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ROYDEN’S ALGEBRA ON RIEMANNIAN SPACES

JOHN CHANG and LEO SARIO

The purpose of the present paper is to rigorously develop a general-
ization to Riemannian spaces of Royden’s algebra, Royden’s compacti-
fication, and the harmonic boundary.

A real-valued function f(2,...,2") on a rectangle [T}, (a?,b?) is called
a Tonellr function, if

(T.1) fis continuous on [T}, (at,b?),

(T.2) for each ¢, f(z,..., 751t F+,. . .,7") is absolutely continuous
with respect to af on (a%b?) for almost all (z,...,Z¢-1,zi+L,...,Z") €
H;.=1,j#i(a'j’bj)’

(T.3) of/oxt is square integrable on each compact subset of the rect-
angle T, (a?,b%).

Note that (T.2) assures that of/da* exists and is finite almost every-
where in ]}, (a%b%) with respect to the Lebesgue measure.

Let f be a real-valued function on a Riemannian space R, and 2 a
parametric rectangle with a coordinate system (a1,. . .,2") on IT", (a%,b%).

LemMa 1. If f is a Tonelli function in terms of the coordinate system
(@L,...,2") on TI',(a%,b?), then Dg(f) is finite for each compact subset
K of Q.

ProorF. Because of the positive definiteness of (g%/) and the homogene-
ity of the following expression, there is, for each compact subset K of
I17, (a%,b%), a positive constant k, depending only on K, such that
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(1) k‘li y')? = Zg“y y = kZ (y%)*

=1 t,j=1 =1

for all (y',...,y") € E». Hence the square integrability of of/dx? implies
that

i Y f f dxl A

ox® 6x’

. Adxn

Di(f) = f gtg
x
is finite, for

¥ gti _Q[ 3f }k z (3f/3xz

oxt ox’ i=1

holds for almost all (x%,...,2") € K and g* is bounded on K.
A real-valued function f on a Riemannian space R is called a Tonell:
function, if it is a Tonelli function in every parametric rectangle.

ProrositioN 1. If f and g are Tonelli functions on R, then so are fag
and fvg defined by

(fag)(p)=min(f(p),g(p)) and (fvg)(p)=max(f(p),9(p)) .

Proor. In view of the identities
fag=3f+g)—3f-gl, fvg=13f+9)+3f-ygl,

and the fact that the space of Tonelli functions on R forms a vector
space over the reals with the point-wise addition and usual scalar multi-
plication, it suffices to prove that if A is a Tonelli function, then so is |A|.

Let ©2 be a parametric rectangle with a coordinate system (x,...,2")
on T, (a%b%). For a pair of points

(Z,..., 7Yt 74, .,Z7)  and  (ZL,..., %L, EL,L L., TN
in JT,(a%b%), we have

|ll@,. .. & e, 24, L2 — B . ., E L 2t T, L L2

< W@, .., EFL et T, L EY) = h(E, .. LB ag, B, B

Therefore |h|(ZY,...,Zi-1,at,ZH+,. . .,Z") is absolutely continuous with
respect to x¢ for almost all (Z.,...,Z-L,z¢+l,...,2") € HJ,,,1 j4i(at,b%)
and hence 0|h|/ox* exists and is f1n1te almost everywhere in TT%, (a%,b%).
From the inequality we also obtain
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|olhl/oxt| < |ohjoxt|

whenever 9|h|/0x? and 0h/ox* exist and are finite.

However, we need a stronger result to conclude that Dg(|k|) £ Dg(h)
for a compact subset K of 2. Let E be a subset of [T}, (a%,b) of measure
zero such that o|h|[0x,. .., 0|h|[0x™, oh[ox',...,0h[0x™ all exist and are
finite at every point of L=TI} ,(ab%)—E.

We claim that

(2|R|/oxt, . . .,0|h|/oxm)

(oh]oxt,. . .,0h|0x™) in L+,
0 in L9,
= —(0h[ox,...,0hf0x™) in L—,

where L+, L% and L- stand for the sets of points p in L at which A(p)
is positive, zero, and negative, respectively.

Observe that L+, L% and L- are all measurable.

