DENSE p-SUBSPACES OF PROXIMITY SPACES

DON A. MATTSON

Introduction.

Let (X, δ_1) be a proximity space, where X is a dense (topological) subspace of a completely regular Hausdorff space T. In this paper we obtain conditions equivalent to the following property: T admits a compatible proximity relation δ for which (X, δ_1) is a p-subspace of (T, δ) . In particular, this property is characterized by means of maximal round filters on (X, δ_1) . Examples are provided which concern the results.

1. Characterization of dense p-subspaces.

Let $P^*(X)$ denote the algebra of bounded real-valued proximity functions on a proximity space (X, δ_1) . Then $P^*(X)$ induces an admissible, totally bounded uniform structure \mathscr{D}^* on X. For definitions and results concerning round filters, see [2] or [7]. Further notation will follow that of [6].

In [6] it is shown that (for X dense in T) the following conditions are equivalent:

- (A) Every point x in T is a cluster point of a unique maximal round filter \mathscr{F}_x on (X, δ_1) .
- (B) Every member of $P^*(X)$ has an extension to a member of $C^*(T)$.

Part of the motivation for the theorem that follows arises from (A), for suppose that each \mathscr{F}_x in (A) is also required to converge to x. As the theorem shows, this is equivalent to the condition that T admit a compatible proximity relation δ for which (X, δ_1) is a p-subspace of (T, δ) . The latter condition is equivalent to the condition that T admit a compatible proximity relation δ such that $P^*(T)|X=P^*(X)$, where $P^*(T)|X$ is the collection of restrictions to X of members of $P^*(T)$. (See Theorem 7 of [5].)

Example 2 shows that (X, δ_1) and T can occur such that each point x in T is a limit point of a unique maximal round filter \mathscr{F}_x on (X, δ_1) , and there can exist $x \in (T-X)$ and a (non-convergent) maximal round filter $\mathscr{F} + \mathscr{F}_x$ on (X, δ_1) which clusters at x. Thus, in the present theo-

rem, (i) cannot be replaced by the weaker condition that each point x in T is a limit point of a unique maximal round filter \mathcal{F}_x on (X, δ_1) .

THEOREM. Let (X, δ_1) be a proximity space, where X is a dense (topological) subspace of a completely regular Hausdorff space T. Then the following are equivalent:

- (i) Every point x in T is a limit point of a unique maximal round filter \mathscr{F}_x on (X, δ_1) , and \mathscr{F}_x is the unique maximal round filter on (X, δ_1) which clusters at x.
- (ii) Every gauge $\sigma \in \mathscr{P}^*$ has a unique extension to a continuous pseudometric $\bar{\sigma}$ on T, and the collection $\mathscr{D} = \{\bar{\sigma} : \sigma \in \mathscr{P}^*\}$ is an admissible uniform structure for T.
- (iii) The canonical injection of (X, δ_1) into its Smirnov compactification $\delta_1 X$ has an extension to a homeomorphism τ of T into $\delta_1 X$.
- (iv) There is a proximity relation δ on T for which (X, δ_1) is a p-subspace of (T, δ) .

PROOF. (i) implies (ii). By condition (ii) of the extension theorem of [6], every gauge $\sigma \in \mathcal{P}^*$ has a unique extension to a continuous pseudometric $\bar{\sigma}$ on T. Thus every basic $\bar{\sigma}$ -neighborhood of a point x in T is a T-neighborhood of x.

