pth powers are integrable with respect to Haar measure on G. If  $S \subset L_1(G)$ , then  $\hat{S}$  will denote the set of Fourier transforms of elements of S. It will always be assumed that the Haar measures on G and  $\hat{G}$  are chosen in such a way that the Fourier inversion formula is valid. General results from harmonic analysis which are used in the body of the paper can all be found in [17].

REMARKS. a) We collect here several facts about the spaces  $A_p(G)$  which we shall use in the sequel, generally without explicit reference. If G is compact it follows from [12] that  $A_2(G) = L_2(G)$  as linear spaces, and applications of the Hausdorff-Young Theorem [20, p. 190] reveal that for 1 < p' < 2, 1/p' + 1/p = 1, we have

$$A_1(G) \subset A_{p'}(G) \subset L_p(G) \subset L_2(G) = A_2(G) \subset L_{p'}(G) \subset A_p(G) \subset L_1(G) \ .$$

In general, if q < p, then  $A_q(G)$  is a norm dense ideal in  $A_p(G)$  [12]. It is also easy to establish that as linear spaces  $M_p \subset M_q$  when q < p. Finally, for compact G, it is easily seen by means of the Fourier inversion formula that  $A_1(G) = \widehat{L}_1(\widehat{G}) \subset C(G)$ .

Moreover  $A_1(G)$  is supremum norm dense in C(G) and  $\widehat{A}_1(G)$  is norm dense in  $L_n(\widehat{G})$ ,  $1 \le p < \infty$ .

b) If G is finite, then  $\widehat{G}$  is finite, and it is evident that  $L_1(G) = A_n(G)$ ,  $1 \le p < \infty$ . In this case nothing remains to be examined. However, this is the only instance in which the spaces  $A_n(G)$  and  $L_1(G)$  are identical when G is compact. More generally the following easily established theorem is valid.

THEOREM 1. Let G be a locally compact Abelian group. Then the following are equivalent.

- (i) G is nondiscrete.
- (ii)  $A_n(G) \neq L_1(G), 1 \leq p < \infty$ .
- (iii)  $A_p(G) \neq A_q(G)$ ,  $1 \leq p, q < \infty$ ,  $p \neq q$ .

Thus we shall restrict our attention to *infinite* compact Abelian groups.

## 2. Spaces invariant under multiplication by bounded functions.

It is well known that every bounded measurable function  $\varphi$  on  $\widehat{G}$ defines a multiplier for  $L_2(G)$  [4, p. 496], and hence, when G is compact, for  $A_2(G)$ . Moreover an elementary argument shows that, if  $\varphi$  defines a multiplier for  $A_2(G)$ , then it does so also for  $A_p(G)$ ,  $1 \le p < 2$ . Thus we obtain the following theorem.

Theorem 2. Let G be an infinite compact Abelian group. Then every  $\varphi \in C(\widehat{G})$  defines a multiplier for  $A_p(G)$ ,  $1 \le p \le 2$ .

Since, as noted previously, every multiplier for  $A_n(G)$  corresponds to a bounded continuous function, the preceding theorem shows that the multipliers for  $A_n(G)$ ,  $1 \le p \le 2$ , correspond precisely to  $C(\widehat{G})$  when G is compact.

The situation for p > 2 and compact G is quite different. In this case we set

$$\big(A_p(G)\big)_0 \,=\, \{f \,\big|\, f \in A_p(G), \ \varphi\widehat{f} \in \widehat{A}_p(G), \ \varphi \in C(\widehat{G})\}\;,$$

and prove the following result.

Theorem 3. Let G be an infinite compact Abelian group and p>2. Then  $(A_p(G))_0=A_2(G)=L_2(G)$ .

PROOF. Let  $f \in (A_p(G))_0$ . Then  $f \in L_1(G)$  and  $\varphi \widehat{f} \in \widehat{A}_p(G) \subset \widehat{L}_1(G)$  for each  $\varphi \in C(\widehat{G})$ . However, the set of such functions in  $L_1(G)$  is precisely  $L_2(G)$  [7, p. 244], and hence  $(A_p(G))_0 \subset L_2(G)$ . Conversely, if  $f \in L_2(G) = A_2(G)$ , then by the preceding result  $\varphi \widehat{f} \in \widehat{A}_2(G)$  for each  $\varphi \in C(\widehat{G})$ . But  $\widehat{A}_2(G) \subset \widehat{A}_p(G)$  and so  $A_2(G) \subset (A_p(G))_0$ .