The first and the last cases are clear, because, for each point (Z1,. . .,z")
of L+ or L-, there is a neighborhood of (Z1,...,Z") where || is b or —4,
respectively. Let (z,...,z*) € L°. Then A(z!,...,z")=0. By definition
of L, the limits

im0, o (A2%) 1 (|B|@, . . ., B + A5, . . ., Z") —0) ,
im i, o (A2) 2 (A&, . . ., 7+ Aat,. . ., Z") —0)

must exist and be finite, and hence are both zero, for Ax* can be positive
and negative. It follows that

ok oh| . ok ok
U — S g — —
oxt oxd — oxt ox?
holds a.e. in T}, (a%b%) and
Dg(|hl) = Dg(h) .

2.

DerintTioN. Royden’s algebra M(R) of a Riemannian space R is the
class of real-valued functions f on R such that

(M.1) fis bounded on R,
(M.2) fis a Tonelli function on R,
(M.3) the Dirichlet integral Dy(f) is finite.
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ProrosiTION 2. M(R) is a commutative algebra with identity over the
reals.

Proor. We only have to verify that if f,g are in M(R), then so is fg.
First of all, |fg| < M N, where M and N are bounds for |f| and |g| on R,
respectively.

Let 2 be a parametric rectangle with a coordinate system (27,...,z")
on I ,(a%d?). The inequality
If(@. ..,z .., 2" 9(&,. . .,20. . .,Z") —

—f@,. .., %8, . .., BV)g(EL,. . ., 2. . ., Z")|
< max(M,N)(|g@,. .., 25, . .,.ZY) —g(@,. . ., . . .,Z")| +
+|f@. .20 LT = f(@ .., 258 ., 7))

proves the absolute continuity of fg with respect to z* for almost all
(®,. ..,z L7+, 7" € 171, j4i(a?,07). Hence

olfg) _ of

oxt ot 3xi

a.e. in TI, (a%,b%).
For a compact subset K of 2, we have

Dg(gf) =J9*gﬁ (ff-.g+f—ag.) (ig+f ag)dxl .. Ada"
K

oxt oxt/) \ox’ ox’

—fg}gij&via jgzdxlA...Adx”+
] i 2 .1
+f g° o wa dxl A ... Adx™ +

tgii L. 2 1 g
+ 2Jg 8x1 por fg da' A ... Adx"

S N2Dg(f)+ M2Dg(g) + 2MN(Dg(f) Dg(9))! -
Here

)
IJ-g*g‘f 8:1]; % fg da* A ... Adx?
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g9 — ¥ 2

3l87 dxl A ... Adz?

Mwa

IIA

oxt ox?

IA

MN (Dg(f)Dg(9))

0 d9 o0g\}
o [ (0 2 (o 2 2 a0

143

. Adx?

the last relation being an application of Schwarz’s inequality. By a

partition of unity, we obtain

Dy(fg) = (M(Dg(9))} + N(Dg(f))})? .

ProrositioN 3. M(R) is a lattice under the usual meet and join of two

Sfunctions.

This is clear by Proposition 1 and a partition of unity.

As for the division in M(R), we state:

ProposITION 4. Suppose that fe M(R). The function 1[/f belongs to

M(R) if and only if infg|f|> 0.

The verification is straightforward.

We shall employ several modes of convergence of a sequence {f,,}om_

of functions on R:
(a) C-convergence. f=C-lim,,_, f, on R, if

limm-»oosupK Ifm_fl =0
for each compact subset K of R.

(b) B-convergence. f=B-lim,, , f,, on R, if {f,}_, is uniformly

bounded on R and f=C-lim,, , f, on R.
(¢) U-convergence. f=U-lim,, ,  f, on R, if
limm—)oosupR lfm —fl =0

(d) D-convergence. f=D-lim,,_, f,. on R, if

lim m—)oo fm_f) =0.
(e) @D-convergence. (@=C, B,

or U.) f'_" QD'limm—»oofm , if
f = Q'limm-»oof m and f=D 'limm—>oof m onR.
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We reformulate UD-convergence by introducing in M(R) the norm

Ifll = supg|fl+(Dr(f))}
It is easily verified that

(a) |Ifll=0, and ||f||=0 if and only if f=0 on R,
() llafll=1a| If]l for each real o,

() If+gl=Ifll+ligll,
(d) /gl =If1 gl
() [1I=1.