Now let $x \in T$ and let N_x be any T-neighborhood of x. Choose a T-neighborhood N_x^* of x for which $\operatorname{cl}_T N_x^* \subseteq N_x$. Then there exists $F \in \mathscr{F}_x$ for which $F \subseteq N_x^*$. Choose $F_1 \in \mathscr{F}_x$ such that $F_1 \leqslant F$. Then there are $\sigma \in \mathscr{P}^*$ and $\varepsilon > 0$ for which $\sigma(F_1, X - F) \ge \varepsilon$. If $y \in T$ and $\overline{\sigma}(x,y) < \varepsilon$, then $\overline{\sigma}(y,X - F) > 0$, so that $y \notin \operatorname{cl}_T (X - F)$. Hence, if $N(\overline{\sigma},\varepsilon)$ is the ε -ball about x determined by $\overline{\sigma}$, we have $N(\overline{\sigma},\varepsilon) \subseteq T - \operatorname{cl}_T (X - F)$. Since $\operatorname{cl}_x(X - F) \cup \operatorname{cl}_x(X - F) \subseteq T$ and $\operatorname{cl}_x(X - F) \cup \operatorname{cl}_x(X - F) \subseteq T$.

Since $\operatorname{cl}_T(X-F) \cup \operatorname{cl}_T F = T$ and $\operatorname{cl}_T F \subseteq N_x$, evidently $T - \operatorname{cl}_T(X-F) \subseteq N_x$. Thus $N(\bar{\sigma}, \varepsilon) \subseteq N_x$, and $\mathscr D$ is admissible.

- (ii) implies (iii). Let (T^*, \mathscr{D}^*) be the completion of the separated, totally bounded uniform space (T, \mathscr{D}) . There is a uniform isomorphism τ (see [7]) of (T, \mathscr{D}) into (T^*, \mathscr{D}^*) , and $\tau[X]$ is dense in T^* . Since every gauge $\bar{\sigma}$ in \mathscr{D} agrees with σ on X, T^* is the Smirnov compactification of (X, δ_1) , and (iii) now follows from the uniqueness of the Smirnov compactification.
- (iii) implies (iv). For $A, B \subseteq T$, define $A \delta B$ if and only if $\tau[A]$ is close to $\tau[B]$ in $\delta_1 X$. It is readily verified that δ is a proximity relation for T which is compatible with the topology on T. Clearly, δ agrees with δ_1 on X, so that (X, δ_1) is a p-subspace of (T, δ) .
- (iv) implies (i). Let $x \in T$ and let \mathscr{F}_x be the trace in (X, δ_1) of the filter of T-neighborhoods of x. Then \mathscr{F}_x is a round filter on (X, δ_1) which

converges to x. Since \mathscr{D}^* is generated by $P^*(X) = P^*(T) | X$, the filter \mathscr{F}_x is Cauchy relative to \mathscr{D}^* . Thus, by Theorem 1 of [2], \mathscr{F}_x is maximal. Now by the extension theorem of [6], \mathscr{F}_x is also the unique maximal round filter on (X, δ_1) which clusters at x.

This completes the proof.

2. Examples.

EXAMPLE 1. Let T be the subset $\{(x,y): y \ge 0\}$ of the plane. The topology on T is generated by the usual neighborhoods of points in T together with the following neighborhoods of the points (x,0):

$$N_s(x,0) = \{(x,0)\} \cup \{(u,v) \in T: (u-x)^2 + (v-\varepsilon)^2 < \varepsilon^2\},$$

where $\varepsilon > 0$. Then T is a completely regular, Hausdorff space. (See Example 3.K of [3].)

Let X be the subspace $\{(x,y): y>0\}$ of T and let δ_1 be the proximity relation on X generated by the usual metric in the plane. Now X is a dense subspace of T, and every point of T is a cluster point of a unique maximal round filter on (X,δ_1) , but for points (x,0) of T-X, no maximal round filter on (X,δ_1) converges to (x,0). Now (X,δ_1) has the extension property of the corollary in [6], so that every member of $P^*(X)$ has an extension to a member of $C^*(T)$, but by the theorem of the present paper, there is no compatible δ for which (X,δ_1) is a p-subspace of (T,δ) .

