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THE MULTIPLIERS FOR
FUNCTIONS WITH FOURIER TRANSFORMS IN L,

R.LARSEN

1. Introduction.

In a previous paper [12] the author, together with T.S. Liu and
J.K.Wang, began the study of certain subspaces of the group algebra
Ly(@) of a locally compact Abelian group G. These subspaces 4,(G),
1=<p< o, were defined to be the spaces of all fe L;(G) whose Fourier
transforms f belong to L (@), where @ denotes the dual group of the
locally compact Abelian group G and L, (G) is the space of complex
valued functions on G whose pth powers are integrable with respect to
Haar measure on G. If for each P, 1Sp<oo, we set

IFIP = Ifla+1fllp, e Ap(@)

where
17 = [1r@ide, 171, = (j 7) |pdy) :
Q

and d¢ and dy denote integration with respect to Haar measures on G
and @ respectively, then A,(@) is a Banach algebra with the indicated
norm and the usual convolution product. It is then possible to study
the relationship between various Banach algebra properties of L,(G) and
A,(G), 1=p<oo, as was done in [12]. Since the appearance of [12] a
number of writers have further investigated the algebras A4,(G) or their
generalizations [6], [8], [9], [10], [11], [13], [14], [15], [16], [19]. In par-
ticular, we asserted in [12] that if @ is a noncompact locally compact
Abelian group, then the multipliers for the algebras 4,(G), 1Sp<oo,
correspond precisely to the Fourier—Stieltjes transforms of bounded
regular Borel measures on @, that is, the multipliers for 4,(G) are the
same as those for L,(@) [17, p. 73]. The proof of this assertion given in
[12] is defective, but a correct proof has subsequently been given in [6].
However, as indicated in [12], when @ is compact there in general exist
multipliers for 4,(G) different from those defined by Fourier—Stieltjes
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transforms of measures. The main purpose of this article is to investi-
gate more fully the nature of the multipliers for 4,(@), 1 <p < oo, when
G is a compact Abelian group.

Let us first recall that a multiplier for 4,(G@) is a bounded linear
operator 7' on A4,(G) which commutes with translation, that is, T'(z,f) =
7,(Tf) for each fe 4,(G) and se @, where v f(f)=f(ts~1). Clearly the
translation operators r, are themselves multipliers of norm one. Since
4,(Q) is semi-simple [12] to each multiplier 7' there corresponds, a
unique bounded continuous function ¢ on G such that (T'f )~ =gf for
each fe A4,(Q) [18, p. 1135]. It is well known that these two descriptions
of a multiplier are equivalent and so we shall interchange them at will.

When @ is compact and 1 <p =<2 it is elementary to prove that every
bounded function @ on @ defines a multiplier for A4,(G). But if p>2
the subspace of A4,(G) whose Fourier transforms are invariant under
multiplication by all bounded functions is the space A,(@), and this
implies that not every bounded function defines a multiplier for 4,(G).
In this case, however, we shall show that the space of multipliers for
A,(G) is linearly isomorphic to a proper subspace of the space of pseudo-
measures on G [1], [2], [3], and that this subspace properly contains the
space of all bounded regular Borel measures on @. Finally, for each p > 2
we shall norm the linear space 4,(@) in such a way that its completion
is a Banach space of continuous functions such that there exists a con-
tinuous linear isomorphism from the space of multipliers for 4,(G) onto
the dual space of this Banach space.

Throughout the paper M, will denote the Banach space of multi-
pliers for 4,(G), 1 <p<oo, and ||T||, will denote the norm of the multi-
plier 7' as an operator on A4,(G) [18]. C(Q) is the space of complex
valued (bounded) continuous functions on the compact group @, and
L,(@), 1=p < oo, the space of complex valued functions on the compact
group G whose pth powers are integrable with respect to Haar measure
on G. If S<L,(@), then § will denote the set of Fourier transforms of
elements of S. It will always be assumed that the Haar measures on G
and G are chosen in such a way that the Fourier inversion formula is
valid. General results from harmonic analysis which are used in the
body of the paper can all be found in [17].

