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Introduction.

Conformal mappings of Riemannian manifolds were investigated by
several authors in the local and global formulation as well (cf. e.g. [4],
[9], and [12]), and some results were also obtained in the case of pseudo-
riemannian manifolds, however, in the local formulation only (cf. e.g.
[4], [10], and [8]). Quasiconformal mappings of Riemannian manifolds
were introduced and investigated in [17].

In the present paper we are concerned with conformal mappings of
pseudo-riemannian manifolds in the global formulation.

We begin our study with preliminaries. We first introduce some nota-
tion and terminology, in particular the notion of an essentially pseudo-
riemannian manifold, develop measurability and integration (Theorems
1 and 2), introduce the notion of an angle, and define its inner measure.
We then deal with curves; especially we distinguish some kinds of curves:
space-like, time-like, regular, and rectifiable, define the length of a
regular curve, introduce some kinds of mappings: type-preserving and
type-reversing, and give a basic theorem on these mappings (Theorem 3).
Next we introduce the notion of the p-modulus of a family of regular
curves and study basic properties of these moduli (Theorems 4-8).
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In the second part of the paper we are concerned with conformal
mappings of essentially pseudo-riemannian manifolds. We introduce the
notion of conformality which, roughly speaking, means that the isotropic
cone is preserved at each point of the manifold in question. We give then
a necessary and sufficient condition for conformality in terms of quad-
ratic forms determined by the metrics of the manifolds in question
(Theorem 9). Now we give a characterization of conformal mappings in
terms of angles and their inner measure (Theorems 10 and 11), and,
finally, in terms of families of regular curves and their moduli (Theorems
12 and 13).

In the last section we define regular quasiconformal mappings and
conclude the paper with the result that in the case of essentially pseudo-
riemannian manifolds there is no analogue of regular quasiconformal
mappings other than conformal. Here we mention that the problem of
the existence of some irregular quasiconformal mappings remains open.
We also pose some other natural problems, some of them being planned
to be discussed in a subsequent paper.

Part I.
Preliminaries.

1. Notation and terminology.

Throughout this paper the set of all points (resp. vectors) of a mani-
fold (resp. vector space) X is denoted by suppX. If f is a mapping
from a set (resp. manifold or vector space) X into a set (resp. manifold
or vector space) Y, we write f: X — Y, and denote the image of any
subset £ of X (resp. suppX) by f[£]. If, in particular, f is a homeo-
morphism, — means ‘“onto”, that is, ¥ =f[X] (resp. supp ¥ =f[supp X]).

The n-dimensional Euclidean space is denoted by R”, and the subspace
of it that consists of points with the last component positive by R}. In
the case where n=1 we drop the index =.

By a pseudo-riemannian manifold we mean a C*-differentiable pa-
racompact connected manifold endowed with a pseudo-riemannian
metric, i.e. a symmetric C* tensor field of type (0,2) which is nondegener-
ate and has the same index at each point. Let g be the metric in question.
Denote by n and p its dimension and index, respectively. Clearly, there
is no loss of generality if we assume that p < 4n, ie. if we replace, if
convenient, g by —g. We say that a pseudo-riemannian manifold is
essentially pseudo-riemannian if 1 £p < }n. For the definition and proper-
ties of C*-differentiable manifolds as well as tensor fields we refer to [2].
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Given a pseudo-riemannian manifold M and an zesuppM, T,M
denotes the tangent space to M at z, while

I’M = {vesuppT M: g(v,v)=0},
IXM = {vesuppT, M:g(v,v)>0},
IDM = {vesuppT M: g(v,v)<0}.

In other words ISM is the collection of vectors of all isotropy subspaces
of T M, while It M and I M are the collections of vectors of all positive
and negative definite subspaces of 7, M, respectively. Further, M
denotes the tangent bundle of M. Finally, if N is another pseudo-rie-
mannian manifold and f: M - N a diffeomorphism, then Df: TM - TN
denotes the derivative of f.

2. Measurability.

Throughout this section X, Y, and Z are C*-differentiable paracom-
pact connected manifolds, while M and N are pseudo-riemannian mani-
folds with metrics g and g¢’, respectively. Under a Borel measure on X
we mean a measure which is defined on the collection of Borel subsets
of suppX. A mapping f: X - Y is said to be a Borel function if the
preimage f-1[E] of each open set E <supp Y is a Borel set.

We need the following lemmas proved in [17, pp. 7-9].

Lemma 1. If f: X - Y s a Borel function, then the preimage f-1[E]
of each Borel set E <supp Y s a Borel set. If, in addition, h: Y — Z is
Borel, then hof is also Borel.

Lemma 2. The product map h: X - YxZ of f: X -~ Y and f*: X - Z
s a Borel function if and only if f and f* are Borel.

LeMmMma 3. If V is a finite-dimensional real vector space and f: X — V,
h: X — V are Borel functions, then f+h and af are Borel for each Borel
Sfunction a: X - R.

Let L(R™, R™) denote the linear space formed by the set of linear
mappings from R™ into R”. It is well known (cf. e.g. [2, pp. 71-73])
that this set may be canonically represented by matrices of type (m,n)
with real entries. Hence to each mapping from X into L(R™, R*) cor-
responds a matrix function [a;], a;: X - R, ¢=1,...,m, j=1,...,n.

