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MAJORIZING OPERATORS BETWEEN L* SPACES
AND AN OPERATOR EXTENSION OF LEBESGUE’S
DOMINATED CONVERGENCE THEOREM

NORTON STARR

Introduction.

We consider here some questions relating to majorizing operators
between L? spaces by positive operators and whether such operators map
certain pointwise a.e. convergent sequences into a.e. convergent se-
quences. Significant aspects of majorizability have been studied by
U. Krengel [9], who dealt with the more general case of operators between
Banach lattices. As part of an earlier work, L. Kantorovitch [7] con-
sidered in more abstract terms the existence and properties of majorizable
operators as well as their preservation of the convergence in question.

Let (X,2,u) be a o-finite positive measure space and T be a bounded
linear operator on L? into L9, for fixed p,q € [1,00]. Then if p=1 or g= oo,
Krengel [9] has shown that 7' is majorizable: there exists a positive
linear operator P on L? into L2 such that

|Tf| < P|f] ae. (u) forall feLr.

(Similar results were presented in Chacon and Krengel [3] and Dunford
and Schwartz [5, pp. 668—684], and all three articles used such results in
attacking problems of ergodic theory.)

We show the above result to be best possible in a certain natural sense
and in so doing give a characterization of majorizability. The majoriza-
bility of operators is connected with their preservation of a particular
type of convergence of function sequences: One of the elementary proper-
ties of the conditional expectation operation E{- |# } of probability theory
is its preservation of bounded almost everywhere convergence, namely,
given a sequence {f,}° of functions integrable over a probability space
(2, P), such that
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sup, |f,l € LY(2,P) and lim, , f, =f ae.,
then

lim, , E{fu|F} = E{f|F} ae. and sup,|E{f,|#}| € L{2,P),

cf. [4]. We investigate here the natural extension of this preservation of
bounded a.e. convergence to more general (even non-linear) operators
on L? into L9, giving characterizations of those operators sharing the
property. In the linear case, the effect of such hypotheses as majoriza-
bility, positivity, and weak* continuity is studied.

We now establish our definitions and notation.

Let (X,2,u) be a o-finite positive measure space unless otherwise
noted. Equations and inequalities are understood to hold almost every-
where (a.e. (u)), [|f]l, denotes the norm of f as an element of L?, and y,
denotes the function equal to 1 on A, zero elsewhere.

Unless otherwise specified, all operators are assumed linear. Only in
Section 1 are not-necessarily-linear operators dealt with, and they are
referred to there as non-linear operators. An operator 7' is said to be of
type (p,q) if T is a bounded operator on LP into L.

An operator P having domain and range in the functions measurable
on (X,X,u) is positive if it maps non-negative functions into functions
non-negative a.e. Among the easily demonstrated properties of positive
operators with domain some LP, we shall use

i) |Pf|<P|fl,
ii) SupngIan < P(supnglfn) ]-f fn 2 O’ SuanIfn € Lp’
iii) for any p,q € [1,00], a positive operator P on L? into L4 is bounded,
of. [5, p. 682].

DEeFINITION. An operator 7' on LP into L¢ is majorizable if there
exists a positive operator P on L? into L2 such that |Tf| < P|f| for all
feLr. Any such P will be referred to as a majorant of T'.

DErINITION. A sequence {f,}x_, of functions measurable on (X,Z,u)
converges boundedly in L if

i) sup,1lfal € L7 and
ii) {f.}., converges almost everywhere.

DEFINITION. A not-necessarily-linear operator 7' mapping LP into L¢
preserves bounded convergence if given a sequence {f,}x_, boundedly con-
vergent in L?, then
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i) sup,-,|7Tf,| € L? and
i) lim,, ,Tf,=T(lim,_,.f,) a.e. (u).

We also say T' preserves the boundedness of {f,}y>, if i) holds, and T' pre-
serves the pointwise convergence of {f,}>_, if ii) holds.

REMARKS. i) A majorizable operator 7' is clearly a bounded operator,
since its majorant is positive, hence bounded.

ii) In vector lattice theory [10], the bounded convergence of {f,} is
referred to as order convergence, and an operator preserving bounded
convergence is known as a sequentially order continuous operator.

iii) It should be remarked that Blackwell and Dubins [2] have shown
that conditional expectation operators need not preserve the pointwise
convergence of unboundedly convergent sequences: given an a.e. con-
vergent sequence {f,}>_, of non-negative functions integrable over a
probability space (2,4, P) such that sup, |f,| € L(2,F,P), there exists
a probability space (2',%",P’), a sequence {f,,'} of functions measurable
over (Q',%',P'), and a subfield €' of &' such that

1° {f,'} and {f,} have the same joint distribution and
2° {E{f,'|€"}}_, diverges a.e. on (2',F',P’).

