A PHRAGMÉN-LINDELÖF TYPE THEOREM FOR A CERTAIN CLASS OF GENERALIZED SUBHARMONIC FUNCTIONS

TORBJÖRN HEDBERG

We shall consider a class of functions introduced by Y. Domar [1]. The class contains the positive subharmonic functions and is defined as follows:

Let E be an open connected subset of the n-dimensional Euclidean space \mathbb{R}^n and suppose that $B \ge 1$ is a given number. The function u is then said to belong to the class S(B) in E if it satisfies the following conditions:

- (i) u is non-negative and measurable
- (ii) u is bounded on every compact subset of E
- (iii) for every n-dimensional sphere $S_R(x_0) \subseteq E$ with centre x_0 and radius R we have

$$u(x_0) \leq \frac{B}{S_R} \int_{S_R(x_0)} u \, dx = BA(x_0, u, R) ,$$

where S_R denotes the volume of the sphere.

In this paper we always take $n \ge 2$ and $E = \mathbb{R}^n$ and we denote the points by $x = (x^1, x^2, \dots, x^n)$ and we also write $|x| = ((x^1)^2 + \dots + (x^n)^2)^{\frac{1}{2}}$.

The problem to be studied here consists in finding conditions on a function v such that if $u \le v$ and $u \in S(B)$ then u = 0.

The functions v that we are going to consider vanish outside a proper subset of E. In particular we shall in the case $E=\mathbb{R}^2$ study a function v vanishing outside a sector of the plane with its centre at the origin. This will give us a generalization of the well-known Phragmén-Lindelöf theorem for subharmonic functions (see e.g. [3, p. 44]).

We start by proving a theorem concerning functions v satisfying a more general condition. Similar but sharper results follow in the case B=1 from the estimates of harmonic measures in [2].

Let D be a region in \mathbb{R}^n . We shall use the following definitions:

$$heta_{\xi} = \{x \mid x \in D \text{ and } x^1 = \xi\},$$
 $heta(\xi) = m\theta_{\xi},$

where m denotes the (n-1)-dimensional Lebesgue measure. We put $p = (n-1)^{-1}$.

Theorem 1. Suppose that the region D satisfies the following conditions:

- (i) $\theta_{\xi} = \emptyset$ for $\xi < 0$ and $\theta(\xi) > 0$ for $\xi \ge 0$;
- (ii) there exists some monotone positive increasing function h on R_+ , such that h(t) tends to 1 as t tends to 0, and such that

$$\left[h\left(\frac{|\xi-\xi_0|}{\theta(\xi_0)^p}\right)\right]^{-1} \leq \frac{\theta(\xi)}{\theta(\xi_0)} \leq h\left(\frac{|\xi-\xi_0|}{\theta(\xi_0)^p}\right)$$

for all ξ and $\xi_0 > 0$ such that $|\xi - \xi_0| \leq 2 \theta(\xi_0)^p$.

For each B not less than 1 but smaller than some constant only depending on h and greater than 1 we can then choose $\lambda > 0$ such that, if

(iii)
$$u \in S(B)$$
 in \mathbb{R}^n ,

(iv)
$$u \leq \exp\left(\lambda \int_{0}^{x^{1}} \theta^{-p} dt\right)$$
 for x in D ,

(v)
$$u = 0$$
 for x not in D ,

then u = 0 everywhere.

PROOF. Suppose that u satisfies the above conditions and let v be the function defined by the right hand side members of (iv) and (v). Let x_0 be an arbitrary point in D. For every $B \ge 1$,

$$(1) BA(x_0, v, R) = v(x_0) \frac{B}{S_R} \int_{S_R(x_0) \cap D} \exp\left(\lambda \int_{x_0^1}^{x_1} \theta^{-p} dt\right) dx$$

$$\leq Bv(x_0) \frac{m(S_R(x_0) \cap D)}{S_R} \exp\left(\lambda R \sup \theta(t)^{-p}\right),$$

where the supremum is taken over all t such that $|t-x_0| \le R$. We then take $R = 2 \theta(x_0^{-1})^p$. It follows immediately from condition (ii) that

(2)
$$\theta(x^1) \ge \theta(x_0^1) h(2)^{-1} \quad \text{if } |x_0^1 - x^1| \le R$$
.

Denote the intersection of the set $\{x \mid |x_0^1 - x^1| \leq \delta R\}$ with $S_R(x_0)$ and with D by $S_R^{\delta}(x_0)$ and D^{δ} , respectively. The condition (ii) then gives us that the measure of the set D^{δ} satisfies

$$mD^{\delta} = 2R\delta\theta(x_0^{-1})(1+q_1(\delta)) = R^n 2^{2-n}\delta(1+q_1(\delta))$$
,

where q_1 tends to 0 uniformly in x_0 as δ tends to 0. Furthermore we have that

$$mS_R^{\delta}(x_0) = 2R^n \delta \omega_{n-1} (1 + q_2(\delta)),$$

where q_2 tends to zero with δ and where ω_{n-1} is the volume of the (n-1)-dimensional unit ball.