Lemma 4. If [a;] 98 the matrix function that corresponds to some
f: X — L(R™, R"), then the following conditions are equivalent:
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(i) f ¢s Borel,
(ii) a;; are Borel,
(iii) A: X x R™ — R®, defined by h(x,v)=f(x)(v), z € supp X, v € supp R™,
s Borel.

As in [17, p. 8], we say that a set E <suppX is a null set if for each
coordinate neighbourhood U =suppX and each coordinate C*°-mapping
u: U — supp R™ the set u[EnU] has Lebesgue measure zero. A condi-
tion is said to hold for almost every x € supp X, or almost everywhere on X,
if it holds everywhere except perhaps for a null set. In our considerations
as derivatives of functions differentiable almost everywhere we shall
meet functions which are not defined on a Borel null set. If such a
function is Borel on its set of definition, then its extension by a constant
value will also be Borel. We will carry out always such an extension
by the value 0. Hence we may regard all functions as defined every-
where.

Levma 5. If f: X — Y 4s continuous and differentiable almost every-
where, then Df is Borel.

LemmaA 6. Suppose that f: M - N 4s a continuous function and
w: TM -~ TN a Borel function which maps each T, M, x € supp M, line-
arly into T;,)N. Given an x€suppM consider arbitrary bases (e;)(x)
and (g;)of(x) of T, M and Ty,N, respectively. Let [a;] be the matrix
Sfunction which corresponds to w. Then

(i) the quantities

l[ull(z) = sup |g'(w(x)(v),u(@)(®))}, «esuppM,
where the supremum s taken over all ve T M such that |g(v,v)| =1, and

detg’(e;,¢;)o0f (%) | ¥
detg(e;, e;)(x)

(detu)(x) = deta;(x) , xesuppM,
do not depend on the choice of (e;) and (&;),
(ii) the functions |ju||: X — R and detu: X — R are Borel.

Lemma 6 is a simple consequence of Lemmas 2, 3, and 1. Its proof
is analogous to that given in [17, p. 8], in the case of Riemannian mani-
folds.

TeEOREM 1. Suppose that f: M — N is continuous and differentiable
almost everywhere. For any x € suppM consider arbitrary coordinate C*-
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mappings p=(ut) on M at z and v=(+*) on N at f(x) whose dimensions
are equal to the dimensions of the corresponding manifolds. Then
(i) the quantities
IDfli(x) = suplg'(Df (x)(v), Df (x)(v))]}, «€suppM,
where the supremum s taken over all ve T, M such that |g(v,v)| =1, and
detg;;ovof(x) | ¥
detg;;ou(x)

where |; denotes partial differentiation with respect to ut, do not depend on
the choice of u and »,

(i) the functions ||Df||: M — R and detDf: M — R are Borel.

(det Df )(x) = det (»/ofou=1)0u(x) , xesuppM,

Theorem 1 is a simple consequence of Lemmas 5 and 6. Its proof is
analogous to that given in [17, p. 9], in the case of Riemannian mani-
folds.

3. Integration.
We begin with quoting a lemma proved in [17, p. 10].

LevMa 7. Let 6 and v be Borel measures on a C®-differentiable para-
compact connected manifold X. Further let p be a nonnegative Borel func-
tion on X such that

0(E) =Ej o dr

for each Borel set E <suppX. Then a Borel function ¢: X — R 18 0-inte-
grable if and only if op is T-integrable and

fgd0= fg(pdr.
X X

We introduce then the notion of jacobian. If M and N are pseudo-
riemannian manifolds and f: M - N is a Cl-diffeomorphism, then, by
Theorem 1, det Df is a real-valued Borel function of « € supp M, that is,
det Df: M — R. Moreover, as it is easily seen, it is continuous. The
function

J; = |det Df|

is called the jacobian of f. Analogously, as in the case of Riemannian
manifolds, we prove

Math. Scand. 28 ~ 4
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Lemma 8. (i) If f is the identity mapping, then Jx)=1 sdentically.

@) If f: M - N and h: N - L are C'-diffeomorphisms of pseudo-rie-
mannian manifolds M, N, and L, then Jop=(Jp0f )J .

(i) If f: M - M' and h: N — N' are C'-diffeomorphisms of pseudo-
riemannian manifolds M, M', N, N', then J;,,(x,y)=J ()] ,(y) tdenti-
cally.

We now give a theorem which enables us to define the Lebesgue
measure on a pseudo-riemannian manifold.

TaEOREM 2. With each pseudo-riemannian manifold M we can asso-
ciate a unique Borel measure T(M) so that the following conditions are
satisfied :

(i) ¢of N s an open pseudo-riemannian submanifold of M, then
©(M)(E)=1(N)(E) for all Borel sets E <suppXN,

(i) of f: M - N is a C*-diffeomorphism, then

(M)(IED = [ Ty du(an)
E

for all Borel sets E <supp M,
(iii) of M=R™ or R, m=1,2,..., then v(M) is the Lebesgue measure.

The proof uses Lemmas 7 and 8. It is rather long, however it does not
differ from the proof given by Suominen [17, pp. 10-12] in the riemann-
ian case: it is sufficient to replace everywhere in his proof the adjective
“riemannian” by ‘‘pseudo-riemannian”.

Now we define the Lebesgue measure on a pseudo-riemannian manifold
M as the measure 7(M) determined in Theorem 2.

We conclude this section by two corollaries which are direct counter-
parts of theorems given in [17, p. 12]. In each of them M and N are
pseudo-riemannian manifolds.

