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RADIAL NTH DERIVATIVES OF BLASCHKE PRODUCTS

P. R. AHERN and D.N. CLARK

In this paper, we consider the boundary behavior of Blaschke products

0o

(1.0) B = T = M7

ket |l 1—G2

in the unit disk |2| <1. Here |a;| <1, X (1 —|a;|) < < and a; =0 is permitted
with the understanding that then @,/|a;/=1. The bounded, analytic
function (1.0) converges almost everywhere to a limit of modulus 1 as 2z
tends non-tangentially to the boundary |z|=1. Thus B(z) has a natural
reflection (which we again denote by B(z)), analytic at those points of
|z| > 1 which are not in the closure of the set {@,'}. The extended func-
tion B(z) is represented by the product (1.0) in [2|<1 and |2|>1 and
satisfies B(z)B(z-1)=1 for all such z.

Some time ago, Frostman [6] proved the following theorem on the
radial limits of B and its derivative.

THEOREM 1. (i) Necessary and sufficient that
limr—)l—-{)f(reim) =L

exist and |L| =1 for f=B, and every subproduct of B, is that

- 1l

b1 €% —ay
(il) Necessary and sufficient that
lim,_ ,; oB(re®) = L and lim, , (B'(re?®) =M
exist and |L|=1 is that
S B A
ko1 €% —ayl?
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The derivatives of Blaschke products were considered again by Cargo
in [4], where there was proved

THEOREM 2. Let N >1 and

(1.1) - l—la
’ hop le®—ay 2N

Then, for f=B, and every subproduct of B,

lim,_;_of®(ret)
exists for 0OSn<N.

Furthermore, Cargo [4, p. 347] conjectured that the converse of Theorem
2 is correct. (Actually Cargo’s conjecture as well as his theorem were
more general than Theorem 2 and involved tangential limits of deriva-
tives of B(z) and its subproducts. Through the work of Linden and
Somadasa [8], however, the converse of the more general theorem of
Cargo [4, Theorem 5] is seen to be false. Thus, all that remains of Car-
go’s conjecture is the converse of Theorem 2.)

In our recent paper [1], we strengthened Theorem 2 to the point where
only

(1.2) >

k=1

1— |ay|
| — @y | ¥+

(instead of (1.1)) is assumed. This made it seem reasonable that Theo-
rem 2 with (1.1) replaced by (1.2) should have a converse.

The purpose of this paper is to prove (in Section 3) the following
generalization of Theorem 1.

THEOREM 3. (i) Let N >0 be even. Necessary and sufficient that
™ ret®) be bounded as r — 1—0, for f=B, and every subproduct of B, is
that (1.2) hold.

(il) Let N be odd. Necessary and sufficient that

lim, ,, (BY9Y(rei®) = L;
exist for 0<j< N —1, that B™(rei*) be bounded as r - 1—0, and that
(1.3) L; = limg_,,,,B9(Rei®)
for 05§ <N -1, is that (1.2) hold.

The analogy between (1.3) and the condition |L|=1 of Theorem 1 (ii)
is clear. That some condition like (1.3) is unavoidable will be seen at
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the end of Section 4 below. A simple consequence of Theorem 3 is the
converse of Theorem 2 (with (1.1) replaced by (1.2)). Actually, slightly
more is contained in

CoROLLARY 1. Let N>0. Necessary and suffictent that B™(rei®) be
bounded and that

(1'4) Hmr—)l—of(Z[}N])(reix) =M
exists for f=B, and any subproduct of B, is that (1.2) hold.

At first glance, Theorem 3 (i) appears stronger than Theorem 1 (i) in-
asmuch as no analogue of the condition |L|=1 is needed. In the case of
Theorem 1 (i), however, Cargo [3] has shown that the condition |L|=1

may be removed. Our methods easily yield the following extension of
this (rather difficult) result of Cargo’s.

COROLLARY 2. If B™(rei®) is bounded and if (1.4) holds for any sub-
product of B, then
lim, ,; of™M(re®) and limg_,,ofM(Re®)
exist and are equal for any subproduct f of B.
Section 2 below contains two lemmas, one of which includes Theorem 2
above (with (1.1) replaced by (1.2)). In Section 3 we adapt the methods

of [1] to prove Theorem 3 and its corollaries. In Section 4, we outline
analogous results for general bounded analytic functions.

2.

