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ON THE BOHR TOPOLOGY IN AMENABLE
TOPOLOGICAL GROUPS

MAGNUS B. LANDSTAD

Introduction.

In [1] E. M. Alfsen and P. Holm have characterized the Bohr com-
pactification of a topological group (G,.J) as the completion of G with
respect to a group topology J; (the Bohr topology) which is coarser
than 9. The purpose of this note is to prove that the general descrip-
tion of Jy can be simplified in amenable groups, i.e. groups admitting
an invariant mean on the space of bounded left uniformly continuous
functions. The result can be read as follows: W is a Jgz-neighbourhood
of e if and only if there is a symmetric relatively dense J-neighbourhood
V of e with V7<= W. Though stated in another way, this has earlier been
proved by E. Fglner for abelian groups ([2, Theorem 1] and [3]), and
his ideas are used extensively.

Section 1 contains the needed results concerning the Bohr compactifi-
cation; with a slight modification of proof we get a simpler character-
ization of J5 than in [1]. The connections between the upper and the
lower mean values, invariant means and distinguished subsets of a group
have been studied by E. Fglner and in the abelian case by P. Tomter.
Section 2 is devoted to this. In Section 3 the characterization of the
Bohr topology in amenable topological groups is given.

I want to express my thanks to E. M. Alfsen for suggesting this prob-
lem, and to J. F. Aarnes for many helpful comments.

1. The Bohr compactification.

In [1] the Bohr compactification G of a topological group (G,7) is
obtained as the Hausdorff completion of G with respect to the finest
uniform structure % on G satisfying

(1.1) % is totally bounded,

(1.2) % is compatible with the group structure, i.e. the group opera-
tions are uniformly continuous,

(1.3) % defines a topology on G coarser than 7.

Received October 10, 1969; revised June 4, 1970.



208 MAGNUS B. LANDSTAD

Proposition 1 of [1] tells us that a uniform structure satisfying (1.2) is
completely determined by the associated group topology on @, and there-
fore it suffices to study the finest group topology on @ satisfying the
analogous of (1.1), (1.2), and (1.3).

Recall that a subset 4 of @ is called left (right) relatively dense if there
is a finite set {a,,...,a,} in @ such that @=U? 0,4 (@=U?_,Aa,).
If A is both left and right relatively dense, A is called relatively dense.
The right uniform structure of a topological group is totally bounded if
and only if the left uniform structure is, and this is the case if and only
if each neighbourhood of e is relatively dense. It is well known that in
this case the left and right uniform structures coincide. A proof of this
fact is not so easily traced in the literature, so we include one for com-
pleteness.

Lemma 1. If (G,T) is a totally bounded topological group, U, (%,) the
left (right) uniform structure, then U;=%,, and the group operations are
uniformly continuous.

Proor. It is an easily established fact that the group operations are
uniformly continuous if and only if %;=%,, and this is the case if and
only if G admits a fundamental system of neighbourhoods of e whose
members V are all invariant in the sense that xVa-1=V for every z in G.

Let U be an arbitrary neighbourhood of e. Choose a symmetric neigh-
bourhood V of e such that V3<U. Now G@=U?_ a;V for some a,,...,
a, €G. Let

n
V,= n a;Va,t and W = U 1V, x .
i=1 re@
Then W is an invariant neighbourhood of e. If y € ¥V, and 2 is arbitrary,
we have z €a,V for some i. Now

xlyx € (a;V) Yo, Va, Ve,V =V3< U,
so W< U, and the lemma is proved.

The problem of finding the finest uniform structure on @ satisfying
(1.1), (1.2), and (1.3) is therefore reduced to find the finest group topo-
logy on @ coarser than the original one such that each neighbourhood
is relatively dense. Following the proof of [1, Theorem 1] we now con-
clude:

THEOREM 1. For a topological group (@,T") let Ty be the finest group
topology on G coarser than J defining a totally bounded uniform struc-
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ture. This uniform structure (denoted %¥yp) is the finest satisfying (1.1),
(1.2), and (1.3), and the neighbourhood system of e associated with Ig con-
sists of those subsets V of G which admit a sequence {V,} of sets such that:

(1.4) VE<cVand V,, 2<V, forn=1,2,....

(1.5) Every V, is a symmetric and relatively dense J-neighbourhood of e.

The topology J is called the Bohr topology on @, and from [1] it is
known that the % g-uniformly continuous functions are exactly the al-
most periodic functions on G.

2. Invariant means and related subsets of the group.

On BR (@) (=the set of bounded real valued functions on @) we define
the right upper mean value M by

M(f) = inf {supyca3;o.f(@a;) ta; € G, x;>0, 3;0,=1}.
The right lower mean value M is defined by M(f)= — M(—f).

LemMmA 2. The right upper mean value M has the following properties:

) inf,.qf(*) £ M(f) S supgeaf(@) .
) M@(Af) = AM(f) for 22 0.
(2.3) M(f,) = M(f) for ae@G; f,is the function f,(x)=f(xa).
) M(f-f) < 0.
) M(f+g) < M(f)+M(g) if G is abelian .

