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BOREL STRUCTURES IN GROUPS AND SEMIGROUPS

JENS PETER REUS CHRISTENSEN

This paper deals with some connections between the topology and the
Borel structure of certain groups and semigroups. Results in this direc-
tion were obtained by Banach and a number of subsequent authors
(see [1], [4], [5), [7]) by methods using the Baire category theorem.
Our method, making use of a theorem from classical harmonic analysis,
seems to be simpler, and in some cases it yields stronger results.

Universally measurable means measurable with respect to the universal
completion of the Borel field of the topology under consideration.

THEOREM 1. Let (S, +) be an abelian semigroup with neutral element 0.
Suppose S is equipped with a topology generated by a complete metric d
such that all translations 7v,: > a+x are continuous. Let S=U;2 A,
be a denumerable covering of S. Then there is an 14 € N such that for every

universally measurable set U2 A; the set
U-U={&el|(x+U)nU+0}

s a 0-neighbourhood.

Proor. If this were not true, we could choose universally measurable
sets B;, 1 € N, with 4,< B; and B;— B; not a neighbourhood of 0. We
choose a sequence of natural numbers ¢, € N such that every value
1 € N is assumed for infinitely many n. By induction on » we choose a
sequence s, € S with s, ¢ B; —B; and d(r,r+s,)<2", where r is any
sum of different s,, v=1,...,2—1. (No condition for n=1.)

Consider the space K={0,1}N. With the product topology and the
usual group structure it is a compact metrizable abelian group. We
define the mapping ¢: K - 8 by

Px) = Za1%n8py  T=(Tp)nen»

which is continuous. The sets ¢~1(B,) form a countable covering of K
by universally measurable sets. Hence at least one of them, ¢-1(B,,)
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say, has non zero Haar measure. Then ¢—1(B,)—¢~(B,,) is a neigh-
bourhood of 0 in K (see [3, p. 296]). Consequently there is an M € N
such that e, € p~1(B,)—¢~Y(B,,) for every »=M where

e, = (0,...,0,1,0,...) (1 on the »-th place).

Then for every »=M there exists x € ¢~1(B,) with x,=0 such that
z+e, e pY(B,). Thus s, € B, —B, for every v=M. Since this contra-
dicts the properties of the sequence s,, Theorem 1 is proved.

With suitable assumptions and modifications the following results
will also be valid for semigroups, however, to avoid complications we
now consider groups.

Let (M,%) be a space M with a uniform structure % (see [2, p. 201]).
We call the space o-bounded if

1) for every U € % there is a sequence z, € M with

M = U:°=1 U[xn],
or, equivalently, if
2) any subset N of M such that, for every Ue % and all z,ye N,
z=+y implies U[x]nU[y]=0 is countable.

THEOREM 2. Let G be an abelian topological group which is metrizable
with a complete metric d. Let H be an abelian topological group which is
o-bounded in the uniform structure defined by the group operations. Then
every universally measurable homomorphism 0 from G to H is continuous.

Proor. Let U be a 0-neighbourhood in H. Choose an open 0-neigh-
bourhood W with W—-WcU. Choose a sequence h, € H with H=
Uy, (h,+ W). Then the sets 0-1(h,+ W) form a countable covering of
G by universally measurable sets. Hence there is an » such that
0-(h,+ W)—0-1(h, + W) is a 0-neighbourhood. But

0+ W)—0"2h,+ W) c 0 Y(W-W) < 6-1(U).

Hence 6-1(U) is a 0-neighbourhood in @ for every 0-neighbourhood
U in H. This completes the proof.

Let (M,%) be a uniform space as before. Let ¢: P — M be a Borel
measurable surjection from P to M, where P is a Polish space. Suppose
(Lusin’s hypothesis) that 28> 2% for X>X,, where X, is the cardinal
number of N and R is a transfinite cardinal number or, alternatively,
suppose ¢ is injective and M is separated. Then (M,%) is o-bounded.
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For suppose there is an U € % and an uncountable N < M such that for
all z,ye N,

zFY = Z}[x]nT}[y]=0.

