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SOME EXTREMAL PROBLEMS FOR FUNCTIONS
UNIVALENT IN AN ANNULUS

RENATE MCLAUGHLIN

1. Introduction.

Many extremal problems for functions univalent in an annulus have
been solved (see, for example, [1] through [9], [12], [13]), and most extre-
mal functions obtained so far are simple: the omitted continuum is either
a line segment or a cirular arc. P. L. Duren [1] obtained a more complicated
extremal function when he considered the problem of maximizing the
distortion at a fixed point in a certain class of univalent functions: the
omitted continuum starts as a line segment and then sprouts a fork.
In this paper, we shall encounter extremal functions whose omitted con-
tinua rarely are parts of well known curves.

Let R denote the annulus {z: 0 <7, < |2| <1}, and let F' denote the class
of functions analytic and univalent in R and satisfying the following
conditions:

(1) If) <1 for ze R, |f(2)] =1 for [2|]=1,
(2) f) = 0 for ze R,
(3) f(y=1.

Using a variational method of P. L. Duren and M. Schiffer [2], we in-
vestigate the maxima of the quantities arg[f(z)/z] and argf’(z), where 2z
is a fixed point in R and where f ranges over the class F. The variational
method yields a differential equation for the continuum inside the unit
disk that is omitted by an extremal function. For both rotation problems,
the omitted continuum is a curve that starts at the origin and spirals
without branching. We use a special parametrization of the omitted
curve (a method first employed by Schiffer [13]) to obtain a differential
equation for the extremal function. However, some of the parameters
occurring in the differential equation can only be determined implicitly.

Let F, denote the class of functions analytic and univalent in R and
satisfying conditions (1) and (2). We use the variational method of Duren
and Schiffer [2] to answer questions concerning the spherical derivative
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of functions in F, and we raise some questions concerning the curvature,
convexity, and starlikeness of the images of a circle |z|=r, ro<r<1,
under functions in .

Some results of this paper are contained in the author’s dissertation,
written at the University of Michigan under the direction of Professor
Peter L. Duren.

2. The basic tool.
Duren and Schiffer [2] showed that if f belongs to F, then for all
sufficiently small positive values of g, Vo f belongs to F, where
ap?(l—w ap?(l—w
Viw) = w[1e2EEEy BECEY ] o,

(w—wo)(1 —wg) wy (1 —Wow)(1 —wW,)w,

and if f belongs to F,, then for all sufficiently small positive values of g,
VP f belongs to F,, where

2 7 n2
V) = w142 e |+ 0w

(w —wo)wy B (1 —wyw)w,

Here a is a complex number (|a| < 1) depending on g, and wy, 0 < |wy| <1,
is a point in the continuum omitted by f.

Clearly, the classes F' and F, are compact. Therefore extremal func-
tions exist, and we can compare an extremal function g with its “neigh-
bors” ¥ ,og, respectively, V’og. If this comparison yields an inequality
of the type

Re[ag?s(wp) +0(e%)] = 0

for all sufficiently small values of ¢ (s is analytic at w,), then Schiffer’s
lemma [13] implies that the continuum omitted by the extremal function
¢ is an analytic curve satisfying the differential equation

w'(t)? s(w(t)) > 0.

The study of extremal problems thus leads us to quadratic differentials.
Concerning quadratic differentials, we use the terminology of [10].

3. A rotation problem.

Let 2z, be a fixed point in the annulus R, and choose the branch of the
logarithm for which Im log1=0. Then the problem

(4) max; p arg | f(29)[2,] = max,. p Im log[f(29)/z,]
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is meaningful. Let g be an extremal function for this problem. Then
Im log[g(zo)/20] 2 Tm log[V (g(2))/] ,
which implies that
(1_3 £1_
Re {aez [ i(1-¢) ~ i(l—c) ] + 0(93)} <o,

(1 —woe)(1 —wo)wy (¢ —wo)(1 —wo)wy

where ¢=g(2,). Hence the continuum omitted by an extremal function
for problem (4) satisfies the differential equation w’(¢)2s(w(t)) > 0, where

5) s(w) = i 2¢—1—|c|2+w(2¢ — 1_— lc|?)
w(l —w)(c—w)(1 —cw)

Note that the solution curves for this differential equation are symmetric
with respect to the unit circle.

In the open unit disk, s(w) has no zeros and only simple poles at w=0
and w=c. Therefore one trajectory terminates at w=0, one trajectory
terminates at w=c, and these are the only points in the unit disk where
a trajectory can terminate. In order to find the limiting tangential
direction of the trajectory terminating at the origin, we set w=w? The
differential equation w'(t)?s(w(t)) >0 becomes

(dw)z J2c—1—|c|2+w(2e—1—|c|?) - 0

dt (1 —w)(c—w)(l—cw)
hence
o' (t)?i(2c—1—|c|?)ect > 0 for w=0.