Proor. Only part (2.4) needs a proof. Take a,=a, a;,,=a,a. Then
- n
M(f—fa) s SUPgeq n~t zl (f_fa)(xa'i)
1=

= 8uPgeq 7 (f(@ay) —f(@2p41)) = 207l

This holds for any =, and (2.4) follows.

If A is a subset of @ and y 4 is its characteristic function, it is easy to
see that A is right relatively dense if and only if M(y,)> 0. (This obser-
vation is due to Falner.) Sets with positive upper mean value have been
studied by P.Tomter [6] in the abelian case, and we will transfer his
ideas to arbitrary groups.

Math. Scand. 28 - 14
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DErINITION. A subset A of G is called left (right) relatively accumulat-
ing if there is a positive integer n, such that for any non-negative integer
m, at least m+ 1 of any mn,+ 1 left (right) translates of 4 have a com-
mon, non-empty intersection. If A4 is left and right relatively accumulat-
ing, A4 is called relatively accumulating.

Following [6, pp. 26-27] it is easily seen that
(a) if A is left relatively dense, then A4 is right relatively accumulating,
(b) if 4 is right relatively accumulating, then 4-14 is right relatively
dense,
(¢) 4 is right relatively accumulating if and only if M(y,)> 0.
(b) was first proved by Fglner.

REeMARE. In connection with (a), note that a left relatively dense sub-
set is not necessarily left relatively accumulating. An example of von
Neumann can be used, take G to be the free group of two generators a
and b, and let 4 be the set of elements beginning with @ or a-! when
written as reduced words. G=A4Uad, so 4 is left relatively dense. But
A is not left relatively accumulating, for instance any two distinct mem-
bers of the collection {4,b4,...,b" A} have empty intersection.

Now let E be some linear space of complex valued functions on @
which contains the constants and is closed under complex conjugation
and right translations (that is, fe 4, a € @ = f, € E). A linear functio-
nal m on £ is called a right invariant mean (RIM) if

(2.6) m(f) = m(f),
(2.7) inf, qf(x) £ m(f) < sup,.qf(x) for any real valued fe E ,
(2.8) m(f,) = m(f) .

Left invariant means are defined analogously, and if m is both left and
right invariant, it is called an invariant mean. If m is a RIM, and if
f € E is real valued, we have

m(f) = m(z‘xifa;) S SUP,q zo‘if(xa'i)

for any convex combination Y «,f,, of translates of f. Thus m(f)= M(f),
and we can conclude that

(2.9) HU(f) = m(f) = M(f).

If M is subadditive on E’ (=the real functions in E), the Hahn-Banach
theorem implies the existence of a linear functional m satisfying m(f) =<
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M(f) for fe E'. Applying (2.4) we find that m is a RIM on E’, and m
can uniquely be extended to a RIM on E. In particular the space of all
bounded complex valued functions on an abelian group will admit an
invariant mean.

DrrFintTION. A topological group @ is called amenable if there is a
RIM on UCB|(Q) (=the set of left uniformly continuous bounded com-
plex valued functions on @). (A complex valued function f is left uni-
formly continuous if for each &> 0 there is a neighbourhood U of e such
that |f(x) —f(y)| <e if x-lye U.)

A locally compact group is usually called amenable if there is a RIM
on L®(G), but it is known that in this case the two definitions coincide.
The results in Section 3 are valid not only for locally compact groups,
and our choice of definition of amenability is motivated only by what
is needed there.

A RIM is usually not strictly positive on positive, non-zero continuous
functions. This is the case if and only if @ is totally bounded.

Take P(G) to be the space of linear combinations of continuous posi-
tive definite functions. Over P(@) and over the space of almost periodic
functions a RIM m coincides of course with the unique invariant mean
defined on these spaces. If ¢ is positive definite, it is proved in [5,
p. 59] that

(2.10)  m(p) = inf {37 ,_,a;0;0(s;718;) : 8, € G, a;>0, 3;0,=1}.

3. The Bohr topology in amenable topological groups.

We are now going to show that the characterization of the Bohr
neighbourhoods given in Theorem 1 can be improved in amenable groups,
in fact we shall prove that it suffices to have a finite chain of subsets
of the sort described. As before, I3 denotes the Bohr topology.

THEOREM 2 A. Let (G,T) be a topological group satisfying the following
condition :

(A) The right upper mean value M is subadditive over the space of real
valued functions tn UCB,(G).

Then a subset W of G is a Tyx-neighbourhood of e if and only if there is a
right relatively accumulating subset E of G and a I -neighbourhood V of e
such that (V- AE1EV):cW.
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THEOREM 2 B. Suppose (@,7") is a topological group satisfying:
(B) There 18 a right invariant mean on UCB,(Q), that ¢s, G is amenable.