If, in addition, the measure space (£2,%,P) is non-atomic, then Al-
Hussaini [1] has shown there exists a subfield &Z of & itself for which
{B{f.|#}}5_, diverges a.e. (on (2,%,P)).

In Section 1 we prove that certain non-linear and most majorizable
operators preserve bounded convergence. We show by example that
when the domain is L® a positive linear operator may fail to preserve
bounded convergence, and then prove that the additional hypothesis of
weak* continuity is sufficient to guarantee the preservation of bounded
convergence in this case. In Section 2 we give some conditions, largely
due to Kantorovitch [7] and Krengel [9], under which an operator is
majorizable. Section 3 contains examples of non-majorizable operators
which do and which do not preserve the pointwise convergence of
boundedly convergent sequences. These examples show Krengel’s affir-
mative results on majorizing operators between individual L? and L4
spaces (Theorem 2.2 below) to be best possible.

We thank Professors U. Krengel and R. A. Kurtz for valuable com-
ments, *
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1. Preservation of bounded convergence.
We consider non-linear operators possessing properties among the
following:
(1.1) 0 < f < g implies Pf < Pg for all f,ge L?
(1.2) P(cf) = cPf for all fe L?, f = 0, and all constants ¢ > 0
(1.3) P(f+9) < Pf+Pg for all f,ge L»
(1.4) P(f) < P(IfD forall feLr.

Lemma 1.1. Let P be a non-linear operator on LP into L2 for some
p,q €[1,00]. Suppose (1.1) and (1.2) hold. Then there exists a real con-
stant A such that ||Pf|l, < A||fll, for all f=0.

Proor. The proof is due to S. Koshi [8].

REeMARKS. i) This lemma is still valid if one replaces (1.2) with (1.2'):
For every ge LP, g>0, there exists a real sequence {a,}7° such that
lim, , a,= and P(a,g)=>a,Pyg.

ii) This lemma implies PO=0 and therefore Pf>0 if f>0.

LemMma 1.2. Let P be a mon-linear operator on LP into L2 for some
p,q € [1,00]. Suppose (1.3) and (1.4) hold. Then |Ph— Pf|<Pl\h—f| for
all h,f e L».

Proor. The inequalities

Pf = P(h+f—h) < Ph+P(f—h) < Ph+P|f—h|
imply
Pf—Ph < P|f—h|.
The inequalities
Ph = P(f+h—f) < Pf+P(h—f) < Pf+Plh—f|
imply
Ph—Pf < Plh—f|.

Thus —P|f—h| < Ph—Pf< Plh—f|, so |Ph—Pf|<Plh—f).

THEOREM 1.3. Let P be a not-necessarily-linear operator defined on LP
into L9, for some p € [1,), q € [1,00], such that (1.1), (1.2), (1.3) and (1.4)
hold. Then P preserves bounded convergence.

Proor. Let f, € L? and {f,} converge boundedly in L? to f. Then
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{sup,n|fi—f1}¥-0 is @ monotone decreasing sequence, converging to
zero boundedly in LP. It follows ((1.1) and Remark ii) above) that

{P(supy~n|fi—f1)}¥—o converges monotonely to a non-negative function
g, boundedly in Le:

limy_,  P(supy. y|fic—f1) = g -

Now
0 < supy, y|Pf,—Pf]
< supg v Plf—fI (Lemma 1.2)
< P(supy.n|fe—1f1) (1.1)

< P(supgsolfe—fhele.  (L.1)

We show g=0 a.e., whence
lim sup |Pf,— Pf| = 0 ae.,

and the desired a.e. convergence holds. (The boundedness of the con-
vergence is evident.)
Expressing X =U2_, B,,, u(B,) < o, it suffices to show

fgdy =0, n=L12,....
By
Now
(1.5) IZB,,Q du < fXB,. P(supyn|f—f1) du < oo,
x x

since yp € L'nL®. Using Holder’s inequality and Lemma 1.1,

[9 s (1+u(BL) 1G4 1 =F Dl
By
S (1+u(B,)) 4 [supes v lfy—fll, forall N.