The following lemma is essentially the same as our extension [I,
Lemma 3.1] of (Cargo’s) Theorem 2 above. Since the statement we need
here differs from these earlier versions, we include the proof.

Lremwma 1. Let B be a Blaschke product whose zeros satisfy (1.2) for some
non-negative integer N. Then

lim,_ ,_(B™M(rei®) and limp ;. ,B™(Re®)

exist and are equal.

Proor. For convenience, we shall assume z=0. We use the equation

(2.1) B'(z) = B(Z)k§1(1 = |ax?)[(z — ag)(1 - @2)]* .
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The series on the right converges uniformly on compact subsets of the
plane which are at a positive distance from the zeros and poles of B.
We rewrite (2.1) as

(2.2) B'(z) = 3 By(2)(1— |ag?)[(1 —ay2)?,

where B, (2) = B(z)(1 —@,2)/(z—a,).

The case N=0 of this lemma is from Frostman [6] (Theorem 1 (i)
above). Proceeding by induction, we suppose the lemma true for inte-
gers less than N. Differentiating (2.2) N —1 times by Leibnitz’ rule,
we obtain

_N—l N-1 iy D! @ (1= |ay|?)
B¥) —Jzo( J ) ZB A0 (1 =@, z)i+2

By the induction hypothesis and (2.1) it follows that the series on the
right in this last equation converges for 1 —¢ <r <1+¢, where ¢ is chosen
so that B has no zeros on 1 —¢<r=<1. We claim the convergence is uni-
form there. Again by the induction hypothesis, it is enough to show

(2.3) ZBk G N1 — |ag|?)/(1 =@, r)N+!

converges uniformly for 1 —¢<r=<1+¢. For r<1, the absolute value of
the nth term in (2.3) is at most

(1= [ag )L =@y r|~N4D < 2VH (1 — @, [2)|1 — @, |- N+D
since |1—-@a,r|>}|1—a,|. For r>1, that term is dominated by
(L= g 2)(r 7= g )40 < (1= [ay[2) [ — |-+

Now, it is easy to see that (1.2) implies that there can be at most a finite
number of the a; such that

Ima,| = 1-—Reaqa,.
If we eliminate these, we have
r-l-—a,| = 2¢|]1-a,|l forrx1.
Hence we obtain, for the nth term in (2.3)
(1= [0, [2) |1 =@, r| -4 < 24 (1 — |, [2) 1 — g, |-O¥+D
and the uniform convergence is established.

We also include in this section a technical lemma.

Lemma 2. Suppose g(s) has N + M continuous derivatives on some open
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interval I, and suppose g¥+M) s differentiable except at ome point 8, € I
and that gN+M+D is continuous and bounded on I—{sy}. Suppose also
that there is a point a € I such that gla)=...=gWDa)=0. Let h(s)=
g(s)(s—a)=¥ for s in I. Then h is M + 1 times differentiable on I and

1

1
RMA1(5) = f . f GULNAD (g4t | ty(s—a)) v(t) dby . . . diy
0 0

where v(t) ts @ monomial in ty,...,ty.

Proor. Since g(a)=0,

96) = [ Zola+ts—w) &t = s-a) [ g(a+ts—a)) dt
0 0
11 d
= (s—a) — ¢'(a+ut(s—a)) dudt
/]

11
= (s—a)zf fg”(a+ut(s-—a))tdudt.
00
Continuing this procedure, we get

1
- f J'guv) a+ty.. .ty —a))mlty,. .. ty)dt, .. . diy
0

where m is a monomial. Now it is not hard to see that the hypotheses
on g permit us to differentiate under the integral sign M +1 times to
obtain the desired form for A®+1)(s). This completes the proof of the
lemma.

3.

If B is a Blaschke product, we shall consider the invariant subspace
BH2?2 of the Hilbert space H?; one may consult [7] for a discussion of H?
and its invariant subspaces. It was shown in [5] that for each f € (BH2)! =

H2OBH? there is a unique function F(z) of bounded characteristic, de-
fined for |z| > 1, such that

limral—of(reiz) = limR—»l+0F(Reix)

for almost all . Moreover, F is holomorphic, except possibly at the
poles of B.

Math. Scand. 28 ~ 18
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Now let |w| <1, and let » be a fixed non-negative integer, and define

n! 2" —B(z) 37_o (5) BAw) (n—j)! 27 (1 —wz)

(31) k) = R

It is not hard to verify that &, € (BH?)! and in fact that k,, is the unique
function (Cauchy kernel) in (BH2)! with the property that

f™w) = (f,k,) forall fe (BH2)'.