Then a subset W of G is a Tg-neighbourhood of e if and only if there is a
right relatively dense subset E of G and a T-neighbourhood V of e such that
(VAE1EV)3:cW.

Proors. From Theorem 1 it is easy to see that in both cases the
condition is necessary. Conversely, suppose & and V have the stated
properties. Following Fglner [2] we shall construct a non-zero almost
periodic function vanishing outside (V-1E-1£ V)2, and this will give the
conclusion.

There is a left uniformly continuous function A: G — [0,1] with A(e)=1
and h(z)=0 for x ¢ V.

Define j(x) =sup,czh(y—'x). Then j e UCB)(G), j(x)=1 for x € £ and
J(x)=0for x ¢ EV.

If (A) is satisfied, the subadditivity of M implies (via the Hahn—
Banach theorem) that there is a right invariant mean m on UCB|(G®), and

m can be chosen such that m(j)=M(j), cf. [3]. Further
m(j) = M(j) z M(zg) > 0,
since F is right relatively accumulating in this case.
If (B) is satisfied, we have
m(j) 2 M(j) 2 M(zw) > 0,
since K is right relatively dense in case (B).
Hence in both cases we have a right invariant mean m on UCB,(G)
with m(j)> 0.
The left uniform continuity of j implies that the function ¢ defined by
p@) = m(jz §) = my[j(tx)j0)] .

is continuous, and straight forward calculations show that ¢ is positive
definite. Further, ¢(x) =0 for any =, and ¢(x)=0 for x ¢ V-1E-1EV.

We want to show that m(p)>0, and use the expression (2.10). If
{a;}; are positive numbers with 37a;=1 and {s;}7 are elements from G,
then by the right invariance of m we find that

35,100 p(8,718;) = myl(Z,0,5(18:))%] = (m[Z;0,5(8s,)]1)? = m(j)? .

Thus m(p) =m(j)?> 0.
Over P(@) the functional m can be used to define a convolution

frg(@) = m[f(t)g(t~ )]
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R. Godement has proved that fxg will be almost periodic [5, p. 63].
Thus the function y=¢ *¢ will be positive definite and almost periodic.
Further y(z) =0 for all =, y(x)=0 for x ¢ (V-1E-1EV)? and

ye) = m(lp|?) = |m(@)|> > 0.
The set
W, = {xe@: |p@) —yple) <ple)}

is a Jg-neighbourhood of e, since y is almost periodic. Further
Wy < (VEEV)?E: < W,
so W is a Jgz-neighbourhood of e.

Theorem 2 B can be given in a weaker form which makes clear the
connection with Theorem 1.

CoroLrLARY 1. If (G,T) is an amenable topological group, then a sub-
set W is a Tg-neighbourhood of e if and only if there is a symmetric, rela-
tevely dense T-neighbourhood V of e with Vi< W.

Proor. If V'<=W, take E=V and let U be a J-neighbourhood of e
satisfying UU-1< V. Apply Theorem 2 B with £ and U, and the con-
clusion follows from

(UE-'EU)? <« UEEVE-'EU c V' < W .

In abelian groups we can simplify even more, and since condition (A)
always holds in this case, we have:

CoroOLLARY 2. If (G,) is an abelian topological group, a subset W is
a T g-netghbourhood of 0 if and only if there is a symmetric, relatively ac-
cumulating J-neighbourhood U of 0 such that U< W.

Proor. Let V be a symmetric neighbourhood of 0 with V*< U, and
take B =U in Theorem 2 A.

If G is a discrete group, we may take V ={e} in Theorem 2 A. In this
case the conditions (A) and (B) are equivalent [4, Theorem 1], and we
have

CoROLLARY 3. If G ts an amenable discrete group, then a subset W is
a Tg-nesghbourhood if and only if there is a right relatively accumulating
subset E of Q with E-\EE-EcW.
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For an amenable topological group let » be the minimal number such
that V" is a Bohr neighbourhood whenever V is a symmetric, relatively
dense neighbourhood of e. We have seen that in general n <7, n <5 for
abelian groups and n<4 for discrete groups. A natural question is
whether this number can be reduced for some special groups. The fol-
lowing example pointed out to us by J. F. Aarnes, shows that in general
we have n > 1.

Take the discrete group of integers Z, and let V={0, +1, +3, +5,...}.
This set is symmetric and relatively dense. Since the characters on a
group are almost periodic, the subset

U={neZ:|em-1|<1} ={0,+2,+4,+6,...}

is a Bohr neighbourhood of 0. Since UnV ={0}, V is not a Bohr neigh-
bourhood. Hence for Z we have 2<n<4. For the real numbers with
the usual topology a similar argument shows that 2<n<5.

Another question naturally arises, if G is not amenable: will then such
an n exist, or perhaps the finite chain characterization of the Bohr
neighbourhoods (at least for locally compact groups) is equivalent to
amenability? The answers to these questions are not known to the
author.
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