This shows that if $\delta > 0$ is chosen small enough we can find an $\varepsilon > 0$ such that the measure of the part of $S_R^{\delta}(x_0)$ not in D^{δ} is larger than εR^n and we have proved the existence of a C < 1 such that the following relation holds:

(3)
$$m(S_R(x_0) \cap D) < CS_R \quad \text{for all } x_0 \text{ in } D.$$

We can now prove the theorem for a coefficient B such that $1 \le B < 1/C$. We introduce numbers B' > B and d such that B'C < d < 1 and choose $\lambda > 0$ such that

$$\exp(2\lambda h(2)^p) < d^{-1}.$$

Since B' < d/C, (1)-(4) show that for every $x \in D$ there is an R such that

$$B'A(x,v,R) < v(x)$$
.

Put

$$M = \sup_{x} u(x)/v(x) < \infty$$
.

If u were not identically vanishing there would exist an $x_0 \in D$ such that

$$u(x_0) > BB'^{-1}Mv(x_0)$$
.

But on the other hand

$$u(x_0) \leq BA(x_0, u, R) \leq MBA(x_0, v, R) < BB'^{-1}Mv(x_0)$$

for some R chosen as above.

This contradiction proves the theorem.

Next we shall apply this theorem to a special region in the plane. For simplicity we now denote the points by z=(x,y) and put $\arg z=\varphi$ and |z|=r. The region we shall consider is the region between two straight half-lines forming an angle β at the origin, $0 < \beta < 2\pi$, and we denote as before this region by D.

If we apply our theorem we find that if $B_0 > 1$ is small enough then for every B, $1 \le B \le B_0$, there exists a number $\alpha > 0$ such that, if

- (i) $u \in S(B)$ in \mathbb{R}^2 ,
- (ii) $u = O(r^{\alpha})$ uniformly in D for r tending to infinity,
- (iii) u = 0 for z not in D,

then u=0.

We assume that B is sufficiently close to 1 to guarantee the existence of one such α and we denote by $\alpha(B,\beta)$ the least upper bound of all such α .

We want to prove that $\alpha(B,\beta)$ is close to the corresponding value for subharmonic functions if B is close to 1. Before we do this we state without proof a trivial lemma, where D is as above, i.e. with angle β . We also suppose that the region is symmetric with respect to the positive x-axis.

Lemma. Let $\beta < \beta_2 < 2\pi$ and $\delta > 0$ be arbitrary and let

$$v(z) = \max(r^{\pi/\beta_2 - \delta/2} \cos \pi \varphi/\beta_2, 0).$$

Then there exists a number B > 1 such that for every $z \in D$ the inequality v(z) > BA(z, v, R) holds for some R.

We can now prove our second theorem.

Theorem 2.
$$\lim_{B\to 1} \alpha(B,\beta) = \alpha(1,\beta) = \pi/\beta$$
 for every β , $0 < \beta < 2\pi$.

Proof. The Phragmén-Lindelöf theorem for subharmonic functions [3, p. 44] gives us that $\alpha(1,\beta) = \pi/\beta$. Let $\beta < \beta_1 < \beta_2 < 2\pi$ and let D and D_1 be regions of the above type, symmetric around the positive x-axis and with opening angles β and β_1 respectively. Assume moreover that the vertices are (0,0) and (-1,0) respectively. Let δ be a given number and choose v and B according to the lemma. Suppose that u is a function which satisfies

- (i) $u \in S(B)$ in \mathbb{R}^2 ,
- (ii) $u = O(r^{\pi/\beta_2 \delta})$ uniformly in D for r tending to infinity,
- (iii) u=0 for z not in D.

We can assume that u is continuous for if not we could reduce the problem by taking a convolution of u with some suitable function and then consider a slightly different region. Put

$$M = \sup_{D} \frac{u(x,y)}{v(x+1,y)} < \infty.$$

This supremum is attained at some finite point $z_0 = (x_0, y_0) \in D$. If M > 0, then we have by the lemma that, for some R,

$$u(z_0) = Mv(x_0 + 1, y_0) > MBA((x_0 + 1, y_0), v, R)$$

$$\geq BA((x_0, y_0), u, R) \geq u(z_0).$$

The contradiction proves that u=0 which implies that $\alpha(B,\beta) \ge \pi/\beta_2 - \delta$. Since $\alpha(B,\beta)$ is non-increasing as a function of B and since δ and $\pi/\beta - \pi/\beta_2$ can be chosen arbitrarily small the theorem follows.

REFERENCES

- Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429-440.
- 2. K. Haliste, Estimates of harmonic measures, Ark. Mat. 6 (1965), 1-37.
- R. Nevanlinna, Eindeutige analytische Funktionen (Grundlehren math. Wiss. 46), Springer-Verlag, Berlin, 1936.

UNIVERSITY OF UPPSALA, SWEDEN