But by hypothesis, limy_,  sup;. n!fi —f|=0 a.e. and boundedly in L?,
80 [supgsy|fix—flll, > 0 as N — co. Hence [ gdu=0 and the proof is
complete.

REMARK. The above Theorem clearly applies to positive linear opera-
tors on L? into L9, and the following Corollary extends it to non-positive
linear operators.

CoroLLARY 1.4. If an operator T on LP into L2 for some p € [1,00),
q € [1,00] 18 magjorizable, then it preserves bounded convergence.
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Proor. Let such an operator T' be given. If {f,}*_, is boundedly
convergent in L? to f, it suffices to show that {sup,.n|Tfi—Tf|}¥-0
converges boundedly in L2 to zero. Let P be a majorant of T' of type
(p,q). Then

supgsy | Tf—Tf| < suppsn P(Ifx—f1) < P(supy.n|fi—F1) -

By the proof of Theorem 1.3, {P(sup;. y|fi —f|)}¥-o converges boundedly
in L9 to zero, completing the present proof.

ReEMARK. In a much more general setting, Kantorovitch has proved
the above Corollary as well as its converse [7, Theorem 8, p. 227]. (The
regular operations of Kantorovitch are our majorizable operators, while
his (0)-continuous operations are, in our case, those that preserve bounded
convergence.) We present in Section 2 (Theorem 2.1, ii)) a slightly
strengthened converse.

ExawmpLE 1.5. The following example shows Theorem 1.3 to be sharp,
with respect to the indices p,q. Let (X,,2,,u,), n=1,2,..., each be the
unit interval with Lebesgue measure. Form the product measure space

(X,2,u) = (Xz?i1X¢» Xg:-lzi’ Xg:-l:ui)
[6, p. 187]. For g e LY(X,Z, ), define

Py(zy,@g,. . ., &y, . .) = (@1, %5[2,...,2,[n,...).
Letting

Iy, 2,,...) = HkN=IXI0,1/k)(xk) >

it is clear that Pfy=1 a.e. (u) yet limy_,  fy=0 a.e. (1). Thus P, which
is clearly a positive operator of type (c0,q) for each g €[1,c0], fails to
preserve the pointwise convergence of boundedly convergent sequences
in L*. Note that P is not of type (p,q) for any p € [1,), g € [1,cc].

As shown by Theorem 1.3 and Example 1.5, a positive operator P on
L? into L2 preserves bounded convergence if p e [1,00), g € [1,00], but
need not do so in case p=o0, ¢ €[1,00]. Difficulty in the case p=oo
arises because bounded convergence in L™ does not imply norm conver-
gence, so Holder’s inequality is of no help. If one tries to use the adjoint
of P, the fact that the dual of L™ is not L! gives trouble. With the addi-
tional hypothesis of weak* continuity of P (that is, continuity from L?
with the L?" topology to L2 with the L7 topology (1/p+1/p' =1/q+1/¢ = 1),
cf. [5, p. 462]), these problems are avoided:
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CoROLLARY 1.6. Let g € [1,00] and let P be a positive operator on L™
into L2 which is weak* continuous. Then P preserves bounded convergence.

Proor. Let f, e L®, {f,} converge boundedly in L* to f. Then
{supyn|fe—f1}¥-0 converges boundedly to O in L*. Hence this se-
quence is also weak* convergent to 0 in L*. Hence {P(sup;. »|fi —f1)}¥-0
converges to P0=0 in the weak* topology on L¢. Now following the
proof of Theorem 1.3 up through (1.5), we see by weak* convergence that

limN—>oofxBnP(Squ>N |fe=Sf)du =0
x

since yp € LY. Thus

fxs,.gd/t =0,
X

80 g=0 a.e. on B, for all n. Therefore g=0 a.e. as desired, completing
the proof.