Therefore  $(A_p(G))_0 = A_2(G) = L_2(G)$ .

COROLLARY. Let G be an infinite compact Abelian group and p > 2. Then not every function  $\varphi \in C(\widehat{G})$  defines a multiplier for  $A_n(G)$ .

### 3. Multipliers, measures and pseudomeasures.

As indicated previously, when G is compact the linear space  $A_1(G) = \hat{L}_1(\hat{G})$ . This linear space is a Banach space when equipped with the norm  $\|f\|_A = \|\hat{f}\|_1$ ,  $f \in \hat{L}_1(\hat{G})$ , and its dual space is the space of pseudomeasures on G, which we denote by P(G) [3, p. 259]. The next result asserts that for p > 2 the space of multipliers  $M_p$  can be identified with a subspace of P(G). Notation and results on pseudomeasures used below can all be found in [3].

Theorem 4. Let G be an infinite compact Abelian group and p > 2. Then there exists a continuous linear injective mapping from  $M_p$  into P(G).

PROOF. Let  $T\in M_p$ . Since  $C(G)\subset L_2(G)=A_2(G)\subset A_p(G)$  we see that T defines a linear mapping from C(G) to  $L_1(G)$  which commutes with translation. Furthermore, suppose  $f_n$ ,  $f\in C(G)$  and  $\lim_n \|f_n-f\|_\infty=0$ , where  $\|\cdot\|_\infty$  denotes the usual supremum norm in C(G). Because G is compact it follows that  $\lim_n \|f_n-f\|_1=\lim_n \|f_n-f\|_2=0$ , and hence by the Plancherel Theorem  $\lim_n \|f_n-f\|^2=0$ . But p>2 implies that  $T\in M_2$ , and so  $\lim_n \|Tf_n-Tf\|^2=0$ , from which we conclude that  $\lim_n \|Tf_n-Tf\|_1=0$ . Thus the mapping defined by T is continuous.

Consequently there exists a unique pseudomeasure  $v \in P(G)$  such that Tf = v \* f for each  $f \in C(G)$  [3, p. 260]. Define  $\alpha(T) = v$ . Clearly  $\alpha$  is a linear mapping from  $M_p$  into P(G). That  $\alpha$  is injective follows immediately from the denseness of  $A_1(G)$  in  $A_p(G)$ . Moreover, since for each  $\gamma \in \widehat{G}$  the Fourier transform of the continuous character  $(\cdot, \gamma)$  is the characteristic function of the set  $\{\gamma\}$ , and  $T(\cdot, \gamma) = \varphi(\gamma)(\cdot, \gamma)$  where  $\varphi \in C(\widehat{G})$  is the unique function for which  $(Tf)^{\hat{}} = \varphi f$  for each  $f \in A_p(G)$ , we see that

$$\begin{split} |\hat{\nu}(\gamma)| &= \|\hat{\nu}(\cdot, \gamma)^{\hat{}}\|_{\infty} \\ &\leq \|\nu * (\cdot, \gamma)\|_{1} = \|T(\cdot, \gamma)\|_{1} = |\varphi(\gamma)| \leq \|\varphi\|_{\infty} \leq \|T\|_{p} \;. \end{split}$$

The validity of the last inequality follows from [18, p. 1135] and the semisimplicity of  $A_p(G)$ . But the Fourier transform for pseudomeasures is an isometry [3, p. 260], and hence

$$\|\alpha(T)\|_P = \|\nu\|_P = \|\hat{\nu}\|_{\infty} \le \|T\|_p$$
 ,

where  $\|\cdot\|_P$  denotes the norm in P(G).

Therefore  $\alpha$  is a continuous linear injective mapping from  $M_p$  into P(G).

Remarks. a) The norms  $\|\cdot\|_A$  and  $\|\cdot\|^1$  on  $\hat{L}_1(\hat{G})$  are obviously equivalent.