REMARES. a) We collect here several facts about the spaces 4,(G)
which we shall use in the sequel, generally without explicit reference.
If G is compact it follows from [12] that A,(GQ)= Ly(G) as linear spaces,
and applications of the Hausdorff-Young Theorem [20, p. 190] reveal
that for 1<p'<2, 1/p'+1/p=1, we have
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A44(G) = 4,(GQ) < Ly(G) < Ly(G) = 4y(G) < Ly(G) = 4,(G) = Ly(@).

In general, if ¢ <p, then 4,(@) is a norm dense ideal in 4,(@) [12]. It is
also easy to establish that as linear spaces M, = M, when g <p. Finally,
for compact G, it is easily seen by means of the Fourier inversion formula

that 4,6 = L@ < ).

Moreover A4,(G) is supremum norm dense in C(G) and “i\l(G) is norm
dense in Lp(@), 1=p<oo.

b) If G is finite, then G is finite, and it is evident that L,(Q)=4,(G),
1=p<oo. In this case nothing remains to be examined. However, this
is the only instance in which the spaces A4,(@) and L,(() are identical
when G is compact. More generally the following easily established
theorem is valid.

THEOREM 1. Let G be a locally compact Abelian group. Then the fol-
lowing are equivalent.
(i) G ¢s nondiscrete.
(i) A,(G)+Ly(G), 1=p<oco.
(iii) 4,(G) #4,@), 1=p,q<oo, p*q.

Thus we shall restrict our attention to infinite compact Abelian groups.

2. Spaces invariant under multiplication by bounded functions.

It is well known that every bounded measurable function ¢ on @
defines a multiplier for L,(G) [4, p. 496], and hence, when @ is compact,
for A,(@). Moreover an elementary argument shows that, if ¢ defines a
multiplier for 4,(@), then it does so also for 4,(G), 1=p<2. Thus we
obtain the following theorem.

THEOREM 2. Let G be an infinite compact Abelian group. Then every
pE C(G) defines a multiplier for A, (@), 1=sp=s2.

Since, as noted previously, every multiplier for 4,(G) corresponds to
a bounded continuous function, the preceding theorem shows that the
multipliers for 4,(¢), 1<p<2, correspond precisely to C(G) when @ is
compact.

The situation for p>2 and compact G is quite different. In this case
we set

(Ap(@)o = {f|fe4,(@), ¢f e A,(@), peC@)],

and prove the following result.
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THEOREM 3. Let G be an infinite compact Abelian group and p>2.
Then (A,(Q))y=A4(G)=Ly(G).

ProoF. Let fe(4,(G)),. Then fe Ly(@) and ¢f e 4,(Q)<Ly(@) for
each ¢ € C(Q). However the set of such functions in L,(@) is precisely

Ly(@) [7, p. 244], and hence (4,(®)), < Ly(@). Conversely, if feLy(Q@)=

2(G) then by the preceding result f € 4,(@) for each @ € C(G). But

2(G)CA (@) and s0 A,(Q)<=(4,()),-

Therefore (4,(G))y=A44(G)=Ly(G).

CoROLLARY. Let G be an infinite compact Abelian group and p> 2.
Then not every function ¢ € C(G) defines a multiplier for A,(@Q).

3. Multipliers, measures and pseudomeasures.

As indicated previously, when G is compact the linear space 4,(@)=
L,(®. This linear space is a Banach space when equipped with the norm
IfILe=Iflls, f € £,(@), and its dual space is the space of pseudomeasures
on G, which we denote by P(Q) [3, p. 259]. The next result asserts that
for p> 2 the space of multipliers M, can be identified with a subspace
of P(G@). Notation and results on pseudomeasures used below can all be
found in [3].

THEOREM 4. Let G be an infinite compact Abelian group and p>2.
Then there exists a continuous linear injective mapping from M, into P(G).

Proor. Let T'e M,,. Since C(Q)<Ly(G)=A4,(G)<=A,(G) we see that
T defines a linear mapping from C(@) to L,(G) which commutes with
translation. Furthermore, suppose f,, fe C(@) and lim,|f,—fllo=0,
where |- ||, denotes the usual supremum norm in C(G). Because G is
compact it follows that lim,, ||f, —f|l,=lim, ||f, —flls=0, and hence by the
Plancherel Theorem lim,, ||f, —f||?=0. But p > 2 implies that 7" € M,, and
so lim,, ||T'f, — T'f||>=0, from which we conclude that lim,, |7f, — 7'f||,=0.
Thus the mapping defined by 7' is continuous.