ReMARK 1.7. Note that an operator of type (p,q) for fixed p € [1, ),
q € [1,00] is weak* continuous, since

ngf - ffT*g for fe L», ge Ld

(1/g+1/¢’=1). Now fix g € [1,00]. A common class of weak* continuous
operators of type (oo,q) is provided by those operators which are simul-
taneously of type (p,q) for all p e [r,o0], for some r<oco. To see this,
fix g € L7, and denote the adjoint of 7' regarded as an operator on L*®
into L2 by T%. Recall that L**, the dual of L®(X,X,u), is the space of
bounded additive functions on X, absolutely continuous with respect to
u, cf. [5]. Denoting action of the functional T%g on fe L* by (TXg,f),
let {E,}{° be a disjoint family of sets in X' of finite measure, whose union
is a set F in X, also of finite measure. Now ZkN=1xEk converges to yg in
the L norm, so T(ZkN=leh) converges to T'(xz) in the L? norm. Thus
TGN % m,) converges to T'(y ) in the weak* topology on L¢; s0, as N — oo,

(Tx9, Sh12my) = 0T 3211w = 0. Txs) = (Txg: 2xm) -

It follows that T'%g is countably additive on the ring of sets in X of
finite measure, and by the extension theory of measures, is countably
additive on X. Clearly, T'%g is a finite measure on X. Thus by the Radon—
Nikodym Theorem, [gTfdu=[g.fdu for some g, e L', so T is weak*
continuous as an operator on L™ into L4,

Math. Scand. 28 - 7



98 NORTON STARR

2. Majorizability.
Condition i) of the following theorem is due to Kantorovitch [7].

THEOREM 2.1. Let T be an operator on LP into L2 for some fixed
p,q € [1,00]. Each of the following two conditions ts equivalent to T being
majorizable :

i) for any non-negative f € L?, sup, <,|Tg| € L9, and
ii) T preserves the boundedness of sequences boundedly convergent in LP
to zero.

Proor. i) See Kantorovitch [7, pp. 222-223, Remarks 4 and 5].

ii) If 7' is majorizable then i), hence ii) must hold. If 7' is not majoriz-
able, it follows that there exists fe L? such that there is no A € L? for
which |7T'g| < |k| for all |g| <|f|. It is a property of the lattice structure
of the space of functions measurable on (X,X,u) that there exists a
sequence of functions g, such that |g,|<|f| and sup,|Ty,| ¢ L9, cf.
[5, p. 336].

Now for each integer k>0 there exists an integer n;, >0 such that
8UPp < g [ T'Gnlllg > 2%, Defining ¥;=g;/2% if n,_, <j<mn,, it follows that
{¥;} converges boundedly to zero in L?, yet sup, |T'¥,| ¢ L.

The following result is due to Krengel [9, Theorems 4.1, 4.2]. Part
of it, the majorizability of type (1,g) operators, was earlier essentially
proved (independently) by Chacon and Krengel [3] and Kantorovitch [7].

THEOREM 2.2. Any operator T of type (1,q) for some q € [1,00] or of
type (p, <) for some p € [1, 0] is majorizable.

Proor. The proof of [3] that an operator of type (1,1) is majorizable
also shows that an operator of type (1,q) for g € (1,00] is majorizable,
with only very minor changes in the argument.

Now let T' be an operator of type (p,o) for pe[l,00] and let |7,
denote the norm of 7. Then if f and g € L? and |g| < |f|, it follows that

179l < ITllpc0llglly < [1Tlp,00 Il »

hence sup|y <7179 € L*. Theorem 2.1 now implies that 7' is majorizable.

3. Some non-majorizable operators.

Our first example yields an operator of type (p,q) for all p € [1,0],
g € [1,0), but which is only majorizable as an operator from L! to L¢
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for g € [1,00). In a sense this shows Krengel’s result (Theorem 2.2 above)
to be sharp. (Remarks: (i) A weaker result in this direction is provided
by the Hilbert transform H, which is of type (p,p) for 1<p<oo [11],
but which is clearly not majorizable:

(o]

subyyiss|Hgl = [ (FOle—t))dt .

—00

(ii) A related result of interest is the following theorem of Krengel [9]:
The bounded linear operators on a real L? space into itself form a lattice
if and only if L? is finite dimensional.) We also show that given any
pe€(1,00], the operator of this example fails to preserve the pointwise
convergence of sequences boundedly convergent in L?.

