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A PHRAGMEN-LINDELOF TYPE
THEOREM FOR A CERTAIN CLASS OF GENERALIZED
SUBHARMONIC FUNCTIONS

TORBJORN HEDBERG

We shall consider a class of functions introduced by Y. Domar [1].
The class contains the positive subharmonic functions and is defined as
follows:

Let E be an open connected subset of the n-dimensional Euclidean
space R® and suppose that B>1 is a given number. The function u is
then said to belong to the class S(B) in F if it satisfies the following
conditions:

(i) » is non-negative and measurable
(ii) u is bounded on every compact subset of £
(iii) for every n-dimensional sphere Sg(x,)=E with centre x, and
radius R we have
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where S5 denotes the volume of the sphere.

In this paper we always take n>2 and E =R" and we denote the points
by z=(x',2%,...,2") and we also write |z|=((x')?+ ...+ (z")?)i.

The problem to be studied here consists in finding conditions on a
function v such that if v <v and » € S(B) then u=0.

The functions » that we are going to consider vanish outside a proper
subset of E. In particular we shall in the case = R? study a function v
vanishing outside a sector of the plane with its centre at the origin. This
will give us a generalization of the well-known Phragmén-Lindelsf theo-
rem for subharmonic functions (see e.g. [3, p. 44]).

We start by proving a theorem concerning functions v satisfying a
more general condition. Similar but sharper results follow in the case
B=1 from the estimates of harmonic measures in [2].
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Let D be a region in R®. We shall use the following definitions:
0,={x|x e D and 2*=¢£},
0(&)=mb,,

where m denotes the (n — 1)-dimensional Lebesgue measure.
We put p=(n—1)"1.

THEOREM 1. Suppose that the region D satisfies the following conditions:

(i) 0,=0 for £<0 and 6(&) >0 for £20;
(ii) there exists some monotome positive increasing function h on R,,
such that h(t) tends to 1 as t tends to 0, and such that

[ Ger)] = e = *(5er)

for all & and &3>0 such that |E—&y| <20(&,)P .

A

For each B not less than 1 but smaller than some constant only depending
on h and greater than 1 we can then choose A > 0 such that, if

(iii) =% € S(B) in R,

21

(iv) w=Zexp (/'l f 6-r dt) for x in D,
0

(v) w=0 for z not in D,

then uw=0 everywhere.

Proor. Suppose that u satisfies the above conditions and let » be the
function defined by the right hand side members of (iv) and (v). Let x,
be an arbitrary point in D. For every Bx1,

v(aco):g]i j exp (l ]{1 G‘Pdt) dx

(1) BA(“’O»'”:-R)

B Sp@onD @ol
D
< Bo(z,) 7_"_@1%__&%) exp (AR sup6(t)-?) ,
R

where the supremum is taken over all ¢ such that |t —x,!|<R. We then
take R=20(x,!)?. It follows immediately from condition (ii) that

(2) Bal) 2 O(zo!) h(2)! if |t -2 SR.
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Denote the intersection of the set {||x,!—x'|<dR} with Sg(x,) and
with D by Sgi(x,) and D?, respectively. The condition (ii) then gives us
that the measure of the set D? satisfies

mD? = 2R60(zg)(1+44(0)) = Rn22-75(1+¢4(6)),

where ¢, tends to 0 uniformly in x, as § tends to 0. Furthermore we have
that
m8p(xo) = 2R S, _4(1+¢,(3)),

where ¢, tends to zero with § and where w,,_, is the volume of the (n—1)-
dimensional unit ball.

This shows that if >0 is chosen small enough we can find an ¢>0
such that the measure of the part of Sg(x,) not in D? is larger than ¢R"
and we have proved the existence of a C'<1 such that the following
relation holds:

(3) m(Sg(x,) N D) < C8S, forall xyin D .

We can now prove the theorem for a coefficient B such that 1 < B<1/C.
We introduce numbers B’>B and d such that B'C <d<1 and choose
A>0 such that
(4) exp(24h(2)?) < d1.

Since B’ <d|C, (1)—~(4) show that for every x € D there is an R such that

B' A(z,v,R) <v(z) .
Put
M = sup, u(x)/v(x) < .

If w were not identically vanishing there would exist an z,€ D such that
w(z,) > BB'-1 Mv(x,) .
But on the other hand
u(z,) < BA(xy,u,R) < M BA(xy,v,R) < BB~ Mv(x,)

for some R chosen as above.
This contradiction proves the theorem.

Next we shall apply this theorem to a special region in the plane. For
simplicity we now denote the points by z=(z,y) and put argz=¢ and
|z| =r. The region we shall consider is the region between two straight
half-lines forming an angle 8 at the origin, 0 < <2z, and we denote as
before this region. by D.
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If we apply our theorem we find that if B;>1 is small enough then
for every B, 1 < B < B,, there exists a number « > 0 such that, if

(i) » € S(B) in R?,
(ii) w=O0(r*) uniformly in D for r tending to infinity,
(iii) %#=0 for z not in D,

then u=0.

We assume that B is sufficiently close to 1 to guarantee the existence
of one such « and we denote by «(B, 8) the least upper bound of all such «.

We want to prove that «(B,f) is close to the corresponding value for
subharmonic functions if B is close to 1. Before we do this we state
without proof a trivial lemma, where D is as above, i.e. with angle g.
We also suppose that the region is symmetric with respect to the positive
z-axis.

LemMAa. Let §< fy< 27 and 6> 0 be arbitrary and let

v(2) = max (r"P2=%2 cosmp/B,, 0) .

Then there exists a number B>1 such that for every z € D the inequality
v(z) > B A(z,v,R) holds for some R.

We can now prove our second theorem.
THEOREM 2. limyg_,,«(B,f)=«(1,B)=n/p for every B, 0<p < 2mn.

Proor. The Phragmén-Lindelof theorem for subharmonic functions
[3, p. 44] gives us that «(1,8)=x/B. Let f<p,<py<2n and let D and D,
be regions of the above type, symmetric around the positive z-axis and
with opening angles g and 8, respectively. Assume moreover that the
vertices are (0,0) and (—1,0) respectively. Let 6 be a given number
and choose v and B according to the lemma. Suppose that « is a function
which satisfies

(i) e S(B) in R2,
(ii) w=O0(r"?2~?%) uniformly in D for r tending to infinity,
(iii) #=0 for z not in D.

We can assume that « is continuous for if not we could reduce the problem
by taking a convolution of 4 with some suitable function and then con-
sider a slightly different region. Put

wuzy)

M == _—
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This supremum is attained at some finite point z,=(zy,y,) € D. If M >0,
then we have by the lemma that, for some R,

u(zg) = Mo(xg+1,y0) > M BA((%o+ 1,%,),v, R)
z‘ B'A((xO’yO)’u’R) 2 “(zo) .

The contradiction proves that u=0 which implies that «(B,8) 2 n/,— .
Since «(B,f) is non-increasing as a function of B and since § and
7| — 7B, can be chosen arbitrarily small the theorem follows.
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