Notice that the right-hand side of (3.1) defines a function of bounded
characteristic for |2| >1 which has radial limits almost everywhere equal
to those of k,(z). Thus it follows by [5, Theorem 1] that the right side
of (3.1) is holomorphic away from the poles of B. In particular, if
B(w) #0, then the numerator of k, must vanish to order n+1 at w1

Now we shall prove Theorem 3. Actually, we shall only prove (ii)
and then prove Corollary 1, part of whose assertion is Theorem 3 (i).

Proor or TaHEOREM 3 (ii). The sufficiency proof is contained in
Lemma 1, so we shall confine ourselves to the proof of necessity. As
before, we assume x=0 for convenience.

Note first that, by assumption, the function B(r) has N —1 continu-
ous derivatives on (0,2), and B®™)(r) exists on (0,2) except possibly at
r=1. By hypothesis, B¥(r) is bounded for 0<r<1. It follows from
differentiating the functional equation B(z)B(z-1)=1 N times that
BW)(R) is bounded on 1 < R <2 (assuming, as we may, that no a, is real).
Now take 0<p<1 and N=2n+1 and let k£, be defined by (3.1). We
have k,(z)=g,(z)(1 —pz)~™+), where g, is the numerator in (3.1). We
apply Lemma 2, to obtain

1 1
k,™(r) = (—p)—("’fl)j - fgp(m(p‘1+t1. by (r=p ™)) v(t) dby . . . db,
0

0
and thus

|kp(")(p)‘ = p_(n“)f < f |gp(N>(p‘1+t1 vty -pY) dty .. b,

is bounded as p - 1. But k,"™(p)=(k,,k,)=|k,|? and, as we showed
in [1], the uniform boundedness of ||k,| as p - 1—0 is equivalent to
(1.2), and this proves (ii).

Proor or CoroLLARY 1. Once again, we need prove only necessity.
We proceed by induction. For N =1, the assumption (1.5) and the
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theorem of Cargo [3, Corollary 2] imply that (1.3) holds and the case
N =1 follows from Theorem 3 (ii). For larger N, we consider separately
the cases NV odd and N even.

First, assume N is even. By induction, we may assume

(3.2) 2 (I=la))/|[1—a [V < oo

Thus Lemma 1 implies that B(r) has N —1 continuous derivatives on
I=(0,2) and the hypothesis implies B™ is continuous and bounded on
(0,1)u(1,2). One may now apply exactly the same reasoning as in the
proof of Theorem 3 (ii) to show that, if N=2n, then k,-1)(p) is uni-
formly bounded as p —~ 1—0. Now we must show that this is sufficient
to imply (1.2).

From (3.2), it follows that at most a finite number of the a, satisfy
both Rea,,=20 and |[Ima,|<1—Rea,. We shall consider four sub-
products of B. Let B; denote the product whose zeros satisfy Rea,, =0
and Ima,, >1—Rea,,. Let the zeros of B, be the a,, satisfying Rea,, =0
and Ima,, <Rea,,—1. Let B; be the product whose zeros are those with
negative real part and let B, contain the remaining zeros of B. We shall
prove that (1.2) holds for each of the products B,, B,, Bs;, B,. This is
obvious for B; and B, since the zeros of B; are bounded away from 1,
and B, is finite. As for B; and B,, we can conclude from the original
hypothesis, together with what has gone on already, that k,®-(p) is
uniformly bounded, where k, comes from (3.1) and the zeros of B,
(resp. B,). Thus the corollary will follow if we can infer from this that
(1.2) holds if, in addition to hypothesis, it is assumed that Ima,, <
1-Rea,, (resp. >) and Rea,, =0.

To do this, denote

m—1
Z—(Lk
Bu(2) =TT ———
" i1 1—a,2

and
hn(2) = B (2)(1 = |ay,|?)}/(1-@,,2) .

The functions Ay, h,,... form an orthonormal basis for (BH2)! and it is
easy to see that the expansion of %, is given by

ky(2) =k§f"(n)(p) by (2)
so that

(3.3) kp(p) =k§17_‘k(")(p) byn=1(p) .