Consequently there exists a unique pseudomeasure » € P(G) such that
Tf=vxf for each fe C(Q) [3, p. 260]. Define x(T)=v». Clearly « is a
linear mapping from M, into P(G). That « is injective follows imme-
diately from the denseness of 4,(G) in 4,(G). Moreover, since for each
yE G the Fourier transform of the continuous character (+,7) is the
characteristic function of the set {y}, and T'(-,y)=¢(y)(:,y) where
pE C(G) is the unique function for which (7'f)" -cpf for each fe 4,(G),
we see that
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B = 1PC7) oo
s PxCplll = 177G = e = gl = 11Tl -

The validity of the last inequality follows from [18, p. 1135] and the semi-
simplicity of 4,(G@). But the Fourier transform for pseudomeasures is
an isometry [3, p. 260], and hence

l«(Dllp = [Wlp = Pl = 17lp »

where ||-||p denotes the norm in P(G).

Therefore « is a continuous linear injective mapping from 3, into
P(@).

RemARES. a) The norms |||, and ||-|! on le(@) are obviously equiv-
alent.

b) The mapping « from M, to P(Q) is not surjective. As if it were,
then since the Fourier transform of pseudomeasures mapsP(G) onto
C(G) [3, p. 260], as G is compact, the composition of the Fourier trans-
form with « would produce a surjective mapping from M, onto ol(e))
That is, every function in C(G) would define a mult1p11er for 4,(@),
thereby contradicting the Corollary to Theorem 3.

c) On the other hand, the subspace «(M,) of P(G) properly contains
the space M (@) consisting of all bounded regular Borel measures on G.
Thus, when p > 2 there exist multipliers for 4,(G) which are not defined
by the Fourier—Stieltjes transform of any bounded regular Borel meas-
ure on G. To see this, given p> 2, set m=p/2, n=m|(m—1), and choose
r such that 0<r<2 and rn>2. Let Ec@ be any infinite Sidon set
[17, p. 120] and choose ¢ € C(G) such that

i) p(y) = 0, y ¢ &,

i) 3, lp(y)[?= o0,

iii) , |(y)™ < co.
It is easy to see that such choices can always be made. An application
of Holder’s inequality shows that ¢f LZ(@)CLP(@) for each fe 4,(G)
and so ¢ defines a multiplier for 4,(G). However, ¢ + 4 for any u € M(G)
because ¢ is a Fourier-Stieltjes transform if and only if 3, [p(y)[2< oo
[2, p. 841].

4. The space B,(G).

In the preceding section we saw for p> 2 that M, is linearly isomor-
phic to a proper subspace of the continuous linear functionals on a cer-
tain Banach space of continuous functions. However, it is not imme-
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diately obvious whether M, can be considered as a dual space of such a
Banach space. The development of this section will show that this is
indeed possible. We begin by defining the normed spaces of continuous
functions B,((), and shall ultimately prove that there exists a continu-
ous linear isomorphism from M, onto B,'(G), the dual space of B,(G).
Furthermore we shall show that the completion B,(G) of B,(G) can be
considered as a Banach space of continuous functions.

Consider a fixed p>2. For T'e M, we shall denote by ¢ the unique
function in C(@) such that (Tf)“:(pf for each fe 4,(Q). If Te M,
then for each fe L,(@) we set

BNS) = [ (@ dy = [ o) f v
[ é

For fe ﬁl(@) we define

Ifllz = sup {|BT)) | T € My, [T, <1}.

These definitions make sense as M, < M,.