Thus M(R) is a normed algebra.

THEOREM 1. M(R) with the norm is a Banach algebra.

Proor. Only completeness needs attention. Let {f,}o_,<M(R) be a
Cauchy sequence in the above norm, that is,

fn =Sl = sUPR|fon =Sl + (Dr(f—Ffi))} — 0

as m,k — oo. The fact that supgp|f,—fi — 0 implies that there is a
bounded continuous function f on R such that

Supr|fu—fl >0 as m—>oco.

Let « be a 1-form with local representation

o = ay(2L,..., 2" dxt+ ... +a,(@,...,2")dz"
in terms of a coordinate system (z1,...,2") where a,(z,...,2"),...,
a,(xl,...,2") are measurable and [pxA*x<oo. The totality of such

1-forms is a Hilbert space with inner product (x,8)=[goA*8 (cf. Springer
[9]). Therefore

Da(fa—fd) = [ dfn—fi) A 4difn=fi) > 0
R
as m,k — oo implies that df,, converges to a 1-form « on R, that is,

limm—»oof (Afm—) A *(dfn—a) = O,
R

and

fle\*oc<oo.
R
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We will show that f is a Tonelli function and that df=«. Let Q
be a parametric rectangle with a coordinate system (xl,...,2") on
I17%,(a%,b%)=C. Take a rectangle C'=TI%,(c?,d?) with C’'=C. Suppose
that « has the form

o« = ay(xt,. .., 20 dxt+ ... +a,2,...,x")dz" .

Let 0(«,...,2") be a function on C such that it is continuous and con-
tinuously differentiable, with a compact support in C, and =1 on C'.
We introduce:

Im(@t,. . 2?) = 0(xL,. .., 2") f(2,...,27),
g@,...,a") = 0(at,...,2") f(z4,...,2"),

20
by(a,. .., x") = O(x,...,x") a)2l,...,2") + a—}f(xl,. cZM),
x
gi(xL,. .., o, . .,2") = fb,-(xl,. el o,z dt .

Observe that dg,,/0xt=(00/0x%)f,, + 0(df,,/0x%) converges, in L2norm of
L¥C), to b;. In fact, (90/0z?)f,, converges uniformly to (96/9x?)f, for f,,
converges uniformly on C to f and 00/dxt, which is continuous and has
compact support in C, is thus bounded. To see that 6(df,,/ox°) also con-
verges, in L?-norm, to Oa;, let K’ be the support of § in C. We have

2
f(@%—@ai) dat A ... ndan
& ox*

U m ,,
éf,él (og— ) dnnde
S J-ezk j( - )(@—aj)dmll\...l\dx"
%fm % m
= 2] —% ¥ gt " a. 1 n
j@kg [g J(a‘ a)(axf a,)]dm A...Adx
=<

cf(dfm—oc)/\*(dfm—-oc) 50,
2

as m — oo. Here the second inequality follows from formula (1) and ¢ is
a bound for (k62)/g* on K’, which exists on account of the positiveness
of ¢ and the compactness of K'.

Math. Scand. 28 — 10
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For each m,
xt P
P I - fa—tgm(:il,...,ii—l,t,ii’fl,...,a_c“) dt
at

for almost all
(il’ oo ,Ei—ls?i“’l: s ’in) € H}Ll,j#i(ajabj) )

because ¢,,(Z%,...,2%...,Z") is absolutely continuous with respect to x*
and lim, | ;ig,.(%,...,t,...,Z%)=0. By Schwarz’s inequality, we obtain

1gm(@ELs . . 28, LB —gi(F,. . ., at,. .., 3|2
o

f [(0[0)g (@, . . ., B-L,8, 54, .. . 5n) —
e

2
—b,@, ..., FLt,FH, .., 5m)] di

ot

< (bi—di) f [(0fot)g (@, . . ., B-Lt,7H, . .., 7n) —
o
— by (&L, .., LT, L a2 dE
for almost all (z%,...,2-,7"+,...,2") € IIj.,,;.:(a?,b%), and therefore

f |Fm(@L,. . ., 2") —gi(xt,. .., 2")|2dat A ... Ad2"
c
bé
s ('—a) | { [ 1@t .ttt am)
C \af

— by, . ., 2Lt L am) 2 didat A ... Ada?
]

= (b —ai)? f [(0foti)g,u(at, . . ., am) —
C
—by(xL,. .., x)]Bdat A ... Ada™.