- b) The mapping  $\alpha$  from  $M_p$  to P(G) is not surjective. As if it were, then since the Fourier transform of pseudomeasures maps P(G) onto  $C(\widehat{G})$  [3, p. 260], as G is compact, the composition of the Fourier transform with  $\alpha$  would produce a surjective mapping from  $M_p$  onto  $C(\widehat{G})$ . That is, every function in  $C(\widehat{G})$  would define a multiplier for  $A_p(G)$ , thereby contradicting the Corollary to Theorem 3.
- c) On the other hand, the subspace  $\alpha(M_p)$  of P(G) properly contains the space M(G) consisting of all bounded regular Borel measures on G. Thus, when p>2 there exist multipliers for  $A_p(G)$  which are not defined by the Fourier-Stieltjes transform of any bounded regular Borel measure on G. To see this, given p>2, set m=p/2, n=m/(m-1), and choose r such that 0< r<2 and rn>2. Let  $E \subseteq \widehat{G}$  be any infinite Sidon set [17, p. 120] and choose  $\varphi \in C(\widehat{G})$  such that
  - i)  $\varphi(\gamma) = 0$ ,  $\gamma \notin E$ ,
  - ii)  $\sum_{\gamma} |\varphi(\gamma)|^2 = \infty$ ,
  - iii)  $\sum_{\gamma} |\varphi(\gamma)|^{rn} < \infty$ .

It is easy to see that such choices can always be made. An application of Hölder's inequality shows that  $\varphi \hat{f} \in L_2(\hat{G}) \subset L_p(\hat{G})$  for each  $f \in A_p(G)$ , and so  $\varphi$  defines a multiplier for  $A_p(G)$ . However,  $\varphi \neq \hat{\mu}$  for any  $\mu \in M(G)$  because  $\varphi$  is a Fourier–Stieltjes transform if and only if  $\sum_{\gamma} |\varphi(\gamma)|^2 < \infty$  [2, p. 841].

## 4. The space $B_p(G)$ .

In the preceding section we saw for p>2 that  $M_p$  is linearly isomorphic to a proper subspace of the continuous linear functionals on a certain Banach space of continuous functions. However, it is not imme-

diately obvious whether  $M_p$  can be considered as a dual space of such a Banach space. The development of this section will show that this is indeed possible. We begin by defining the normed spaces of continuous functions  $B_p(G)$ , and shall ultimately prove that there exists a continuous linear isomorphism from  $M_p$  onto  $B_p'(G)$ , the dual space of  $B_p(G)$ . Furthermore we shall show that the completion  $\overline{B}_p(G)$  of  $B_p(G)$  can be considered as a Banach space of continuous functions.

Consider a fixed p>2. For  $T\in M_p$  we shall denote by  $\varphi$  the unique function in  $C(\widehat{G})$  such that  $(Tf)^{\hat{}}=\varphi\widehat{f}$  for each  $f\in A_p(G)$ . If  $T\in M_p$ , then for each  $f\in \widehat{L}_1(\widehat{G})$  we set

$$\beta(T)(f) = \int_{\widehat{G}} (Tf)^{\hat{}}(\gamma) \ d\gamma = \int_{\widehat{G}} \varphi(\gamma) \widehat{f}(\gamma) \ d\gamma \ .$$

For  $f \in \hat{L}_1(\hat{G})$  we define

$$\|f\|_{B} \, = \, \sup \, \big\{ |\beta(T)(f)| \, \, \big| \, \, T \in M_p, \, \|T\|_p \, {\leq} \, 1 \big\} \, .$$

These definitions make sense as  $M_p \subset M_1$ .

It is routine to verify that  $\|\cdot\|_B$  is a norm on  $\widehat{L}_1(\widehat{G})$ , and the normed linear space so obtained will be denoted by  $B_p(G)$ . Moreover, from the preceding definitions it is apparent that each  $\beta(T)$  defines a continuous linear functional on  $B_p(G)$ . Thus  $\beta$  defines a mapping from  $M_p$  into  $B_p'(G)$ . It is not difficult to show that  $\beta$  is a continuous linear injective mapping from  $M_p$  to  $B_p'(G)$ . For example, if  $f \in B_p(G)$ , then

$$|\beta(T)(f)| = \left| \int_{\widehat{G}} (Tf)^{\hat{}}(\gamma) \, d\gamma \, \right| = \left| ||T||_{p} \int_{\widehat{G}} (Tf)^{\hat{}}(\gamma) / ||T||_{p} \, d\gamma \, \right|$$
$$= ||T||_{p} |\beta(T/||T||_{p})(f)| \le ||T||_{p} ||f||_{B} .$$

Hence  $\|\beta(T)\| \le \|T\|_p$ , where  $\|\cdot\|$  denotes the norm in  $B_p'(G)$ . The theorem we wish to establish is the following one.