It is routine to verify that ||| is a norm on L,(G), and the normed
linear space so obtained will be denoted by B,(G). Moreover, from the
preceding definitions it is apparent that each f(7') defines a continuous
linear functional on B,(#). Thus # defines a mapping from M, into
B,'(G). It is not difficult to show that # is a continuous linear injective
mapping from M, to B,'(G). For example, if f € B, (G), then

IB(T)(f)] =

[@n wray
é

17, [ @ T, dy
[

171, 1BCTNT 1) = 1Tl [1f 115 -

Hence ||8(T)||<||T|,, where ||-|| denotes the norm in B,'(G).
The theorem we wish to establish is the following one.

THEOREM 5. Let G be an infinite compact Abelian group and p>2.
Then B is a continuous linear bijective mapping from M, to B,'(G).

In light of the preceding discussion we need only prove that f is sur-
jective. Before turning to the proof proper of this fact we shall establish
several technical lemmas.

Levma 1. Let G be an infinite comp‘act Abelian group, p>2 and
f,9 € B,(G).
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i) If 1Sr< 00 and 1fr +1/r' =1, then ||frgllp < |1F, 191,
ii) [1f*glls = [IF1P lgleo-

Proor. Clearly f+g € B,(G) as L(G)=4,Q) is an algebra under con-
volution. Using [18, p. 1135] we see that for each Te M

f o () 9y) dy
@

< 1@f1 180 < el 1181 < 1T IF 111l -

The application of Holder’s inequality is justified since I, @)CL (@,

1=q=co. Hence [feglly=I\fll, -
To prove (ii) we observe that for 7'e M,, we have

IB(T)(f+g)| =

BT) )| = - | [@nrwifen |,

a

where §(t) =g(t~1). However Tf, g € A,(G)<=Ly(G) as M,<M,. Thus we
may apply Parseval’s formula to obtain

[zrwg a
G

= 1 Tf Ll = ITFIP NGl = 11, 1F1P 191loo -
Therefore ||f+g(lz =1 [|9lo-

[wore) &
é

T)(f*g)l =

LeMMA 2. Let G be an infinite compact Abelian group and p>2. Sup-
pose F € B,'(@), fe B,(Q) and define F,§)=F(f+g) for each g€ B,(Q).
Then F, defines a continuous linear functional on Lp(@).

Proor. It is evident that F, defines a linear functional on ﬁp(G)C
Lp(@). Moreover from the first portion of Lemma 1 we see for each

g € B,(G) that
\F)] = |F(f+g)l
< IIFlIf*gllz = IFNIF 1101, »

where 1/p + 1/p’=1. Thus F, is continuous on E ) considered as a
subspace of L (@) Moreover B »(@) is norm dense in L (@)

Therefore F; can be umquely extended to a continuous linear func-
tional on all of Lp(@).
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Given F; as in the previous lemma we denote by % the unique element
of L, (@), 1/p + 1/p’=1, such that for each @eﬁ (@)

F9) = ho> = [50)90) dy
G

Since 1< p’<2, the Hausdorff-Young theorem [20, p. 190] implies the
existence of a unique ke L,(G) whose Fourier transform is h. Thus,
given F € B,'(G), for each fe B,(G) we define Tf=h, where & is chosen
as above. Clearly 7T is a linear transformation from the linear subspace
A4,(G)=B,(G) of 4,(Q) to 4,(G)=A4,(G).

Lemma 3. Let G be an infinite compact Abelian group, p>2 and
F e B,/ (@). If T is defined as above, then T is a continuous linear trans-
formatwn from the subspace A,(G) of A,(G) to A,(G).

Proor. Suppose fe A4,(G) and 1/p+ 1/p'=1. Then, since B (@ (@)
L, (@)C (@ and E (@) is norm dense in L, (@), we conclude tha,t

T = 1B, = MR,
sup {|<,9)1 | 9 € B(@), 19ll,- 1)
sup {|F,(9)| | § € B,(G), ]Il <1}
sup {|F(f+g)| | § € B,(&),l§ll,< 1}
< sup {|F|ll|f*gllz | § € Bo(@), 19l < 1}
< sup {IFYIf1, 191, | 9 € Bo(@, 10l <1} < WFIIFY, -
The penultimate inequality is due to Lemma 1(i).