This implies that g,, converges, in L2-norm of L*C), to ¢g* in L*C).
Hence there is a subsequence g, of g,, which converges almost uni-
formly on C. On the other hand, g,, converges uniformly to g on C.
Therefore, for almost all (z%,...,2-1,2%,. . .,2") € [T}, j4.:(a%,09),
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0@, . ..,2%. .., @0 f@,. . .,20,. .., &%) = g(@,...,a,...,5"

= g¥z%,...,2%...,T")
at

= fbi(il,. CLEL EL L gn)dE,
at

because both functions are continuous in 2.
Since 6(x1,. . .,a") is arbitrary, f(z!,...,2%...,Z") is an absolutely con-
tinuous function of z¢ for almost all
=1 =il il & n
@,. .., 2Lz, 7" € TT7, jas (0, 09)

and 9f/oxi=at a.e. in [T}, (at,b?).

With a slight modification, the above proof also gives

THEOREM 2. M(R) is BD-complete.

3.

The following generalization to Riemannian spaces of an approxima-
tion theorem by Nakai [8] plays an important role:

THEOREM 3. Let f be a Tonelli function on R with Dg(f)<oo. For a
positive number e, there exists a C®-function f, such that || f—f,||<e. More-
over, if f has compact support in an open set G, then f, can be chosen to
have its support in G.

Proor. Let us first assume that 2 is a parametric ball with a coor-
dinate system («1,...,2") on

By = {ze B | |z[=((x")*+ ... +(x")?)i <2}
and that f has its support in £; more precisely, the support is in
B, = {xcE" | |z|<1}

in terms of the coordinate system (,...,2"). We define a C*-function
om On R by setting

-2
nmin "

Tan+l) J e~ dt o,(p)
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equal to exp(—(m=2—(z})2—... —(2?)?)1)if pe Q and p=(a,...,2") €
By/m» and equal to 0 otherwise; here I" is the gamma function. Clearly

~f@_)mda:l/\...Ad.at:”= 1
R

and p,, is nonnegative on R.
Let

In@ = [ enlg=p)f)dan ... A dan
R

= [enm)fa-p)dta ... ndon.
R

From the first equality, we deduce that f,, is C*, f,, vanishes outside
of 2, and
f = U-lim

m-—)oofm

on R. From the second equality, we obtain

0 9
ég‘lgfm@) = }[Qm(p) —a?f(q—p) dala ... Adx

a.e.in B,. By the definition of p,,(p), the supports of all f,, are contained
in a compact subset K’ of B,. Schwarz’s inequality and formula (1)

yield

g (5; fula) - %f(q)) (-3—2— fnlg) %f(q))

IIA

< /]
k2, (f 2m(P) ﬁf(q—p)dxl/\ e Adam —
1\ Y

a 2
- igm(p) —a—?ﬁf(q)dxll\ Adx")

IA

Icfgm(p)dxll\ eoo Adzh
R

n 0 Fl 2
'Ifzem(zo)g1 <'ay_if(q"p)“'a}'ﬁf(4)) da' A ... adx

n

IIA

0 2
(a—yzf(q—p)— @;f(q))2 dat A ... Adx",

=1

k f em(P) .
2 i
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From this and Fubini’s theorem, we obtain

DR(f_fm)

- [oer 2 f@)- f @) (22 1@~ = ful@)) At .. nda
% oy’

3y’

kNJ:[fgm ( - fla- p)——f )"

Bum

IIA

'dxlA...Adx"] dyta ... ady"

Il
r"—l
Ne—
,.M*

I

( flg—p)— — f(q))

'/
Bllm

< dyt A ...Ady"] dal A ... Ad2™,

where N is a bound for ¢t in K'.
Since 9f(g)/dy* is square integrable over K’, by Lebesgue’s theorem

hmp_,OJ.Z( flg— p——f(q)dyl/\.../\dy”=0.