ExampLE 3.1. Let (X, 2, u) be the positive real numbers with Lebesgue
measure. Let ¢@,, n=1,2,..., denote the n'* Rademacher function:
@, (7) =sign(sin (2*+1zz)) on (0,1), ¢, (x)=0 elsewhere. Let S, denote
the positive linear functional on each L?(X), 1 <p < oo, defined by

n+l1/n [

Suf = [ F0@ = [ gumerm®F O dt
" 0

Note that
(3.1) 18, f1 < 0¥ |fll,, where 1/p+1/p’ = 1.
Define

Tf = 231 (80f) Pn -

A standard result of Rademacher series [12, pp. 123-4] guarantees that
if 33°(S,f)2< o then the series defining 7f converges a.e. and for any
q € [1,00) there exists a positive constant B, such that

(3.2) ITflly = Bo[Z5-1(Swf)*1 -
Noting that

(TSN = ZPISS = ZP 8IS = Il

T is of type (1,q) for any g e[l,0). Setting p=oo in (3.1) it follows
from (3.2) that

ITflly £ Ben67#|flleo »

for any ¢ € [1,00). Now by the Riesz convexity theorem, 7' is of type
(p,q) for any pe[l,0], g €[1,00). (It is easy to show 7' is not of type
(p,o0) for any p €[1,00].) It is clear that for f>0,
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(3.3) S“P|h|§f]Th| = Lo 27 Suf
= X(o,1>] (35 Xtnms1mi(®))f () dE
0

Since 37 fin n+1/m1 € L7(X) but & L7(X) for r < oo, the integral in (3.3) is
finite for all non-negative fe L? if and only if p=1. Thus by Theorem
2.1, T is not majorizable as an operator from L? to L for any p € (1, 0],
g €[1,00). By either of Theorems 2.1 or 2.2, of course, 7' is majorizable
as an operator from L! to L? for any ¢ € [1, ).

REMARE. By Remark 1.7 the operator 7' is weak* continuous as an
operator from L? to L4 for each p € (1,], ¢ € [1,00). The above example
thus shows that weak* continuity does not imply majorizability in these
cases.

We now show that the operator 7' fails to preserve the almost every-
where convergence of sequences boundedly convergent in L?, for any
p € (1,00].

We shall select a sequence {g,};° of functions measurable over (0,c0)
such that
(3.4) lim, , .9, = 0 a.e.,

(3.5) sup,, |9,| € LP(0,00) for all p € (1,00], and

(3.6) there exists an increasing sequence {n,;};>_, of indices such
that sup,, cn<n;y, 79, >1 on (0,1) and
inf, Tg, < —1 on (0,1).

nNE<n=np+1

Such a sequence {g,}7° then provides the desired behavior for it is
boundedly convergent in every LP, 1<p=<oo, yet {Tg,}>>, does not
converge anywhere on (0,1).

To construct {g,}, consider the operation

SUPai=r TH = %o [ (51 Zin s 42
0

defined on non-negative functions f measurable over (0,c0). This opera-
tion corresponds to integration over the infinite measure space Y =
U, [n,n+ 1/n) with relative Lebesgue measure, also denoted dz. There
exists a non-negative function g defined on Y, belonging to L?(Y,dz) for
every p € (1,00] but not for p=1. Extend g to (0,0) by defining it to be
zero on (0,00)— Y,
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Let {N,}7, be a sequence of positive integers satisfying Ny=1,
N k—1<-N k> and

Ni
J gde > 1, k=1,2,....

. Ng—1
Define

g1 = Xuap9 92 = — X9 T XN In-1 = AN s

where all 2¥11 possible changes of sign of g over the N;—1 disjoint
intervals with integer endpoints contained in [1,N,) have been effected.
Set ny=0, n; =211, It follows that

J+
N1—-1
Supno<n§n1Tgn = SUPpo<nzny Zj=11 ( f gndx) P;
J

Ny
= X[o,l)f gdx = xp) -
1

The first equality uses just the definitions of 7' and of the g,. The
second equality follows from the definitions of the Rademacher functions
@; and the functions g,,. The inequality is due to the choice of g and N,.

Similarly inf,, _,<,* 79, < — X0.0-

Continue this procedure: setting n,=3}_,2Y Vi1, for m<n<n,,
define g,, by

In = }VJ‘fl_N" (=1)" XNg+i-1,Ng+D 9 »

with the j, chosen in such a fashion that all 2¥¥1~Nk pogsible changes
of sign of g over the N, ,, — N, disjoint intervals with integer endpoints
contained in [N, N, ;) have been effected. Again, the supremum over
the 2Ni+1~Nk functions 7'g,, is equal to

Nr+1
f gdx,

Np

which is greater than 1 on (0,1). Similarly, the corresponding infimum
is less than —1 on (0,1). In other words, (3.6) holds.