It follows that the limiting tangential direction at the origin in the w-plane
is that of the number

i[e(L+[ef?) - 2[el?] .

In particular, if ¢ is positive, a trajectory leaves the origin in the direc-
tion of the positive imaginary axis. Similarly, we find that the limiting
tangential direction of the trajectory terminating at w=c is that of the
number —ic.

A look at the direction field of the differential equation w’()?s(w(t)) > 0
reveals that the continuum omitted by an extremal function for problem
(4) is an arc (its length is determined by the modulus of R) that starts
at the origin and spirals outward without branching.

Let I' denote the continuum omitted by the extremal function g.
Using a technique first employed by Schiffer [13, pp. 444-446], we shall
obtain a differential equation for ¢ from the differential equation for I,
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Note first that according to the symmetry principle, every function
f € F, defined for ry< 2| <1, can be extended to a function (call it f also)
analytic and univalent in ry<|2| < 1/r,.

It is easy to prove that w(t) =g(rye*) is a parametrization of the curve
I' and that w'(t)=1ryefg’(roe?). With this parametrization and the ab-
breviation z=rye¥, the differential equation for I" becomes

(6) —22g'(2)%s(g(2)) = 0.

The left-hand side of (6) is a function of z, defined for ry<|2| <1/ry; we
abbreviate it by H(z). Thus

H(z) = —2%¢'(2)*s(9(2))
is meromorphic and satisfies the conditions

H(1/z) = H(z)
and
H(z) 2 0 for |z|=ry and |z|=1]r,.

Moreover, H(z) has simple poles at 2=1, z=2,, and z=1/%,. At the point
on |z| =r, corresponding to the origin in the w-plane, H(z) has a removable
singularity, since g(z) and ¢’(z) both vanish.
It is convenient to look at H(z) in the u-plane, where uw=1logz. To
this end, we set
G(u) = H(ev) .

The principal branch of the logarithm maps the annulus 7y < |2| < 1/r,
onto the rectangle

logry < Reu £ —logr,, 0 = Imu < 2%.

Clearly, we can extend G(u) to the entire strip logr,<Reu < —logr, by
the rule G(u)=G(u+2ni). Note that

G(-7) = H(e¥) = H(e*) = G(u).

Since G(u) takes only nonnegative values on the lines Reu=logr, and
Reu= —logr,, we may apply the symmetry principle repeatedly and
extend the domain of G' to the entire u-plane.

The function G is now meromorphic and doubly periodic in the u-plane
with periods 2w, = 274 and 2w, = — 2 logr,. In each period parallelogram,
G has three simple poles. Computations show that the residue of G at
w=0 is 2¢g’(1), the residue of @ at w=logz, is —i2,b¢c~!, and the residue
of G at u= —logZ, is —iZ,bc-1, where b=g’(z,). But an elliptic function
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whose periods and principal parts are known has a representation in
terms of the Weierstrass {-function and its derivatives [11, p. 182, Theo-
rem 5.13]. We find that

G(u) = K+2ig'(1)€(u)—izobC‘lc(u—logzo)—-ifz'ol;é—lt(u+logio) s

where K is a constant and {(u) is the Weierstrass {-function constructed
from the periods 2mni — 2n logr,. We now have the following differential
equation for ¢:
g 26— 1—1c|2+9(2)[2c —1—]c|?]

9(2)[1 —g(2)][c —g(2)][1 —Cg(2)]
= 12 2[K + 2i¢'(1)¢(logz) —12,bc-1¢(log[2[z,]) — 17,61 (log2Z,)] -

(M) 9'(2)

The differential equation (7) contains the parameters ¢, z,bc-t, ¢'(1),
and K. It is easy to show that K is real and that Re(zobc~1)=g'(1).
Sufficiently many relations involving the remaining parameters are
readily available, but an explicit determination does not seem possible.