CorOLLARY 1. The Lebesgue measure on the pseudo-riemannian product
manifold M x N is the product of the Lebesgue measures on M and N.

CorOLLARY 2. If f: M — N s a C'-diffeomorphism, then a Borel func-
tion o: N — R is t(N)-integrable if and only if (oof )J, is v(M)-integrable
and

[ eavn) = [ (eo)ay i)
N M
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4. Angles and their inner measure.

Let M be an essentially pseudo-riemannian manifold with metric g.
For a real number a, a 0, let

IM = {vesuppT, M:g(v,v)=a}.

We say that a set E forms an ordinary angle arg(x,E) at a point z of M
if Z is a Borel subset of some IZM, a 0. We say that a set E forms a
topological angle arg (x, F) at a point x of M if E is a Borel subset of either
ItM or I M.

Let x e supp M. Given a set E that forms a topological angle at z, let

IE = {bv:ve E,0<b<1/|g(v,v)|}}.

It is easily seen that I FE is Lebesgue-measurable on 7', M. According to
Section 3, we denote its Lebesgue measure by (7T, M)(I[,£) and the
volume element by dt(7,.M). We then define the inner measure A(x,E)
of arg(x,E) by

A(@,B) = «(T,M)I,E) .

From the above definition it follows that various properties of the
Lebesgue-measurable sets in Euclidean spaces can be translated into
the language of inner measures of topological angles. Since such results
are rather trivial there is no necessity to formulate them here.

It is clear that the above definitions make also sense in the case where
M is pseudo-riemannian but not essentially, and that they agree with
the definitions we already know, but these questions are not essential
for us, so we prefer to leave them aside.

5. Curves and arc length.

Let M be an essentially pseudo-riemannian manifold with metric g.
By a curve on M we understand a continuous mapping ¢ from a closed
interval [a; b],a b, to M. If c is differentiable, we identify the derivative
Dc(t), t € [a; b], with a tangent vector to M at c¢(¢). This determines a
curve Dc in the tangent bundle T'M.

A curve c is called space-like (resp. time-like) if it is absolutely continu-
ous and Dc(t) is a vector of a positive (resp. negative) definite subspace
of TyyM at every point of differentiability. If c is either space-like or
time-like, it is called regular.

The length of a regular curve c is defined by

o) = [ lg(Dete), De(t)lt .
[a; ]
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If I(c) is finite, ¢ is said to be rectifiable. Now let o: M — R be a Borel
function, ¢, the parametrization of ¢ by arc length, and ds the arc length
element. The integral of g along ¢ is defined by
o
fgds = f gocy ds ,

0
provided that the latter integral exists. Otherwise the integral of o
along c¢ is undefined.

Finally, suppose that IV is an essentially pseudo-riemannian manifold
and f: M - N a Cl-diffeomorphism. Then f is said to be type-preserving
(vesp. type-reversing) if it transforms space-like curves onto space-like
(resp. time-like) curves and time-like curves onto time-like (resp. space-
like) curves. Here we confine ourselves to one theorem needed later on:

TaEOREM 3. Suppose that f: M — N 1is either type-preserving or type-
reversing, c: [a; b] - M s rectifiable, while o: N — R is Borel and non-
negative. Then f(c) is rectifiable and

[eds < [ e iDfds.
f@© c

The proof is analogous to that given in [17, p. 14], in the case of Rie-
mannian manifolds.

6. Moduli.

Here we give an analogue of the p-moduli discussed in [17, pp. 15-20].
Our composition and proofs, however, follow rather [5] or [13]. Through-
out the whole section M is an essentially pseudo-riemannian manifold,
while C,C,,C,,C,,. .. are families of regular curves on M.

Denote by admC the class of all nonnegative Borel functions p on
M which satisfy

fgdsgl
[

for all rectifiable c € C. Here we do not assume that the integrals in
question are finite. If g € admC, p is said to be an admsssible metric for
C. For each positive number p we define the p-modulus mod,C of C by

mod, C = inf [ ¢* dr,
M

where the infimum is taken over all p € admC. If admC is empty, we
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put mod,,C=occ. The quantity 1/mod,C is called the p-extremal length

of C.
If in admC there is a metric g, such that

mod,,C = fgg dr,
it
then g, is called p-extremal. It has the following important property:
THEOREM 4 (uniqueness of an extremal metric). If, for some positive
integer p, mod,C s finite and oy,0f are p-extremal, then of =0, almost
everywhere on M.
Proor. Since, clearly, }(o,+og) € admC, then

| B+ e dx 2 mod, 0.
M

On the other hand, if 0 <k < p, then, by the Hélder inequality, we have

1-klp klp
feo”"‘e:"dr = (fe’adr) (fe&"”df)
M M M

= (mod, C)'-¥/» (mod ,C)¥/» = mod,C .

Hence
* pd = » P p—k *kd
[3eo+o,)Pdr = (3P L)@ Q9T
M k=0 3
> (P
< (3)? mod, C' Y ( ) = mod,,C .
K=o \k
Consequently,
[ tteo et 1P dx = mod,
M
whence, by

f o8 o dr < mod, O,
M

we conclude that the quotient

(efFyplw—1o| (ogyplk

is a constant function almost everywhere on M (cf. e.g. [1, pp. 19-20]).
Thus g =g, almost everywhere on M, as desired.
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Now we formulate and prove other basic properties of p-moduli.
Thereafter p is a positive number and 3, U denote summation over all
positive integers k.