Expanding the derivatives of the k, by Leibnitz’ rule and noting that,
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by Lemma 1, [B,9(p)| is uniformly bounded for all m, p and 0<j<n,
we see that the boundedness of k,™-1)(p) as p - 1 implies the uniform
boundedness of

E By o By(p)a" 1t (1—|a)?)
i1 (1 —app)+t (1 —a,p)™

as p > 1. This implies that
(3.4) kzllBk(p)Iz |ag|** |1 = @p| =2 (1 — |a|?) @y [ (1 — 2z p)

is uniformly bounded as p — 1.
Now if we assume Ima,>1—Req,, and Rea, =0, it follows that
Ima; >2-%|1—a;| and hence that

Im[ay/(1-a,p)] > 271 —ay|[|1—a;p|®.

Hence, from (3.4),

llBk(P)|2l“k|2"(1 — lag|?) |1 —ay| [ |1 — @, p|2n+2

TM3s

is uniformly bounded as p — 1. From this (1.2) follows easily. This
proves the induction step of Corollary 1 in case N is even.

If N is odd, the induction hypothesis again implies that (3.2) holds.
Thus Lemma 1 implies that B(r) has N —1 continuous derivatives on
(0,2). The assertion (1.2) in this case follows directly from Theorem 3 (ii).
This proves Corollary 1 and Theorem 3 (i).

Proor oF CororLLARY 2. This is now a direct consequence of Corol-
lary 1 and Lemma 1.

4.

In this section, we obtain a version of Theorem 3 above for arbitrary
functions in the unit ball of H*®. Let F(z) be such a function; F is then of
the form

27
(4.1) F(z) = B(z) exp (—f Zt+zdm(t)>
0

it __ o

where B is a Blaschke product and m is a positive Borel measure;
[7, p. 67]. We will say that G is a divisor of F' if G is in the unit ball
of H* and if there exists a function H(z) in the unit ball of H® such
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that F=GH. This is equivalent to a representation of type (4.1) for G,
with a measure m, <m and with a Blaschke product B, which is a sub-
product of B.

Just as with B(z), the right side of (4.1) converges and represents an
analytic function for |2|>1, 2z #a,~!, where B is given by (0.1). If we
denote this function also by F'(2), it is easily verified that we again have

the functional equation F(z)F(z-1)=1.

The following generalization of Theorem 3 above also extends results
of M. Riesz [9] upon which Frostman’s original results were based.

THEOREM 4. (i) Let N be even and positive. Suppose m({z})=0.
Necessary and sufficient that G™(rei®) be bounded as r - 1—0 for every
divisor G of F is that

©  1-|a [ dm)

(4.2) . —
“~ et —q N+1 et it |N+1
k=1 | &l o | ev|

hold.
(ii) Let N be odd. Necessary and sufficient that

lim,_,, (FO)rei®) = L,

exist for j=0,...,N—1, that F™)(rei®) be bounded as r -~ 1—0, and that
Lj = limp_,, o FO(Re®)

for 0Sj<N—1 is that (4.2) hold.

The proof of Theorem 4 is similar to that of Theorem 3 and we shall
only sketch it. First, we need the analogue of the results for the case
N =0 (of Frostman [6] and Cargo [3]) for F(z).

Lemma 3. Let F be given by (4.1) with m({x})=0. Then the following
are equivalent.

(a) (4.2) holds (with N =0).

(b) Every divisor of F has a radial limst of modulus 1 at e®=.

(¢) Every divisor of F' has a radial limit at e*=.

Proor. (a) implies (b) is proved precisely as in Frostman’s theorem;
(b) implies (c) is a logical inclusion; so we shall merely show that, if
(a) fails, some divisor of F(z) fails to have a radial limit at e?=.

If the sum in (4.2) is infinite, this is a result of Cargo [3], so let us
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assume it is the integral which diverges. Thus, we may assume, for
example, that

nl4
f 11— e -Ldm(t) = oo
0

and prove that some divisor of F fails to have a radial limit at 1. Aec-
tually, if v is any positive Borel measure on [0,7/4] with no mass at 0,
such that

n/4

(4.3) [1—e-1du(t) = oo,
l

and if K(z) is defined by (4.1) with m replaced by v, we have

nf4
sint
arg K(r) = 2rf i e“|2d v(t) 2 2rcf mdv(t)

for some ¢ and any ¢>0. Thus
nl4

!’

o do(t)
liminf,  ,_jargK(r) 2 ¢ 1—et|

since t|1 —e% -1 is bounded from 0. Hence arg K(r) tends to co and the
lemma will be proved if we can produce a measure v on [0,7/4] such
that v<m, |K(r,)| - 1 (for some sequence 7, — 1) and such that (4.3)
holds. The construction is similar to Cargo’s [3] and will be omitted.