4. Another rotation problem.
We now turn to finding the maximum of the quantity

argf'(z;) = Imlogf’(z,) ,

for a fixed 2, in R. Because of the well known identity

Iimz—»zl arg [f(z) —f(zl)] - hmz——)zl arg [z —-21] = a’rgf,(zl) ’

the argument of f'(z,) is the difference of the arguments of the tangent
vectors to a curve in the z-plane and its image in the w-plane. Since each
f € F maps the circle |z|=1 onto the circle |w|=1 such that f(1)=1, we
have that argf'(1)=0 (mod2=) for each fe F. (Implicit here is an ex-
tension of f, by reflection, to r,<|2|<1/r,.) Thus we can choose the
branch of the logarithm for which Im logf’(1)=0, and the problem

(8) max,, , Im logf’(2)
is meaningful.
Let g be an extremal function for problem (8). Then

Im logg’(z,) = Im log(V,0g)’(2,)
= Im log V,'(9(z)) + Im logg’(z,) -

Setting g(z,) =¢, we obtain the inequality
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Re[ag?s(wy) +0(e®)] = 0,
where

s(w) = P(w)

)
w(1 —w)(c—w)?(1 —cw)?
and
P(w) = ay+a,w+a,w?+a,w?

with ay=2c(c—|c|?), a;=1+4|c|2+|c|*—4c—2c|c|2. Hence the conti-
nuum [I" omitted by the extremal function g satisfies the differential
equation w’(¢)2s(w(t)) > 0. Note that the solution curves of this differen-
tial equation are symmetric with respect to the unit circle.

In the open unit disk, s(w) has a simple pole at w=0 and a pole of
order 2 at w=c. The method used in Section 3 shows that the trajectory
terminating at the origin has as limiting tangential direction that of the
number —i(1—c) (observe that —i(1—c) always lies in the lower half-
plane). It follows from [10, p.32, Theorem 3.4] that at w=c, the trajec-
tories of w'(¢)2s(w(f)) > 0 behave locally like logarithmic spirals. Because
the polynomial P satisfies the condition P(1/w)=w-3P(w), it has either
no root or exactly one root in |w|<1. Apparently both possibilities
actually occur. We plotted the direction field of w'(t)%s(w(t))>0 for
several choices of the parameter ¢. In each case, the omitted curve I’
bent from the origin toward w=c in such a way that the argument of
the tangent vectors changed monotonically.

As in Section 3, the parametrization w(t) =g(r,e¥) yields a differential
equation for g, namely

P(g(z))
g9(2)[1 —g(2)1lc —g(2)]*[1 —cg(2)]?
= -2[K + 2ig/(1) {(log?) —i(1 + 2040~ &(log [2/z,]) —
—i(1+2,db){(logzZy) —ip(log[z[z]) + ip(logzZy)]

g'(2)*

where b=¢'(z,), d=9''(z,), and K is a constant. { and p denote the
Weierstrass {- and gp-functions, constructed from the periods 2mai+
2n logr,. It is easy to see that K is real and that Re(1+z,dbd~1)=g'(1).
Relations involving the remaining parameters can be obtained easily,
but in this general setting, it does not seem possible to determine these
parameters explicitly.

5. The spherical derivative.

In this section, we ask for the maximum and minimum of the spherical
derivatives |f’(z)|/(1+|f(20)[2), f€ Fo, at a fixed point z,€ K. Note
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that the spherical derivative of a function f is unchanged if we replace f
by some rotation e®f. Thus we may assume, without loss of generality,
that zy=r>0 and that f(r)>0.

Let g be an extremal function for the minimum problem, that is,

lg'()l - _ min [f'(r)]
L+1g(n)E  jem 1+IF ()2

A comparison of g with the functions ¥ ®og leads to the following differ-
ential equation for the continuum I" omitted by g:

1+ aw(t) +w(t)? 0
w(t) o—wt) Pl —cw®F

(9) w'(t)?

where c=g(r) >0 and a=(1+c?)(1—6c%+c*)/4c3. (When Duren [1] asked
for the maximal and minimal distortion of functions in F,, he obtained
a differential equation similar to (9). In his case, the constant a has the
value (1 —4c2—c?)/2¢3.)

It is easy to check that w(t)=ct, 0<t <1, is a trajectory of (9). Hence
the spherical derivative attains its minimal value at a fixed point for a
radial slit mapping.

If we reverse the inequality sign in (9), we obtain the differential equa-
tion for the continuum I" omitted by an extremal function g for the
maximum problem.

The coefficient a in the numerator of (9) is a monotone decreasing func-
tion of ¢, and a can assume values in the interval (—2,). Let ¢, denote
the value of ¢ for which a=2. (The number ¢, is the smallest positive
root, of the equation

ct—2¢3—2c2—2¢c+1 =0,

and one can show that 1/3 <¢,<7/20.) We distinguish three cases.

i) c=c¢,. The entire negative real axis and the entire unit circle,
except for the point w= —1, are trajectories.

ii) ¢g<c<1. The entire negative real axis and a portion of the unit
circle, symmetric with respect to the real axis and containing w=1, are
trajectories.

iii) 0<c<c,. The entire unit circle is a trajectory, and the segment
(w,,0) is a trajectory, where w,=3(—a+ (a®?—4)!) (recall that a>2 in
this case). At w,, three trajectories terminate, and their limiting tan-
gential directions are 120° apart. The solution curve to the differential
equation is a forked curve, similar to the one obtained by Duren [1].
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As in the case of the maximal distortion at a fixed point, the spherical
derivative at a fixed point r attains its maximum for a function g that
maps the annulus B onto the unit disk slit radially from 0 to —g(r),
provided r is sufficiently large (say, r=r,). For r,<r<r;, the omitted
line segment sprouts a fork.