THEOREM 5 (monotoneity of moduli). If C; = C, or, more generally, each
¢, of Oy contains a c, of C,, then

mod,C; < mod,C,.

Proor. Suppose first that C;=C,. Hence, by the definition of an
admissible metric, we conclude that the relation p € admC, implies
o €admC;. Therefore admC,<admC,. Since an infimum over a sub-
set does not exceed the infimum over the whole set, we obtain

mod,C, = inf f o?dr > inf f o? dv = mod, C .
oeadmC’g §7s eeadmC’l M
Suppose now that each ¢, of C; contains a ¢, of C,. By the definition of

admC, we may, without any loss of generality, assume that c, is rectifi-
able. Then, for ¢ € admC, we get

fgds;jgds; 1,
c1 (2]

whence g € admC,; and the assertion follows by the reason given in the
preceding case.

In order to prove the forthcoming theorem we need the following
lemma (cf. [15], [11], or [1, p. 18]):

Levma 9. If O<p=Sqand M, 20, k=1,2,..., then
(ZM%)llp > (EMz)llq .
THEOREM 6 (the principle of composition for extremal lengths). Sup-
pose that C,, k=1,2,..., consist of curves lying in disjoint Borel subsets

E,, of supp M, respectively, and that any ¢ of C contains some curve of C
for each k. Then

(1) 3 1/modl/*PC, < 1/mod/* 0, p>1,
(2) >1/mod,C; < 1/mod,C, p=2.

Proor. If 1/mod,,C'=co, (1) and (2) are obvious. Next, if 1/mod, C;
=oo for some k, then, by Theorem 5, also 1/mod,C=co. Finally, if
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1/mod,, C),=0 for some k, then the corresponding term on the left-hand
side of (1) (resp. (2)) may be neglected.

Suppose then that 0 <1/mod,C} < . If g, € admCy, then, for any a,
satisfying

(3) 0<a, <1, Sap=1,
we have
(4) o = Ja;o, € admC .

Indeed, take any ¢ f C. By the definition of admC we may, without
any loss of generality, assume that c is rectifiable. By the hypotheses ¢
contains some disjoint curves c; of O}, for each k. Hence, by (3),

fgdsg fgds=zfgds=zakfgkdsgzak=1.
c Zcg Ck Ck

On the other hand, since E, are disjoint, we may assume that

(5) ex(®) =0, =z € suppM\E, > U, E,.

Let now

M, = f ovdv, a = MPI®D[s M7eD
By

Then, by (4) and (5), we get
mod, C = J.gp dr = f Saror)P dr = Ya} f of dv
M M Iy

=3 MZII(P—I)/Z_M;II(Z’_I))DMIC = (zM;l/(p—l))l-p ,
whence
1/modyeDC 2 3 MGIED

Since 1/M, may be chosen arbitrarily near to 1/mod,C}, respectively,
and p>1, then (1) follows.

Estimate (2) is a consequence of (1) and Lemma 9, provided that
pz2.

THEOREM 7 (subadditivity of moduli). If C=UC,, then
(6) mod,,C £ ¥mod,C, .

Proor. If the right-hand side of (6) is infinite, (6) is obvious. Sup-
pose then that
>mod,Cy < oo,
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and take any ¢>0 and g, € admC}, so that

) J' € dv < mod,C, + 2~ .
M

Clearly,

(8) e = (Tep?

is a Borel function and ¢ € admC. Indeed, let c € C. Then there is a k,
such that ¢ € C},, whence

fgdsg f@kods 21
c c
and, consequently, ¢ € admC. Furthermore, by (7) and (8),
mod, C = fg”dt = ng{dr < ¥mod,C, + €.
b4 i
Since ¢ can be chosen arbitrarily near to 0, then (6) follows.
Theorems 5 and 7 yield
CoroLrARY 3. If mod,Cy=0, then mod, (CUC,)=mod,C.

THEOREM 8 (superadditivity of moduli). (i) Suppose that UC,<C and
that all C;, consist of curves lying in disjoint Borel subsets E,, of suppM,
respectively. Then

9) >mod, C;, < mod,C .

(ii) T'he inequality (9) remains valid if the condition UC\ < C is replaced
by the requirement for each c; of Oy, k=1,2,. .., to contain some curve of C.

Proor. Consider first (i). If mod,C=o0, (9) is obvious. Suppose
then that mod,, C < oo and

(10) Jg” dr £ mod,C + ¢,
M

where p € admC and ¢, £> 0, is chosen arbitrarily. It is easily seen that
the functions g, defined by g,(z)=p(x) for x € E, and by g,(x)=0 for
x € supp M\ E,, belong to admC,, respectively. Consequently, by
(10),
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Il

Smod, C, < zfggdr zfgr dv
M B

fgpdr S J‘Q”dr < mod,C +¢ .
UEg M
Hence (9) follows.

In case (ii), the proof remains almost unchanged.

REMARK 1. Theorems 4-8 are valid also in the case where M is pseudo-
riemannian but not essentially. If the index p of M equals 1, i.e. in the
riemannian case, C,C,,C,,C,,... denote just families of curves on M
(ef. [17, pp.- 15-20]). If }n<p<mn, we can establish the same results as
those given above, if we replace the metric g of M by —g.

Part II.
Conformal mappings of essentially pseudo-riemannian manifolds.

Throughout Sections 7-10 we always assume that M and N are es-
sentially pseudo-riemannian manifolds with metrics g and ¢’, respectively,
while f: M — N is a (*-diffeomorphism.