A fortiori Dg(f—f,) -0 as m —> oo, and hence we conclude that
lmm—>oo“f—fm” =0.

Next, let {g,};m_, be a sequence of C-function on R such that the
support of ¢,, is contained in a parametric ball 2,,, {2,,}>_, is a locally
finite covering of R, and 35°_, ¢, =1 on R. Clearly fg,, is a function of
the type just considered. Hence we can find a C*-function f,, such that
the support of f,, is compact in 2,, and ||fp,, — f.|| <&/2m+1. If f has com-
pact support in an open set G, we can get the desired f,, with its sup-
port in G.

Let f,=3r_.fn. By local finiteness of 2,,, f, € C*(R), and we also have

If~£0 S 3 lfpm=tul <.

As an application of the approximation theorem, we prove two useful
generalizations of Green’s formula.
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LemMA 2. If f is a Tonelli function with Dg(f) < oo, and ue H(Q),
with Q a regular region, then

2) Dy(f,u) = f frdu .

9

Proor. By the approximation theorem, there is a sequence {f,} of
C*®-functions such that ||[f—f,|| >0 as m - co. Therefore Dy(f,,,u)=
Joofm*du for each m. On letting m — oo, we obtain (2).

LemMa 3. Suppose that f is a Tonelli function with Dg(f) <o and
u € HD(2), with 2 a regular region. Let y, be a union of some components
of 02 and y,=0Q —vy,. If f=0 on y,, and u is harmonic on y,, then

(3) Do(fou) = [ frdu.

72

Proor. First, let us assume that g is such that g |2 is a Morse function
on the manifold triad (2; y;,7,) (Milnor [2]). Then there are only finitely
many non-degenerate critical points in Q2. Let Q,={peQ|r<g(p)<1}
for r>0, and 8,=02,—y,. By formula (2),

D, (9,u) = fg*du = fg*du+fg*du

02y Br ve
= rf *du+fg*du = rf*du+Jg*du.
By ve va va

For r -~ 0, we obtain (3).

Next, we observe that it suffices to verify (3) for nonnegative functions
—fA0 and fv0. In fact, in view of the case just considered, it is enough
to prove (3) for a positive function f on QUy,, for we can add g to f.

Let f,(p)=(f(p)—c)v0 for 0<c<min,f. For a sufficiently small ,

fclﬂr=0 a'ndfc=f"'c on ys.
By virtue of formula (2), we have

Da(fc:’"f) = D.O,(fc’u) = ffc*du"l' J.fc*du
Br y2

=J-fc*du=ff*du——cj *du .

72

On the other hand,
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[Da(feru) — Do(f,u)| = |Do(f,—f, )|
= lD{pe.QIf(p)S_c} (f’u)‘
= Do (£)D e spysar (4)

and consequently D(f,,u) - Dg(f,u) as ¢ - 0, for Dy(u) <. We con-
clude that (3) holds.

Finally, if y,=0, then we take a parametric ball B in 2 and apply (3)
to 2 — B with — 0B as y,, and (2) to B.

As a direct consequence of (3), we derive the Dirichlet principle:

THEOREM 4. Let 2 be a regular region of R. If f is a Tonelli function
with Dp(f) < oo, and w e H(Q) with w|02=f|0Q2, then

(4) Dy(f) = Dg(u) + Do(f—u) .

Proor. By the approximation theorem, there is a sequence of C*-
functions f,, with Dpy(f,,) <o such that |[f—f,|<1/m. The Dirichlet
principle for the boundary C*-function f,, |02 and the regular region 2
gives

'D.Q(fm) = D!)(u’m) + 'D.Q(fm—u’m) .

Clearly w=U-lim,, . u,, on £. Since

(D.Q(um - uk))* = (Dﬂ(fm _fk) - D.Q(fm _fk + U — um))*
< (Dolfn=Mt+(Dalfic—1)F
w=D-lim,,_, u, on £ and therefore u € HD(Q).
By Lemma 3 with y, =0Q, we obtain
Do(f) = Do(f—u+u) = Do(f—u) + 2Dg(f —w,u) + Dg(u)

= Dg(u) + Do(f—u),
for f—u vanishes on 0£2.