Theorem 5. Let G be an infinite compact Abelian group and p > 2. Then  $\beta$  is a continuous linear bijective mapping from  $M_p$  to  $B_{p'}(G)$ .

In light of the preceding discussion we need only prove that  $\beta$  is surjective. Before turning to the proof proper of this fact we shall establish several technical lemmas.

LEMMA 1. Let G be an infinite compact Abelian group, p>2 and  $f,g\in B_p(G)$ .

- (i) If  $1 \le r \le \infty$  and 1/r + 1/r' = 1, then  $||f * g||_B \le ||\hat{f}||_r ||\hat{g}||_{r'}$ .
- (ii)  $||f*g||_B \leq ||f||^p ||g||_{\infty}$ .

PROOF. Clearly  $f*g \in B_p(G)$  as  $\hat{L}_1(\widehat{G}) = A_1(G)$  is an algebra under convolution. Using [18, p. 1135] we see that for each  $T \in M_p$ ,

$$\begin{split} |\beta(T)(f*g)| &= \left| \int_{\widehat{\mathcal{G}}} \varphi \widehat{f}(\gamma) \, \widehat{g}(\gamma) \, d\gamma \right| \\ &\leq \|\varphi \widehat{f}\|_r \|\widehat{g}\|_{r'} \leq \|\varphi\|_{\infty} \|\widehat{f}\|_r \|\widehat{g}\|_{r'} \leq \|T\|_p \|\widehat{f}\|_r \|\widehat{g}\|_{r'} \,. \end{split}$$

The application of Hölder's inequality is justified since  $L_1(\widehat{G}) \subset L_q(\widehat{G})$ ,  $1 \leq q \leq \infty$ . Hence  $||f*q||_B \leq ||\widehat{f}||_r ||\widehat{g}||_{r'}$ .

To prove (ii) we observe that for  $T \in M_n$  we have

$$|\beta(T)(f*g)| = \left| \int_{\widehat{\mathcal{G}}} [T(f*g)]^{\hat{}}(\gamma) \ d\gamma \right| = \left| \int_{\widehat{\mathcal{G}}} (Tf)^{\hat{}}(\gamma) \widehat{\widehat{g}}(\gamma^{-1}) \ d\gamma \right|,$$

where  $\tilde{g}(t) = g(t^{-1})$ . However Tf,  $g \in A_1(G) \subseteq L_2(G)$  as  $M_p \subseteq M_1$ . Thus we may apply Parseval's formula to obtain

$$\begin{split} |\beta(T)(f*g)| &= \left| \int_G Tf(t) \, \tilde{g}(t) \, dt \right| \\ &\leq \, \|Tf\|_1 \|\tilde{g}\|_\infty \, \leq \, \|Tf\|^p \|g\|_\infty \, \leq \, \|T\|_p \|f\|^p \|g\|_\infty \, . \end{split}$$

Therefore  $||f*g||_B \leq ||f||^p ||g||_{\infty}$ .

LEMMA 2. Let G be an infinite compact Abelian group and p > 2. Suppose  $F \in B_p'(G)$ ,  $f \in B_p(G)$  and define  $F_f(\widehat{g}) = F(f*g)$  for each  $g \in B_p(G)$ . Then  $F_f$  defines a continuous linear functional on  $L_p(\widehat{G})$ .

PROOF. It is evident that  $F_f$  defines a linear functional on  $\widehat{B}_p(G) \subset L_p(\widehat{G})$ . Moreover from the first portion of Lemma 1 we see for each  $g \in B_p(G)$  that

$$\begin{split} |F_f(\widehat{g})| &= |F(f*g)| \\ &\leq ||F|| ||f*g||_B \leq ||F|| ||\widehat{f}||_{p'} ||\widehat{g}||_p \ , \end{split}$$

where 1/p + 1/p' = 1. Thus  $F_f$  is continuous on  $\widehat{B}_p(G)$  considered as a subspace of  $L_p(\widehat{G})$ . Moreover  $\widehat{B}_p(G)$  is norm dense in  $L_p(\widehat{G})$ .

Therefore  $F_f$  can be uniquely extended to a continuous linear functional on all of  $L_n(\widehat{G})$ .