Moreover, a sum over the empty set of indices is interpreted as 0.
We do not apply the Einstein summation convention since in various
places of our paper it may lead to misunderstanding.

7. Conformality.
A ('-diffeomorphism f: M — N is said to be conformal, if

(11) Df(@)I3M)] = I§,N, xesuppM,
in the case where the index of g is less than 4%, while
(12) Df(@)[IzM] = If,N, =xesuppM,

in the case where the index of g equals }n, n being the dimension of g.

We begin our considerations with two lemmas and then prove a
theorem that gives a necessary and sufficient condition for conformality.
This condition agrees with the usual definition applied in the case of
Riemannian manifolds (cf. [9, p. 106], [12, vol. I, p. 309], and [17, p. 16])
as well as in the local formulation in the case of pseudo-riemannian
manifolds (cf. [4, p. 89] and [10, p. 5]).

LeMMma 10. Suppose that a* and A{f, t,j=1,...,m, n=2, are arbitrary
real numbers and
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(13) b = Z‘iAz,:ai ’
(14) -9 = Zisp (@) — Zizpt1 (a%)?,
(15) -7 = i< (b7)2 — ngpu(bj)z s

where 1<p<n—1. If for every system (at) such that §=0 we also have
g =0, then

(16) g, = af ,

where a is real and does not depend on (at). If, in addition, p +3n, then

az=0.

Proor!. We shall consider, separately, three cases: 1<p=<n—2, p=
n—1%1, and p=n—1=1.
Suppose first that 1=p=<n—2. From (15) and (13) we get

=7 = Zsp(Cidla)? - Zjzp (S 4lal)? .
Next we put
(17) g, = Zi,jBija"a-"' .

Clearly, B;; do not depend on (af) and we may assume that
(18) ‘BJ’L = Btj .
After a rearrangement, (17) becomes
zi<nBii(ai)2 + -Bnn(an)2 + 2Zi<j<nBija'iaj - g' == 2Zi<nBina’ian .
Now, applying (14), we get
[ZiSp (Bﬁ + -Bnn)(ai)2 + Zp<i<n (B'ii - Bnn)(ai)z + 2Zi<j<nBija'iaj - gl + Bnng]z
= 4(Ei<nBina’i)2 [ngp (aj)z "Zp<j<n (aj)2+g] .
Since for every system (a?) such that §=0 also §'=0, we obtain

2 (Byu+B,a)t @) + 3 (By—By,)* (@) + 4 3 By(ah)* () +

isp p<i<n i<j<n
+2 > (By+B,,)( B+ B,,)(a")?(a))? +
1<jSp
+ 3 (B~ By)(By;—B,,) @) (@) +
p<i<j<n

1 Prof. H. Haahti communicated to the authors that he had independently obtained a
proof of this lemma (unpublished).
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+8 Y ByByaidiakd+2 Y (B + B,,)(Bj—B,,)(a)*(a)? +

i<j<n iIsSp<j<n

k<l<n

t+j<k+l

+4 3 B;j(Byy+Byaatai(@%)?: +4 3 By (B — B,,)atal (ak)?
i<j<n i<j<n
ksp p<k<n

= 43 BL(@P@)P ¢ 3 Bh@P@)r+

i<n i<n

J=p p<j<n

+8 > B;,Bj,ala’(a¥)*—8 > B, B;,aa’(ak)?
<j<n <j<n
ksp p<k<n

identically with respect to (a!,...,a”!). Hence we conclude that the

polynomials on both sides of the above relation have the same coeffi-
cients. Consequently, by (18),

(19) (Bii+ By,)? = 4B7,, t<p,

(20) (Byy—B,,)? = —4B},, p<i<n,

(21) 4B}+2(By+ B,,)(Bj+B,,) = 4B}, +4Bj,, i<j<p,

(22) 4B} +2(By+ B,,)(Bj;—B,,) = 4B, —4B;, i<p<j<n,
(23) 4B} +2(B;;— B,,)(Bj;— B,,) = —4B},—4B},, p<i<j<n,
(24) 81y BuBji+4By;(By+Byy) = 8By B, i<j<m, k<p,
(25) 8y By Bji+ 4By (B — Bpy,) = —8By, By, 1<j<n, p<k<n,
(26) 8B;;By =0, i<j<n, k<l<n, i+j<k+l, k=+i,j, l+j,

where 7,;;, =0 for k=1,j, and 7;;, =1 otherwise. From (19) and (20) we
get

(27) B, = n(By+B,,), m;=lor —1, i<p,
(28) B,, =0, p<i<n,
(29) By = B,,, p<i<n.

On the other hand, by our hypothesis, 1 <p <n—2. Therefore (21)—(23)
become

4B%j+ SninjBinBjn = 4B?n + 4B]2'm 1<j=p,
4B} = —4B}, iSp<j<n,

4B} = 0, p<i<j<n,
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respectively. Hence

(30) By =0, i<p,
and, consequently,

(31) B;; = -B,,, i=p,
(32) B; =0, 1<J.

One can easily check that (28)—(32) is a solution of (19)-(26) and this
solution is unique. Applying (18) and (28)—(32) to (17) we obtain

-7 = Bnnzisp(ai)z—B-)mZiZﬂ"'l(a'i)z ’

that is, (16) with a = B,,, . Since, as remarked before, the B;; do not depend
on (at), then a does not depend on (a?) either. If, in addition, p +}n,
relations (15) and (13) yield B,, =0, whence a = 0.