Extremal functions maximizing the distortion at z=r and those maxi-
mizing the spherical derivative at z=r differ in the sense that a radial
slit mapping yields a maximum for the spherical derivative ‘“more often”:
if a radial slit map maximizes the distortion at r for r,<r<1, then a
radial slit map maximizes the spherical derivative at r for r;<r<1,
where r; <7,.

6. Other extremal problems.

Each f € F, maps the circle |2| =1 onto the circle |w|=1 whose interior
is a convex domain. One can ask whether there exists a number 7,
ro <7, <1, such that each f e F, maps each circle |z|=7, r,<r<1, onto a
curve whose interior is convex. Similarly, one can ask whether there
exists a number r,, ry<r,<1, such that each fe F, maps each circle
|2]=r, r,<r<1, onto a curve whose interior is starlike with respect to
the origin.

The questions in the preceding paragraph lead to the consideration of
the maximum and minimum of the quantities

(10) Re(2f(2)[f(2)) ,
(11) Re(1+2f"(2)[f'(2)),

where z is a fixed point in R. Expressions (10) and (11) remain unchanged
if we replace f by some rotation e®f; hence we may assume that
z=r>0 and f(r)>0.

Suppose the function g, g € F,, maximizes (10). Set c=g(r) and b=
g'(r). The method of Section 2 shows that the continuum omitted by g
satisfies the differential equation w’(t)s(w(t)) <0, where

ay—2a, w + Gyw?

(12) s(w) = w(c—w)?(1 —cw)?

with ay=>b+bc? and a,=bc+be.

Since the roots of the polynomial ay—2a,w+a@,w? lie on the unit
circle |w|=1, a trajectory in the open unit disk can terminate only at
w=0 or at w=c. The limiting tangential direction of the trajectory ter-
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minating at the origin is that of the number —a,. In particular, if b is
positive, the omitted continuum is a segment [ —a,O0].

If g minimizes (10), we only have to reverse the inequality sign in the
differential equation. In particular, if b is positive, the omitted conti-
nuum is a segment [0,a], 0<a<c.

Suppose now that g maximizes (11), with z=r. Again we set c=g(r)
and b=g¢'(r). The method of Section 2 shows that the omitted conti-
nuum satisfies the differential equation w’(t)2s(w(t)) > 0, where

P
(13) s(w) = () )
w(c—w)3(1 —cw)?
and
(14) Pw) = ay+a,w+ a,w?+a, w® + a,wt

with a,= —bc3, @, =b+ 3bc?, and a,= —3c(b+b). The limiting tangential
direction of the trajectory terminating at the origin is that of the number
—b. In particular, if b is positive, the omitted continuum is a segment
[—a,0].

If g minimizes (11), we reverse the inequality sign in the differential
equation. If b is positive, the omitted continuum either is a segment
[0,a] (c must be large with respect to the modulus of R), or it is a segment
[0,a] with a fork at a.

Unfortunately, in none of the four cases above is it clear that an ex-
tremal function exists with the property that d=g'(r)>0. For nonreal
values of b, the solution curves of the differential equations are no
longer easy to identify.

The curvature of the image of a circle |2|=r under the function f at
f(2o), |2l =7, is given by the expression

1 £"(z0)
1 =~ Re(1+z22).
(19) 2o/ zo)] J +z°f'(zo)>

It is reasonable to ask for functions in F, that maximize or minimize
(15). Again we may assume that zy=r>0 and f(r) > 0.

If g is such an extremal function, the continuum omitted by g satisfies
the differential equation w'(f)*s(w(f))>0 (if g maximizes (15)) or
w'(£)%s(w(t)) < 0 (if g minimizes (15)). Here s(w) is determined by (13)
and (14) with

a, = 2¢3(dc|b| —1b) ,
a, = dc|b|(1 — 6¢%— 3ct) + 2rb + 6rbe?
ay = d|b|(—1+3c+9ct+c8)—6re(b+0),
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and
c=g(r), b=g(r), d=b"*Re(l+rg”(r)lg'(r)).

As before, we find that the solution curve containing the origin is easy
to identify, if b is positive. But we do not know whether such an ex-
tremal function exists.
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