Given  $F_f$  as in the previous lemma we denote by  $\hat{h}$  the unique element of  $L_{p'}(\hat{G})$ , 1/p + 1/p' = 1, such that for each  $\hat{g} \in \hat{B}_p(G)$ 

$$F_f(\hat{g}) = \langle \tilde{h}, \hat{g} \rangle = \int_{\hat{g}} \hat{h}(\gamma) \hat{g}(\gamma) d\gamma$$
.

Since 1 < p' < 2, the Hausdorff-Young theorem [20, p. 190] implies the existence of a unique  $h \in L_p(G)$  whose Fourier transform is  $\hat{h}$ . Thus, given  $F \in B_p'(G)$ , for each  $f \in B_p(G)$  we define Tf = h, where h is chosen as above. Clearly T is a linear transformation from the linear subspace  $A_1(G) = B_p(G)$  of  $A_p(G)$  to  $A_{p'}(G) \subseteq A_p(G)$ .

LEMMA 3. Let G be an infinite compact Abelian group, p>2 and  $F\in B_p'(G)$ . If T is defined as above, then T is a continuous linear transformation from the subspace  $A_1(G)$  of  $A_p(G)$  to  $A_p(G)$ .

PROOF. Suppose  $f \in A_1(G)$  and 1/p + 1/p' = 1. Then, since  $\widehat{B}_p(G) \subset L_{p'}(\widehat{G}) \subset L_p(\widehat{G})$  and  $\widehat{B}_p(G)$  is norm dense in  $L_{p'}(\widehat{G})$ , we conclude that

$$\begin{split} \|(Tf)^{\wedge}\|_{p} &= \|\hat{h}\|_{p} \\ &= \sup \big\{ |\langle \tilde{h}, \hat{g} \rangle| \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \\ &= \sup \big\{ |F_{f}(\hat{g})| \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \\ &= \sup \big\{ |F(f*g)| \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \\ &\leq \sup \big\{ \|F\| \|f*g\|_{B} \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \\ &\leq \sup \big\{ \|F\| \|\hat{f}\|_{p} \|\hat{g}\|_{p'} \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \\ &\leq \sup \big\{ \|F\| \|\hat{f}\|_{p} \|\hat{g}\|_{p'} \mid \hat{g} \in \hat{B}_{p}(G), \|\hat{g}\|_{p'} \leq 1 \big\} \leq \|F\| \|\hat{f}\|_{p} \,. \end{split}$$

The penultimate inequality is due to Lemma 1(i).

Furthermore, using the fact that  $B_p(G)$  is supremum norm dense in C(G) and Parseval's formula we have

$$\begin{split} \|Tf\|_1 &= \sup \left\{ |\langle Tf,g \rangle| \mid |g \in C(G), ||g||_{\infty} \leq 1 \right\} \\ &= \sup \left\{ |\int_G \hat{h}(t) g(t^{-1}) dt| \mid g \in B_p(G), ||g||_{\infty} \leq 1 \right\} \\ &= \sup \left\{ |\int_G \hat{h}(\gamma) \hat{g}(\gamma) d\gamma| \mid g \in B_p(G), ||g||_{\infty} \leq 1 \right\} \\ &= \sup \left\{ |F_f(\hat{g})| \mid g \in B_p(G), ||g||_{\infty} \leq 1 \right\} \\ &\leq \sup \left\{ ||F|| ||f * g||_B \mid g \in B_p(G), ||g||_{\infty} \leq 1 \right\} \\ &\leq \sup \left\{ ||F|| ||f||^p ||g||_{\infty} \mid g \in B_p(G), ||g||_{\infty} \leq 1 \right\} \leq ||F|| ||f||^p . \end{split}$$

The penultimate inequality is now due to Lemma 1(ii).

Combining these estimates we see at once that for each  $f \in A_1(G)$ ,

$$||Tf||^p \leq 2||F|| ||f||^p$$
.

Hence T is continuous from  $A_1(G) \subseteq A_p(G)$  to  $A_p(G)$ .

PROOF OF THEOREM 5. As mentioned before, we need only show that  $\beta$  is surjective. Given  $F \in B_p'(G)$ , let T be the operator defined preceding Lemma 3. In view of Lemma 3 this operator can be uniquely extended to a bounded linear operator on all of  $A_p(G)$ , since  $A_1(G)$  is norm dense in  $A_p(G)$ . We shall denote this extension by T.