Furthermore, using the fact that B, (@) is supremum norm dense in
C(@) and Parseval’s formula we have

ITfll, = sup {I<Tf,g) | lg € C(@),llgloo =1}
= sup {|fgh(t)g(t")dt| | g € By(G),llglle < 1}
= sup {|[ch(»)§(»)dy| | g € By(@), gl < 1}
sup {|F/9)| | g € B,(Q),llgllo <1}
sup {|[F||If+gllz | g € Bo(@),llglloe < 1}
sup {IFIIFIPlgllo | 9 € Bp(@), gl <1} < IFIIFIP -

oo

IATIA

The penultimate inequality is now due to Lemma 1(ii).
Combining these estimates we see at once that for each fe 4,(G),
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ITfIP = 2|F|[If(IP -
Hence 7' is continuous from A,(G)<A4,(G) to 4,(&).

ProoF or THEOREM 5. As mentioned before, we need only show that
B is surjective. Given F € B,'(@), let T' be the operator defined preced-
ing Lemma 3. In view of Lemma 3 this operator can be uniquely ex-
tended to a bounded linear operator on all of 4,(@#), since 4,(G) is norm
dense in A4,(G). We shall denote this extension by 7.

If f,g € A,(@) and s € G, then

[ @ mam @y = Fefig)
é
= F(f*rsg)

= | (TF) ) (7s9)"(v) dy

QT D

[Tf+5,g1°0) dy = [ 2l 0)00) dy -
[

Since 4,(@) is norm dense in Lp,(@), 1/p+1/p’=1, and (Tf)"eLp(@) for
each fe 4,(@), we conclude that [T'(7,f)]" =[t(Tf)]" per each fe 4,(G) and
s € G. The semisimplicity of A4,(G), the continuity of 7' and the norm
denseness of 4,(G) in 4,(G@) combine to imply that Tv,=7,T for each
se@G. Thus Te M,.

Moreover, if f,g € 4,(G@), then

BTNv) = [T ) dy
[¢]

= [@rreie dv = Fi@) = Figg),
é

by the definition of 7. But {fxg |f,g € 4;(@)} is norm dense in B,(G).
Indeed, let {u,}<=A4,(G) be an approximate identity for A4,(G). Then in
particular we have lim,||f—f# ||, =0 for each fe 4,(G). Furthermore

If —fru s = sup {IBT)(f—fru,)| | T € M, ||T|, <1}
= sup {|[e9()[f(»)~Fa,)1dy| | T € M,,|Tl, =1}
< If-Fall

as |plo=|T|,£1 by [18, p.1135]. Hence lim,|f—f+w,|z=0, and
{f*g | f.g € A;(G)} is norm dense in B,(G).



224 R. LARSEN

Therefore f(T)=F, and § is surjective.

The next result shows that the completion B,(@) of B,(G) can be
identified with a space of continuous functions.

THEOREM 6. Let G be an infinite compact Abelian group. For each p>2
there exists a continuous linear injective mapping « of B,(G) onto a sub-
space of C(@).

Proor. From the Fourier inversion formula we see that if fe B, (&)
then for each ¢ € @,

@1 = | [ enio ay

-

= | [ @froay
é

= 1B(z=)(f)]
< sup {IBI)NI | T € My, | Tllp =1} = |Ifllg -

Hence ||f]l, <||fllp for each f e B,(G).

Considering the elements of B,(G) as Cauchy sequences of elements of
B,(@) it is apparent from the preceding inequality that, if {f,}<B,(G)
is a Cauchy sequence in B,((), then there exists a unique function
f € C(G) such that lim, ||f, —fllo=0. Setting «({f,})=f we obtain a well
defined linear mapping from B,(@) onto a subspace of C(&). It follows
at once from the previous estimate that ¢ is a continuous mapping.
The proof that ¢ is injective can be taken mutatis mutandis from [4,
p. 499].

The proof in [4] carried over to the present context also immediately
establishes the following corollary.

CoroLLARY. Let G be an infinite compact Abelian group. For each p>2
the space of finite linear combinations of the functionals {(z,) | s € G} is
weak* dense in B),'(G).

RemARK. It is clear that the development of this section owes a great
deal to [4], where a similar characterization of the multipliers for L, (&)
is studied. The work in [4] has also been extended in [5].
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