Then we obtain a number of Borel sets in P greater than 2%. But it is

well known that the cardinality of the Borel field of a Polish space is

2%, If instead of Lusin’s hypothesis we suppose ¢ injective and M

separated, then IV is closed in M. Hence ¢~1(XN) is an uncountable Borel

set in P and thus has cardinality 2% (see [6, p. 12]). But then as above

we can conclude that the Borel field has cardinality at least 2%% 3> 2%,
Now we are able to prove

TaEOREM 3. Let G be an abelian metrizable group which can be equipped
with a complete metric. Let 0 be a Borel measurable homomorphism from
G onto an arbitrary topological group H. Then 0 is continuous.

Proor. Clearly it is sufficient to prove the statement for separable G.
The preceding discussion shows that H is ¢-bounded and Theorem 2 can
be applied. If 6 is injective and H is separated, the proof is independent
of Lusin’s hypothesis.

THEOREM 4. Let the abelian topological group H be a surjective Borel
measurable image of a Polish space P. Then H is o-bounded. (If H is a
bijective Borel measurable image of a Polish space P and H is separated,
this holds independently of Lusin’s hypothesis.) Let 0 be a surjective Borel
measurable homomorphism from H onto a Polish group G. Then 0 is open.

Proor. Let U be a neighbourhood in H. We choose an open neigh-
borhood W in H with W— W U. There is a sequence h, € H such
that H=U"_, (h,+ W). For each n,0(h,+ W) is an analytic subset of G,
in particular universally measurable. An argument similar to the proof
of Theorem 2 completes the proof.

The usual measurable graph theorems are easily derived from Theo-
rem 4.

The following result makes it possible to prove all the preceding
results for the special class of non-abelian groups H satisfying:

(R) There is a 0-neighbourhood base # such that ABh-!= B for every
Be % and every he H.

THEOREM 5. Let G be a topological group with the topology arising
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from a complete metric d. Let G=UZ | A, be a countable covering of G by
universally measurable sets. Then for every meighbourhood U there are

finitely many elements g,,...,9, € U and an i, € N such that

Ur19.4:,45 9,
is a neighbourhood of 1.

Proor. Suppose the statement is false for a neighbourhood U. By
induction we choose a sequence g, € @ such that for every ze K=
{0,1}N the product

(P(x) = 1_.[:0=1 gf.” = limn—mo g:fl v g-:n
exists and is in U, and furthermore such that
VieN YNeN I3n>N: g, ¢ p(x) 14,4, p(x)

for every x € K with «,=0 for »2n. The mapping ¢: K — @ is measur-
able, and a contradiction is obtained in a similar way as in the proof of
Theorem 1.

Now it is easy to prove that Theorems 2,3,4 hold in the non-abelian
case if H satisfies (R).

We state some immediate corollaries of the preceding results.

CoRrROLLARY 1. Let G be a topological group with a complete metric and
H o universally measurable normal subgroup whose index is at most de-
numerable. Then H is open and closed.

CoROLLARY 2. Let F be a complete metrizable topological vector space
and A< F a convex, absorbing, universally measurable set. Then A is
a 0-neighbourhood.

AppED IN PrOOF. The results of Theorems 3 and 4 seem to be more or
less known, but our method is new.

A set 4 has the Baire property if there exists an open set U such that
(ANU)u(U\A4) is of the first category. The family of sets having the
Baire property is closed under the Souslin operation. Hence every ana-
lytic set has the Baire property (see K. Kuratowski, Topologie I, 2. édi-
tion, Warszawa, 1948, Chap. 1, pp. 62-63). Let G be an arbitrary topolo-
gical group. If A <@ is not of the first category and has the Baire pro-
perty, then A:A-1 is a neighborhood (see B.J. Pettis, On continuity and
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openness of homomorphisms in topological groups, Ann. of Math. (2) 52
(1950), 293-308). Combining these remarks with our arguments we ob-
tain Theorems 3 and 4 even without the assumptions that the groups are
abelian.
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