4

In this number we will use the conjugate space M(R)* of M(R) with
the weak* topology to imbed R.

THEOREM 5. For a Riemannian space R there exists a compactification
R*, unique up to a homeomorphism leaving R element-wise fiwed, with
respect to the following properties:
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(a) R* is a compact Hausdorff space,

(b) R is an open dense subset of R*,

(c) every function in M(R) can be continuously extended to R*,

(d) M(R), the class of continuous extensions of functions in M(R),
separates points of R*.

R* will be called Royden’s compactification of R.

The proof is broken into several lemmas. Let R* be the set of multi-
plicative continuous linear functionals z on M(R) with z(1)=1.

Clearly R* is a subset of the dual space M(R)* of M(R).

LeMMA 4. If x € R*, then |z||=1.

Proor. By definition ||| = sup <, [#(f)| 2 1, for (1)=1. On the other
hand, if |jz|| > 1, then there exists a function f in M(R) such that ||f||<1
and |2(f)|=1+46, with §>0. For each m,

I = Ifm = 1, Je(f™)] = |=(f)I™ = (1+0)™.

Therefore, ||x||= oo, a contradiction.

LEMMA 5. R*=R*, where the closure B* of R* is taken with respect to
the weak* topology of M(R)*.

ProoF. Assume that y € B*. Then y is multiplicative, for, given any
f,ge M(R) and £>0, by the definition of the weak* topology, there is
an z € R* such that

=)~ 9ol < 5.

€
lz(g) —y(9)| < W ,

&

lz(f)-y(H) <

3[| @)+ ——"'—_]
YOt S+ 1)

Hence

ly(f)y(g) —y(f9)l
= ly(@)y(f) —2(@)y()] + l2(9) y(f) — 2(g) 2(f)| + |z (fg) — y(f9)|

< =+

+-=c¢.

[CURINCY

€
3

Wl o
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By the same token, y(1)=1 and hence y € R*.
As is well known, R*, a closed subset of the unit sphere of M(R)*, is

compact in the weak* topology. For every pe R, let x,(f)=f(p).
Clearly z, € R*.

Lemma 6. The mapping t: p — x, 1s an imbedding of R into R*.

Proor. The mapping 7 is continuous. To see this let
0 ={zeR* | [a(f)l<e},
a typical subbasic open set. The set

T0) = {pe R | |z,(f)|=|f(p)| <&}

is open in R, for f is continuous on R.

The mapping 7 is one-to-one: if p=gq, then 7(p) =+ t(g), that is, there is
a function f in M(R) such that f(p)+f(¢). To see this and a claim we
will make in the next paragraph, we make the observation that R is
locally Euclidean and normal. Therefore, for any closed set C and a
point g of R, not in C, there is a C*-function f such that f has compact
support in any given neighborhood of ¢, and f(¢)=1, f(C)=0. Such a
function is in M(R). As a consequence, T is one-to-one.

To prove that v is closed, let C be any closed subset of R, and

z, € {x,e R* |peC}n{x,c R* |pe R},

where the closure of {r, € R* | pe C} is taken in R* with the induced
topology. Then, for any ¢>0 and g € M(R), there must be a point p of
O such that |z (g9) —x,(g)| <&, or |g(p)—g(q)| <e. We claim that, by the
above observation, the latter inequality is absurd when g=f and e=1}.

Lemma 7. Bvery function f in M(R) can be extended continuously to R*.

Proor. Let fe M(R). We define f(x)=x(f) for x € R*. For peR,
f(x(p)) =F(x,) =2,(f)=f(p). To see the continuity of f, take a net z,
converging to = in the weak* topology, that is, z,(9) — z(g9) for any
g € M(R). In particular, z,(f) - z(f), whence f(z,) - f(z).

Lemma 8. M(R)={f|f(x)==(f) for x€ R* and fe M(R)} is dense in
the class C(R*) of continuous functions on R with the sup-norm topology.