If  $f, g \in A_1(G)$  and  $s \in G$ , then

$$\begin{split} \int_{\hat{\mathcal{G}}} \left[ T(\tau_s f) \right] \hat{q}(\gamma) \, d\gamma &= F(\tau_s f * g) \\ &= F(f * \tau_s g) \\ &= \int_{\hat{\mathcal{G}}} (Tf) \hat{q}(\gamma) (\tau_s g) \hat{q}(\gamma) \, d\gamma \\ &= \int_{\hat{\mathcal{G}}} \left[ Tf * \tau_s g \right] \hat{q}(\gamma) \, d\gamma = \int_{\hat{\mathcal{G}}} \left[ \tau_s (Tf) \right] \hat{q}(\gamma) \, \hat{q}(\gamma) \, d\gamma \; . \end{split}$$

Since  $\widehat{A}_1(G)$  is norm dense in  $L_{p'}(\widehat{G})$ , 1/p+1/p'=1, and  $(Tf)^{\hat{}} \in L_p(\widehat{G})$  for each  $f \in A_1(G)$ , we conclude that  $[T(\tau_s f)]^{\hat{}} = [\tau_s(Tf)]^{\hat{}}$  per each  $f \in A_1(G)$  and  $s \in G$ . The semisimplicity of  $A_1(G)$ , the continuity of T and the norm denseness of  $A_1(G)$  in  $A_p(G)$  combine to imply that  $T\tau_s = \tau_s T$  for each  $s \in G$ . Thus  $T \in M_p$ .

Moreover, if  $f,g \in A_1(G)$ , then

$$\begin{split} \beta(T)(f*g) &= \int_{\hat{g}} [T(f*g)]^{\wedge}(\gamma) \, d\gamma \\ &= \int_{\hat{g}} (Tf)^{\wedge}(\gamma) \, \hat{g}(\gamma) \, d\gamma \, = \, F_f(\hat{g}) \, = \, F(f*g) \; , \end{split}$$

by the definition of T. But  $\{f*g \mid f,g \in A_1(G)\}$  is norm dense in  $B_p(G)$ . Indeed, let  $\{u_\alpha\} \subseteq A_1(G)$  be an approximate identity for  $A_1(G)$ . Then in particular we have  $\lim_{\alpha} \|\hat{f} - \hat{f}\hat{u}_\alpha\|_1 = 0$  for each  $f \in A_1(G)$ . Furthermore

$$\begin{split} \|f-f*u_{\alpha}\|_{B} &= \sup \left\{ |\beta(T)(f-f*u_{\alpha})| \ \big| \ T \in \boldsymbol{M}_{p}, \|T\|_{p} \leqq 1 \right\} \\ &= \sup \left\{ |\int_{\hat{G}} \varphi(\gamma)[\hat{f}(\gamma) - \hat{f}\hat{u}_{\alpha}(\gamma)] d\gamma | \ \big| \ T \in \boldsymbol{M}_{p}, \|T\|_{p} \leqq 1 \right\} \\ & \leqq \|\hat{f} - \hat{f}\hat{u}_{\alpha}\|_{1} \ , \end{split}$$

as  $\|\varphi\|_{\infty} \le \|T\|_p \le 1$  by [18, p. 1135]. Hence  $\lim_{\alpha} \|f - f * u_{\alpha}\|_B = 0$ , and  $\{f * g \mid f, g \in A_1(G)\}$  is norm dense in  $B_p(G)$ .

Therefore  $\beta(T) = F$ , and  $\beta$  is surjective.

The next result shows that the completion  $\bar{B}_p(G)$  of  $B_p(G)$  can be identified with a space of continuous functions.

Theorem 6. Let G be an infinite compact Abelian group. For each p > 2 there exists a continuous linear injective mapping  $\iota$  of  $\overline{B}_p(G)$  onto a subspace of C(G).

PROOF. From the Fourier inversion formula we see that if  $f \in B_p(G)$  then for each  $t \in G$ ,

$$\begin{aligned} |f(t)| &= \left| \int_{\widehat{\mathcal{G}}} (t, \gamma) \widehat{f}(\gamma) \, d\gamma \right| \\ &= \left| \int_{\widehat{\mathcal{G}}} (\tau_{t-1} f)^{\hat{}}(\gamma) \, d\gamma \right| \\ &= |\beta(\tau_{t-1})(f)| \\ &\leq \sup \left\{ |\beta(T)(f)| \mid T \in M_{n}, ||T||_{n} \leq 1 \right\} = ||f||_{B} \, . \end{aligned}$$

Hence  $||f||_{\infty} \leq ||f||_{B}$  for each  $f \in B_{p}(G)$ .