Since |g,| <g¢, sup,,|9,| € LP(0, c0) for all pe (1, 0] so (3.5) holds. Finally,
since the support intervals [N, N,,;) for the g, march out to co asn - oo,
it is clear that lim, , g, =0 a.e., so (3.4) holds. This completes the con-
struction of the example.

Slight modification of the above example yields a class of non-major-
izable operators which, however, preserve the pointwise convergence of
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boundedly convergent sequences. (Of course the boundedness of the con-
vergence will not be preserved (Theorem 2.1).) First we prove the follow-
ing lemma, giving bounds on the L? norms of Rademacher series with
terms truncated at dyadic rationals, cf. [12, p. 124].

Lemma 3.2. Let ¢, k=1,2,..., denote the k'™ Rademacher function,
let {i;}., be a non-decreasing sequence of positive integers, and let
a,=2""% Setting

Y = I PrXo,a »

then for each q € [1,00) there exists a positive constant A, such that
lplly = 4,(E7 et
Proor. Assume for the present that i, <k. Now

v = 3p 1 (CkPr Z;o=i,,X[2—n—1,2—n))
= o1 (Ch@r Zn_ ik ia—n-12-m) + Z5_1 (CxPr Zﬁlliﬂ[z—»—l,z-n))
= a+p,
for simplicity. Observe that

llolly = 271 llexpr(Znzs tiz—n-1,2-w)llg
= Jisilerl 277 < (3R 2 (R, 272t
Define k-1(n) as the greatest integer for which ¢;_,,)<n. Next observe

that

J—1
B =30 (Zk=r(3_)1 CkPr) Xlg—n—1,2-n) »
S0

k—
”ﬂ”q S 3o ||(Zk=lr(»?1ck‘l’k) X[z—n—-l,z—n)”q .

Since when k >n+ 1, ¢, is periodic with period 2-7-1, it is clear that each
g-norm over [2-7-1,2-7) in the above series bounding ||3||, can be replaced
by 2-7-1 times a ¢-norm over [0, 1) as follows:

IBlly < 3512~ IZEC cuilly
S I 27 B (Bt
< 3B, (3l )t
where we have used the full Rademacher series estimate of [12, p. 124].
Removing the assumption ¢, <k has at most the effect of removing

some of the positive terms in the g-norm estimates of x and g, so that the
desired inequalities still hold. Thus we may set 4,=3B,+ (3%, 2-2/9)i,
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ExamrrE 3.3. Using the same measure space and notations as in
Example 3.1 above, fix r € (1,00) and let s=(1—1/r)-1. Define

n+1/n

T,f = z;zl( [ sa dt) Ko P

n

with a,, =27, where {i,,}%_, is a non-decreasing sequence of positive inte-
gers tending to oo in such a way that 33, [a,%/n] diverges.

With this choice of {a,}, and using Lemma 3.2, it follows as in Example
3.1 that T, is of type (p,q) for p € [1,00], g € [1,00).

To determine that 7', is not majorizable as an operator from L? to L2
for any fixed p € [r,], g € [1,00), we use the criterion of Theorem 2.2:

we show there exist f € L?(0, ) for which f> 0 and
n+1/n

(3.7) SuP|g|§flT,.gl = Z:f;l( f f(@) dt) Xio,ay)

n

is not in L'(0,00). (This is sufficient since the expressions in (3.7) are
supported on (0,1).) Integrating the right side of (3.7) gives

n+1/n

(3-8) foqan f f(t)dt = f (Z;z.o=1anx[n,n+1/n))fdx .
0

n

Since 33° ,[a,%/n] diverges for all ¢<s,
zs:)——-lanx[n,n-l-l/n) ¢ L9(0,00) for any g=s.

Thus for any p=r there exists fe LP(0,), f> 0, for which the expres-
sions in (3.8) are undefined, hence those in (3.7) are non-integrable.

Now let {h;};2, converge to h boundedly in L?(0,c0) for some p e
[1,00]. Since for each fixed n, the definition of 7',f over the interval
[27%,1) involves at most a finite number of terms of the series defining
T,f, it is clear that lim; T,h;=T,h a.e. on [27,1). Since i, - o as
n — oo, it follows that lim; , 7T ,h;=T,h a.e. on (0,1) (hence on (0,)).

(It is in this final stage that the convergence of {i,} to oo is used.
Monotonicity of {¢,} was used in Lemma 3.2 to simplify the change of
order of summation.)
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