Proor. The fact that M(R) is a separating subalgebra of C(R*) con-
taining constants is in the definition of R*. From this and the Stone-
Weierstrass thorem we conclude that M(R) is dense in C(E*).
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LeMMA 9. The set ©(R) is dense in R*.

ProoF. If not, then the closure R of 7(R) is not R*, that is, there is an
# in R*—R. By Uryshon’s lemma, there is a continuous function g on
R* such that g(B)=1 and g(# =0. In view of Lemma 8, there is an f in
M (R) such that f(#)=0 and f(R) > 0. Let f be a function in M(R) whose
extension to R* is f. Then infg|f| > 0. By Proposition 4, f has an inverse
g € M(R), that is, fg=1 on R. A fortiori fg=1 on R*. On the other
hand, fg(%) =f(%) (%) =0, a contradiction.

Putting the six lemmas together, we conclude that the desired com-
pactification B* of R exists.

LemMma 10. If X is any compactification of R with the properties (a)-(d),
then the mapping from X into R*, given for each p e X by o(p)(f)=f(p)
for all f € M (R), leaves points of R element-wise fixed and is a homeomor-
phism onto R*.

Proor. It is clear that ¢ leaves points of R fixed. By an argument
similar to the one in Lemma 6, ¢ is an imbedding of X. But the image
of X contains R and is compact. Hence, by the denseness of R, ¢ is
onto, and the proof is complete.

THEOREM 6. For any two nonempty disjoint compact subsets K, and
K, of RB* there is a real-valued function f in M (R) such that f(R*)<[0,1]
and f(Kq)=0, f(K,)=1.

Proor. By Urysohn’s lemma, there is a continuous function g in C(R*)
such that g(R*)<=[-2,3], and ¢g(K;)= —2, g(K,;)=3. By the denseness
of M(R) in C(R*), there is a function % in M(R) whose extension % is
such that |h—g| <1 on R*.

Let f=(hAl)v0. Then f has the desired property, for the operations
of taking the meet, the join, and the extension to R* are interchange-
able.

We shall make the following convention: When there is no likelihood
of confusion, f shall stand for both f and f.

5.

The set of functions in M(R) with compact supports will be denoted
by M(R), and the set of functions on R which are BD-limits of M(E),
by M 4(R). By Theorem 2, M ,(R)< M(R).
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ProrositioN 5. M(R) 18 an ideal of M 4(R) and M(R). Furthermore,
M 4(R) is an ideal of M(R).

ProoF. The first statement is clear. For the second statement, let
fe My (R) and g e M(R). Then there is a sequence of functions f,, in
My(R) such that f=BD-lim,, , f,, on R. Clearly the sequence of func-
tions gf,, is uniformly bounded on R, belongs to M(R), and gf,, — gf on
each compact subset of R:

gf = B'limm—mogfm .

Furthermore,

. (%f.*_g.g} - :_y‘(;fm 8f"‘> del a ... Adan
gzj ghgii z:i (f—f, )2 dat A ... Adan +

+2£g}gij (:_i Zj;';)(:xf] aa‘i";)gzdxlA...Adx”
§2Jg* ‘J—xzég(f fo)?dat A ... Ada™ +

+2f ”%%(f fm)idat A ... Adx™ +

+2fg} zi(:i; %)(%-%)gzdxlA...Adxn
< 2f *g‘f—;@ (f=fn)2data ... Adx™ +

0
+2Nf *ia—'q-gg—dx/\.../\dx"+

oxt  oxt/ \oxl ox’

+2MJ'g§gti (3{_%2> (_ai af"‘)d 1a ... Ada",
R
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where K is any compact subset of R, M is a bound for g2 on R, and N
is a bound for {|f-f,|?, m=1,2,...} on R; N exists on account of
B-convergence.

By U-convergence on K and D-convergence of {f,} on R, the for-
mula (5) gives

lim sup Dg(gf — gfm) £ 2N Dg_g(9) .

m—>»00

Since K is any compact subset,
limm-—)ooDR(gf_gfm) =0.

Hence gf =BD-lim,,_, . gf,, on R and gf € M ,(R).

The following concept plays an important role in our approach.

DEerFiviTION. For a Riemannian space R with its Royden’s algebra
M(R) and Royden’s compactification R*, the set

A = {pe R*|f(p)=0 for each fe M,(R)}

is the harmonic boundary of R.