Suppose next that p=n—1s1. Then we replace § by —g and §' by
—¢’, and apply Lemma 10 which is already proved in the case we need:
p=1,nzp+2=3.

Finally, suppose that p=n—1=1. Then

bt = Alal+ Ala?, b = AZal+ Ala?,
—7 = (@+adal—a?), —§ = (B1+b2)(1—b7).

Since for every system (a?) such that §=0 we also have §' =0, then §,

treated as a polynomial of a® and a2 must be divisible by a!+a? and

a'—a? On the other hand, this polynomial is a quadratic form. There-

fore it is of the form (16), where a is real and does not depend on (a?).
This completes the proof.

REMARK 2. One can easily check that under the hypotheses of Lemma
10 with the additional assumption p=n—1=1 we also have B};= — B,,
and By, =B,;,=0, where B;; are defined by (17) and (18), i.e. we have
(Ah2 4 (A])2=(A2)2+ (A2)2 and A]A}=A3A43, or, what is the same,

A} = ¥y +m0)A5 + 3 —n5) 43
and

A} = Yy —n) A5 + $(my +mp) 43,

where 7,7,=1 or —1.

Levma 11. If f: M — N is conformal, then M and N are of the same
dimension and of the same index.
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Proor. Since f is a homeomorphism, M and N are of the same di-
mension 7, say. Now, denote by p and q the indices of M and N, respec-
tively, i.e. the indices of g and ¢’, respectively. Applying the fact that
the nullity of g as well as of ¢’ is zero we conclude that the dimensions of
maximal isotropy subspaces of 7',M and Ty, N are }(n—|n—2p|) and
4(n—|n—2q|), respectively (cf. e.g. [2, pp. 106-107]). Since f is con-
formal, we have

3(n—|n—2q|) = ¥(n—|n—2p|).

On the other hand, since M and N are essentially pseudo-riemannian,
we have p < }n and ¢ < }n. Therefore ¢=p, as desired.

THEOREM 9. A C-diffeomorphism f: M — N is conformal if and only if

(33)  ¢'(Df(@)(v),Df ()(v)) = a(x)g(v,v) ,
a(x)>0, x e suppM, vesuppT M,

where a does not depend on v.

Proor. Since, as it is easily seen, the sufficiency of (33) is obvious,
we have only to prove the necessity.

Suppose then that f: M - N is conformal. Given an zesuppM
choose two orthonormal bases: (¢;)(x) of T, M and (g;)of(x) of T,,N.
By Lemma 11, M and N are of the same dimension 7, say, and of the
same index p, say. Consequently, since g and g’ are nondegenerate, we
may assume that

glese)(x) = —1 ifi<p,

(34) ~1 i3> ptl,

g'(epe)of(x) = —1 ifisp,
(35) =1 ife 2 p+1.
Let now
(36) v = 3a¥@)ey(x) ,
where a‘(x) are real, and
(37) Df (@)(v) = Z;bi() e;0f (%) -

Then, by (34) and (35),

—g(v,9) = Zi<p(@9)2(@) — Zizp+1(ah)i(x)
and

—g¢'(Df (@)(v), Df (2)(v)) = Zjgp ())%(@) — Zyzp+a (B)(2) ,
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respectively, where, since M is essentially pseudo-riemannian, we have
1=p=<n-1. On the other hand, we have (cf. e.g. [2, pp. 56 and 50])

(38) Df(v)(v) = Z; ;04(@) (Vofou) ;0 u(x) ejof (%)

where x4 and v are coordinate C*°-mappings on M at x and on N at f(z),
respectively, and |; denotes partial differentiation with respect to u'.
Therefore

bi(z) = 3; di(x)ai(x) ,
where
(39) Ai(x) = (ofou)ou(x) .

We notice that the 4%(x) do not depend on v. Furthermore, since f is
conformal, then for every system (a?)(z) such that g(v,v) =0 we also have
9(Df (2)(v),Df (x)(v)) = 0.

Thus we conclude that the hypotheses of Lemma 10 are fulfilled. By
this lemma we obtain

(40) 9(Df ()(v), Df (x)(v)) = a(x)g(v,v) ,

where a(x) is real and does not depend on (a?)(z). If, in addition, p< in,
then, by the same lemma, a(z) 2 0. Besides, since f is a diffeomorphism,
then a(x) 0 for any p in question. If, in particular, p=4n, then, since
[ is conformal, the relation v e I3y M implies Df(x)(v) € I},,N, whence
also in this case a(x) > 0. Therefore, by (40), we conclude that the rela-
tion (33) holds, as desired, with an a independent of v.

Theorem 9 implies

CoROLLARY 4. The conditions (12) and
Df(x)[I;M] = Iz N, =zesuppM,

are both mecessary and sufficient for a C'-diffeomorphism f: M — N to be
conformal.

8. Preservation of angles.

In this section we give a characterization of conformal mappings in
terms of the inner measure of angles. To this end we need a lemma of
a purely algebraic character.

LevMma 12. Suppose that ot and A{:, 1,j=1,...,m, n=2, are arbitrary
real numbers and that relations (13)-(15) hold, where 1=p=n-—1. If
G =0 tmplies §' =0 for every system (a?), then
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(41) g = nldet 4%%ng ,

where n=1 for p +in and n=1 or —1 for p=1in.

Proor. We have

....................................................