Considering the elements of  $\overline{B}_p(G)$  as Cauchy sequences of elements of  $B_p(G)$  it is apparent from the preceding inequality that, if  $\{f_n\} \subset B_p(G)$  is a Cauchy sequence in  $B_p(G)$ , then there exists a unique function  $f \in C(G)$  such that  $\lim_n ||f_n - f||_{\infty} = 0$ . Setting  $\iota(\{f_n\}) = f$  we obtain a well defined linear mapping from  $\overline{B}_p(G)$  onto a subspace of C(G). It follows at once from the previous estimate that  $\iota$  is a continuous mapping. The proof that  $\iota$  is injective can be taken *mutatis mutandis* from [4, p. 499].

The proof in [4] carried over to the present context also immediately establishes the following corollary.

COROLLARY. Let G be an infinite compact Abelian group. For each p > 2 the space of finite linear combinations of the functionals  $\{\beta(\tau_s) \mid s \in G\}$  is weak\* dense in  $B_p'(G)$ .

REMARK. It is clear that the development of this section owes a great deal to [4], where a similar characterization of the multipliers for  $L_p(G)$  is studied. The work in [4] has also been extended in [5].

#### REFERENCES

- R. E. Edwards, Convolutions as bilinear and linear operators, Canad. J. Math. 16 (1964), 275-285.
- 2. R. E. Edwards, Bipositive and isometric isomorphisms of some convolution algebras, Canad. J. Math. 17 (1965), 839-846.
- R. E. Edwards, Operators commuting with translations, Pacific J. Math. 16 (1966), 259-265.
- A. Figà-Talamanca, Translation invariant operatos in L<sup>p</sup>, Duke Math. J. 32 (1965), 495-502.
- 5. A. Figà-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of type (p, 2), J. Austral. Math. Soc. 7 (1967), 1-6.
- A. Figà-Talamanca, Multipliers and sets of uniqueness of L<sup>p</sup>, Michigan Math. J. 17 (1970), 179-191.
- 7. S. Helgason, Multipliers of Banach algebras, Ann. of Math. 64 (1956), 240-254.
- 8. H-C. Lai, On some properties of Ap(G)-algebras, Proc. Japan Acad. 45 (1969), 572-576.
- 9. H.C. Lai, On the category of  $L^1(G) \cap L^p(G)$  in  $A^q(G)$ , Proc. Japan Acad. 45 (1969), 577-581.
- 10. R. Larsen, Closed ideals in Banach algebras with Gelfand transforms in  $L_p(\mu)$ , Rev. Roumaine Math. Pures Appl. 14 (1969), 1295-1302.
- 11. R. Larsen, A theorem concerning Ditkin's condition (to appear in Portugal. Math.).
- R. Larsen, T. S. Liu and J. K. Wang, On functions with Fourier transforms in L<sub>p</sub>, Michigan Math. J. 11 (1964), 369-378.
- T. S. Liu and A. van Rooij, Sums and intersections of normed linear spaces, Math. Nachr. 42 (1969), 29-42.
- L. S. Liu and J. K. Wang, Sums and intersections of Lebesgue spaces, Math. Scand. 23 (1968), 241-251.
- J. C. Martin and L. Y. H. Yap, The algebra of functions with Fourier transforms in L<sub>p</sub>, Proc. Amer. Math. Soc. 24 (1970), 217-219.
- 16. H. Reiter, Subalgebras of L<sup>1</sup>(G), Indag. Math. 27 (1965), 691-696.
- W. Rudin, Fourier Analysis on Groups (Interscience Tracts in Pure and Appl. Math. 12),
  Interscience Publishers, New York, 1962.
- J. K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131-1149.
- 19. C. R. Warner, Closed ideals in the algebra  $L_1(G) \cap L_2(G)$ , Trans. Amer. Math. Soc. 121 (1966), 408-423.
- A. Zygmund, Trigometrical Series (Monografie Matematyczne 5), (Photo Reprint) Dover, 1955.

WESLEYAN UNIVERSITY, CONNECTICUT, U.S.A.