Clearly, 4 is a closed subset of R* and is disjoint from R.

6.

We are ready to generalize to Riemannian spaces the fundamental
harmonic decomposition theorem (cf. Royden [7], Nakai [6]):

THEOREM 7. Let fe M(R). Then there exist functions w € HBD (R) and
g € M 4(R) such that f=u+g on R. Moreover, the decomposition is unique,
if A is nonempty.

Proor. Let {2,}5_, be a regular exhaustion of R. For each m=
1,2,..., let u, be the continuous function on R defined by
Up|B—Qp = fIR—Qy, | R, € H,y) .
For m <k, by Green’s formula, Dy, (u,, —u;,%;) =0, and therefore

Dg(u,,) = Dp(wy)+ Dg(t, —uy) -
Thus
Dg(u,) 2 D) 2 0

for m < k. We infer that Dg(u,,) converges and Dg(w,, —w,) tends to zero,
as m,k — oo. Since {u,,} is uniformly bounded, by compactness, we may
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assume, without loss of generality, that u,, converges uniformly in com-
pact subsets to a harmonic function 4 on B. Owing to BD-completeness
of M(R), we M(R), and we HBD(R). Let ¢,=f-u,, m=1,2,....
Clearly the g,,’s are in M (R) and BD-converge to g=f—u.

To prove the uniqueness of the decomposition, we suppose that f=
u+g=u+g, with »,ue HBD(R) and g¢,§ € M (R). Clearly u—u=
g—ge M, (R). Let v=u—u. Then ve HBD(R)nM ,(R). Hence there
is a sequence of functions v, € My(R) such that v=BD-lim,_, v,
Therefore

DR(?}) = limm»ooDR(Um:v)
= lim,, , Dg (vy,v) = lim,,_, f Vpdv = 0,
09k
where k>m is so large that the support of v, is in £,. Thus v is con-

stant. If 4 is not empty, then we conclude that v=0 on R.

Henceforth we use the notation #(f) for . In view of the proof, we
can state:

CororraArY 1. If fe M(R) and f<0 on R, then n(f)<0 on R.
CorOLLARY 2. If fe M(R), then
supg|f| 2 supgla(f)| .

CoroLLARY 3. If fe M(R) is subharmonic (or swperharmonic), then

a(f)2f (or n(f)Sf) on R.

CoROLLARY 4. If fe M(R) and for some superharmonic (or subhar-
monic) function v on R. v=>f (or v<f) on R, then v==z(f) (or =n(f)=v)
on R.

The following theorem shows the importance of the harmonic boundary
(Mori-Ota [3]).

THEOREM 8 (maximum principle). Let u be an HBD-function on R.
Then

infpu = mingu, suppu = max,u.

Proor. If 4 is empty, it is easily seen that  is constant and hence
the theorem is trivial. We therefore assume that 4 0.

The statement is a direct consequence of the denseness of R in R*
and the fact that u(4) <0 implies ¥ <0 in R. To see this, consider the
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set A={pe R*|u(p)2e} for any ¢>0. Clearly And=0, and hence,
for each p € A4, there is a f,, € M ,(R) such that f,(p) 22 and f,, 2 0 on E*.
Therefore

{Up={geB*|f,(0)>1} | pe 4}

forms an open covering of A. But 4 is compact in R*, and thus there
exist points py,...,p, in A such that U, U, >A. Hence f=37",f,,
isin M (R) and f>1 on 4. Since u is bounded from above, there exists
an M such that u—Mf<0 on 4. Then u—Mf—e<0 on R*. By the
decomposition theorem,

u—Mf—e = v+g

with v e HBD(R) and g € M /(R), and u—e=v, for A+0. Corollary 1
gives v<0 on R*, and thus u—&e=<0 on R*. Thus we obtain u=< +¢
on R*, A fortiori #<0 on R*.

CoROLLARY 5. Let u be a subharmonic (or superharmonic) function in
M(R). Then

supp% = max,u (or infpu = min,u) .

Proor. If u is subharmonic, the above reasoning applies except that
we use Corollary 3 to obtain u—e=wv.
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