—ZkgpAI:.A’f'*'zkapﬂAﬁA,lc R _ZkgpAﬁA’:s'*'zkzpﬂAﬁAﬁ
= det B,

i

where the B;; are defined by (17). Since the hypotheses of Lemma 10 are
fulfilled, in the case where 1 <p <n—2 we may apply relations (28)—(32).
Hence, by (18), we obtain

detBy; = (~ 1) B},

and, consequently, the relation (41), where n=1 for » odd and =1 or
—1 for n even. Finally, by Lemma 10, we conclude that =1 in the
case where p +4n.

If p=n—1+1, we replace § by —7 and g’ by —g’, and apply the pre-
vious result. If p=n—1=1, we easily check (41) by direct calculation.
It can also be derived from Remark 2.

THEOREM 10. If f: M — N is conformal and E forms a topological angle
at x € supp M, then
(i) Df(x)[E] forms a topological angle at f(x) and

(42) A(f (), Df ()[E]) = Az, E) ,

(ii) the relation BE<IzM implies Df (x)[E]< I}, N, while E<I;M im-
plies Df ()[B]< Iz ,N.

If, in particular, E forms an ordinary angle at x, then Df(x)[E] forms
an ordinary angle at f(x).

Proor. By the definition of A4, relation (42) may be rewritten in the
equivalent form
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(43) f de(T g, N) = f do(T M)
Iyz) Df(=)[ E] I.E

provided that Df(x)[E] forms a topological angle at f(x).

Let us choose two orthonormal bases: (e;)(x) of 7, M and (¢;)of (x) of
TyyN. By Lemma 11, M and N are of the same dimension 7, say, and
of the same index p, say. Consequently, since g and g’ are nondegenerate,
we may assume that relations (34) and (35) hold.

Let now ve T, M, and let v and Df(x)(v) have the coordinate repre-
sentations (36) and (37), respectively. Further, let 4%(z) be defined by
(39), where u and » are coordinate C*-mappings on M at x and on N
at f(x), respectively, and |; denotes partial differentiation with respect
to ut. In the same way as in the proof of Theorem 9 one can verify
that the hypotheses of Lemma 10 are fulfilled. On the other hand, they
are identical with the hypotheses of Lemma 11. By these lemmas we
obtain

(44) g'(Df (x)(v), Df (x)(v)) = n|detA}(x)2ng(v,v)

where =1 for p+in and =1 or —1 for p=3n. Furthermore, if
p=43%mn, then, since f is conformal, the relation v e [}M implies
Df (x)(v) € I},,N, whence also in this case n=1. Therefore, by (44) and
the hypothesis that f is a diffeomorphism, we conclude that Df(x)[E]
forms a topological angle at f(x) and that

I Df (@)[E] = {bDf (x)(v): v e B, 0<b<1/(|detAi(z)|2|g(v,v)|)}}
= {|det 4%(z)|-Y"b Df (z)(v) : ve B, 0<b<1/|g(v,v)[}}.

Next we observe that, since Df (x) is a linear function (cf. e.g. formula
(38)), then

1,»Df (@)[E] = {Df (x)(|det A%(x)|"2"bv) : ve B, 0<b<1/|g(v,v)]i}.
Consequently, the left-hand side of (43) is equal to
[ (et D)@ 1det (@) dw(T.21)
IE

Since the coefficients A4%(z) correspond to some orthonormal bases of
T,M and Ty,N, Theorem 1 and relation (39) yield

|(det Df)(z)] = |det A{(x)| ,

whence (43) follows.
Furthermore, applying relations (44) and =1, we conclude that if
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E<IiM, then Df(2)[E1<Ii,N, while if E<I;M, then Df(2)[E]<
IiN.
f;

The last conclusion of Theorem 10 is a straightforward consequence
of (44).

THEOREM 11. Suppose that f: M — N is a C'-diffeomorphism and that
if B forms an ordinary angle at x € supp M, then

(i) Df(x)[E] forms a topological angle at f(x),

(ii) the relation B < Iz M implies Df (x)[E]1<If,N, while E<I;M im-
plies Df (x)[E]< Iz, N.

Then f ts conformal.

Proor. If v € I; M, then the set 1" M forms an ordinary angle at z,
so, by the hypotheses, Df (x)[19"”M] forms a topological angle at f(x)
and

Df @M < I, N .
Therefore

(45) Df @)L M] < If,N .

On the other hand, if w € I}, N, then, since f is a diffeomorphism, there
is a veT,M such that Df(z)(v)=w. If ve I, M, then the set I{®M
forms an ordinary angle at x, so, by the hypotheses, Df(x)[I{®*M]
forms a topological angle at f(x) and

Df (z)[I9YM] < TNV

Since this implies that we I, N, the relation ve I M is impossible.
Now, if veI’M, then, since f is a Cl-diffeomorphism, there is a
ve I;M such that Df(x)(v) €I}, N, but we have already proved that
this is impossible. Hence we conclude that » € I} M and therefore

(46) Df@)[IM] > Ij,N .

Relations (45) and (46) together with Corollary 4 imply that f is con-
formal, as desired.

9. Preservation of moduli.
Finally we give a characterization of conformal mappings in terms of
moduli.

THEOREM 12. If f is conformal, then 4t is type-preéerving. Furthermore,
if C is a famsly of regular curves on M, then

(47) mod,, f(C) = mod,C .