REeMARE. The restriction m({z})=0 was not used in the proof that (a)
implies (b). However, the function F(z)=exp[— (1+2)/(1—2z)] satisfies
(c) but neither (a) nor (b).

For the proof of Theorem 4, we shall also need to set down the ana-
logue of Lemma 1.

LemMA 4. Let F(2) be given (4.1) and satisfy (4.2). Then

lim,  , (F®(re*) and limp . F™(Re®)

r—>1

exist and are equal.

The proof is an obvious generalization of that of Lemma 1.
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Proor oF THEOREM 4. The sufficiency of condition (4.2) is Lemma 4.
Thus we shall only prove necessity. As before, part (ii) will be proved
first.

We proceed as in the proof of Theorem 3 and consider the function
k,(z) defined by (3.1) with B replaced by F, and with N=2n+1. We
shall be able to apply Lemma 2 just as above if we can prove that the
numerator, g,(z), of k,(z) and its first n derivatives vanish at z=1/p.
To see this, take a sequence B; of Blaschke products converging uni-
formly to F on compact subsets of |2| <1. Let k, ; be the kernel func-
tion defined by (3.1) with B replaced by B;. By hypothesis, we see
that F can have only a finite number of real zeros and we assume p is
not one of these. Since F' and B, satisfy the same functional equation,
B; converges to F' in a neighborhood of 1/p. It follows that g, ;, the
numerator of k, ;, converges uniformly to g, in a neighborhood of 1/p.
Now the fact that g, vanishes to order n+1 at 1/p follows from that
property of g, ;. Now an application of Lemma 2 shows the nth deri-
vative of k, to be bounded as p -~ 1-0:

dar
d?" kp(z)

IIA

K.

2=Dp

Since B; tends uniformly to F on compact subsets of |z| < 1, we must have

danr
i(2)

dz" D,

£ K+1

z=p

if j is sufficiently large, say j=j,. It follows from Theorem 3.1 of [1],
that there is a constant K, (independent of p) such that

Z 1" ]a'k(])lz |1 —3a, (])plN-u = Kl’ j;jp ’

where {a,0} are the zeros of B;. By Lemma 4.2 of [1], we may take the
sequence B; such that

. 2n
(4.4) e o N 1 —Jay? dmi(t)
k=1 L=, Dp|N+ |1 —a;p|N+ g [1—petVet

as j — oo. Therefore the right side of (4.4) is bounded (by K,) as p -1
and (4.2) follows.

To obtain Theorem 4(i), we prove the analogue of Corollary 1 above.
In this case, Lemma 3 proves that (4.2) holds for N =0 and Theorem
4(ii) provides the first step in an induction on N. If N is even, the result
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follows from Theorem 4(ii), so we may assume N to be odd. In this
case, we once again take Blaschke products B; tending to F and we
repeat the type of argument used in 4(ii) to see that Theorem 3.1 and
Lemma 4.2 of [1] imply the desired result. This proves Theorem 4.

REMARK. Again with regard to the restriction m({0})=0 in Theorem
4(i) note that if F(z)=exp[—(1+2)/(1—2)], then for any N and any
divisor G of F, G™)(r) has a limit, but Theorem 4 (i) fails for F'.

REMARK. In case the measure m in (4.1) is singular with respect to
Lebesgue measure, the above proof may be considerably simplified. One
may then apply the Douglas—Shapiro—Shields Theorem of [5] and the
integral representation theorem of [2].

Remark. We close by remarking that, both in the situation of Theo-
rem 4, and of Theorem 3 (in particular in Frostman’s Theorem 1) it is
necessary to add more than just lim,_,, ,f®(rei®) exists for f=B (resp.
F) to obtain (1.2) (resp. (4.2)). For example, Samuelsson [10] has given
examples of functions F(z) for which F,F’,...,F®™ have radial limits
equal to 0 at 1 (and m({0})=0). Thus arbitrarily many radial deriva-
tives may exist, yet (4.2) fails, even for N =0.

To obtain examples of Blaschke products with many radial derivatives,
yet with (1.2) failing, it suffices to consider (s—c)(1 —2s)-%, where s(z)=
exp[—(1+2)/(1—2)], and ¢ is a suitable complex number satisfying
le] < 1.
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