Example 2. Let X be the positive integers with the discrete topology. Take $f(x) = x^{-1}$ and g(x) = 1, if x is even, and g(x) = 0, if x is odd. Then the pseudometrics ψ_f, ψ_g on X determined by f and g, respectively, generate an admissible uniform structure \mathscr{D} for X. Let δ_1 be the proximity relation for X generated by \mathscr{D} .

Take $\alpha \notin X$ and set $T = X \cup \{\alpha\}$. Let the basic neighborhoods of α be defined as follows:

$$\boldsymbol{N}_{\alpha} \ = \ \{\alpha\} \cup \ \{2n \colon n \geqq m\} \cup \ \{4n+1 \colon n \geqq k\}$$
 ,

where $m, k \in X$. (Thus, in T, each point $x \neq \alpha$ is isolated, and the neighborhoods of α are determined as above.) Then X is dense in T, and it is easily verified that T is a completely regular, Hausdorff space.

If A and B are the sets of even and odd integers, respectively, then $A \, \delta_1 B$, but $\operatorname{cl}_T A \cap \operatorname{cl}_T B \neq \emptyset$. Thus (X, δ_1) cannot be a p-subspace of (T, δ) for any compatible proximity relation δ for T.

Let \mathscr{F}_{α} be the round hull of the filter generated by the sets $F_m = \{2n : n \geq m\}$, where $m \in X$. Then \mathscr{F}_{α} is a round filter, and each $F_m \in \mathscr{F}_{\alpha}$.

Since $\psi[F_m] \leq 1/(2m)$, where $\psi = \psi_f \vee \psi_g$, \mathscr{F}_{α} is a maximal round filter on (X, δ_1) .

Let \mathcal{F}^* be the round hull of the filter generated by the sets

$$F_{k}^{*} = \{2n+1 : n \ge k\}, \quad k \in X.$$

Then \mathscr{F}^* is also a maximal round filter on (X, δ_1) . Evidently, \mathscr{F}_{α} converges to α , and \mathscr{F}^* clusters at α but does not converge. We note that \mathscr{F}_{α} and \mathscr{F}^* are the only free maximal round filters on (X, δ_1) .

REMARK. If T admits a compatible proximity δ such that (X, δ_1) is a dense p-subspace of (T, δ) , then each point x in T is a cluster point of a unique cluster π_x from (X, δ_1) . (See Theorem 3 of [5].) Example 2 shows that the converse of this statement is false. Now \mathscr{F}_{α} contains small sets relative to \mathscr{D} . Thus, by Theorem 8 of [4] (which remains true for funnels with \mathscr{D} -small sets), \mathscr{F}_{α} is a subclass of a unique cluster π_{α} from (X, δ_1) . Evidently, α is a cluster point of π_{α} . Similarly, \mathscr{F}^* is a subclass of a unique cluster π^* from (X, δ_1) , and $\pi_{\alpha} \neq \pi^*$. It is easily seen that π_{α} and π^* are the only clusters from (X, δ_1) which do not contain a point. Now α is not a cluster point of π^* , so that each point x in T is a cluster point of a unique cluster π_x from (X, δ_1) , but there is no compatible proximity δ for T such that (X, δ_1) is a p-subspace of (T, δ) .

REFERENCES

- E. M. Alfsen and J. E. Fenstad, On the equivalence between proximity structures and totally bounded uniform structures, Math. Scand. 7 (1959), 353-360.
- E. M. Alfsen and J. E. Fenstad, A note on completion and compactification, Math. Scand. 8 (1960), 97-104.
- L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton .
 Toronto · London · New York, 1960.
- S. Leader, On completion of proximity spaces by local clusters, Fund. Math. 48 (1960), 201-216.
- 5. S. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213.
- D. A. Mattson, Extensions of proximity functions, Proc. Amer. Math. Soc. 26 (1970), 347–351.
- 7. W. Thron, Topological structures, Holt, Rinehart, and Winston, New York, 1966.

TRINITY COLLEGE, HARTFORD, CONNECTICUT, U.S.A.