Math. Scand. 28 - 5
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If, in particular,

(48) 0<k=|Df®)] £ K < o, zesuppM,

then

(49) K*?mod,C < mod,f(C) < k" ?mod,C for pzn
and

(50) k*-? mod,,C < mod,f(C) £ K*?mod,C for p<n.

Proor. If f is conformal, then, by Theorem 9, it transforms space-
like curves onto space-like curves and time-like curves onto time-like
curves, so f is type-preserving.

Consider now a family C of regular curves on M and suppose that
¢ € admf(C). Hence, by Corollary 2,

(61) [ e as) = [ (eoa, axan) .
N M

Given an z € supp M choose two orthonormal bases: (e;)(x) of T, M and
(eg)of (x) of Ty N. By Lemma 11, M and N are of the same dimension
and of the same index. Consequently, since g and ¢’ are nondegenerate,
we may assume that relations (34) and (35) hold. Let now ve T M,
and let v and Df (z)(v) have the coordinate representations (36) and (37),
respectively. Further, let 4%(z) be defined by (39), where u and » are
coordinate C*-mappings on M at z and on N at f(x), respectively, and
;¢ denotes partial differentiation with respect to u. In the same way
as in the proof of Theorem 10 one can verify that the relation (44) with
n=1 holds. Therefore (cf. Theorem 1)

|IDf (z)]| = |det A()|Yn .

On the other hand, since the coefficients A%(x) correspond to some ortho-
normal bases of 7. M and TN, Theorem 1 and relation (39) yield

Jy(x) = |det Ai(x)| .
Consequently,

(52) Jy = IIDfI"

and (51) becomes
(63) [erasa) = [ (oot W11 dv(an).
N M

Since, by Theorem 3, we have (gof)||Df|| € admC, relation (53) gives
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mod,, f(C)2mod, C. On the other hand, since f-! is also conformal, we
have mod,, f(C) £mod, C, whence (47) follows.

Finally, suppose that f satisfies the additional conditon (48). Con-
sider again a family C of regular curves on M and suppose that g €
admf(C). Hence, by Corollary 2, for each positive number p we have

fgpdr f (0of )2 J, du(M) .
Now, by (52), we get
[ e ax@) = [ (eosre W11 dviat
N ) M
Therefore, by (48),

64 [erdv) 2 K* [ (eof 7 IDfIP de(d) for pzn
N M
and

65 [ dv) 2 k7 [ (of)? DS dx(d) for psn.
N M

Since, by Theorem 3, we have (pof)||Df|| € admC, relations (54) and (55)
give

mod,,f(C) 2 K*?mod,C for p=n
and

mod,f(C) =z k"P?mod,C for p=n,

respectively. On the other hand, since f-! is also conformal, we have

mod,,f(C) = k*?mod,C for p=n
and

mod,f(C) £ K" ?mod,C for p=n,

whence (49) and (50) follow.

THEOREM 13. If f: M — N 1is type-preserving, then it 18 conformal.

Proor. If ve I7 M, then there is a space-like curve c: [a; b] — M and
a number ¢ € [a; b] such that Dc(f)=v. By the hypothesis, f(c) is a space-
like curve on N, so Df(z)(v) € If,)N. Therefore (45) holds.
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On the other hand, if weI}“@)N , then, since f is a diffeomorphism,
there is a v € T, M such that Df(z)(v)=w. If ve I, M, then there is a
time-like curve c: [@; b] - M and a number ¢ € [a; b] such that Dc(t)=v.
By the hypothesis, f(c) is a time-like curve on N, so Df(z)(v) € I, N.
Since this implies that w e Iz, N, the relation » e I;M is impossible.
Now, if v € I3M, then, since f is a C1-diffeomorphism, there is a v € I; M
such that Df (z)(9) € I}, N, but we have already proved that this is im-
possible. Hence we conclude that v € I; M and therefore (46) holds.

Relations (45) and (46) together with Corollary 4 imply that f is con-
formal, as desired.

10. Conclusions.

Suppose that f: M — N is type-preserving and that there is a con-
stant @, 1 =@ < oo, such that

(56) (1/@) mod,,C £ mod,f(C) £ @ mod,C

for some family C of regular curves. Then, by Theorem 13, f is confor-
mal and consequently, by Theorem 12, we get (47). Hence we conclude
that in the case of essentially pseudo-riemannian manifolds there is no
analogue of regular quasiconformal mappings other than conformal (cf.
(14, pp. 18, 179, and 222 (Theorems 3.2 and 4.2)], for the plane case;
[18, pp. 18-19], for the euclidean case; and [17, pp. 24-25], for the rie-
mannian case). Nevertheless, it is quite possible that if we properly
weaken the hypotheses of Theorem 13 in the sense that we allow some
less smooth mappings and assume, in addition, that f preserves the
n-moduli, we will still be able to prove that f is conformal (cf. [6, pp.
388-390]). Then it will be natural to consider also the case where the
preservation of the n-moduli is replaced by a quasi-preservation in the
sense of (56) with some fixed @, where C ranges over the class of all
families of regular curves on M.

Other important problems that seem to be very natural are the con-
vergence properties of sequences of conformal mappings, in particular,
the problem of finding some conditions under which the limit mapping
is conformal. These questions, including the problem of obtaining some
analogue of the Carathéodory convergence theorem (cf. [3] and [7]),
are essential for physical applications. They have not been solved even in
the riemannian case.

The authors plan to discuss at least some of these problems in a sub-
sequent paper.
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