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BOUNDED POINT DERIVATIONS ON Rp(X)

AND APPROXIMATE DERIVATIVES

STEPHEN DETERDING

Abstract
It is shown that if a point x0 admits a bounded point derivation on Rp(X), the closure of rational
function with poles off X in the Lp(dA) norm, for p > 2, then there is an approximate derivative
at x0. A similar result is proven for higher-order bounded point derivations. This extends a result
of Wang which was proven for R(X), the uniform closure of rational functions with poles off X.

1. Introduction

Let X be a compact subset of the complex plane. Let C(X) denote the set of
all continuous functions on X and let R(X) be the subset of C(X) that consists
of all function in C(X) which on X are uniformly approximable by rational
functions with poles off X. We denote by Rp(X), 1 ≤ p < ∞, the closure of
the rational functions with poles off X in the Lp norm where the underlying
measure is 2-dimensional Lebesgue (area) measure. It follows from Hölder’s
inequality that the uniform norm is more restrictive than the Lp norm and thus
R(X) ⊆ Rp(X).

The space Rp(X) was originally studied as part of the following question
of rational approximation: what are the necessary and sufficient conditions
so that Rp(X) = Lp(X)? It is straightforward to show that Rp(X) �= Lp(X)

unlessX has empty interior, so from now on, we will make this assumption. The
following results are well known: if 1 ≤ p < 2, then Rp(X) = Lp(X) [8], and
if p ≥ 2 then there is a necessary and sufficient condition for Rp(X) = Lp(X)

involving Sobolev q-capacity [5, Theorem 6], [7].
In this paper, we consider a different kind of approximation problem for

Rp(X). Since rational functions with poles off X are smooth, but functions
in Rp(X) may not be differentiable at all, it is natural to ask how much the
differentiability of rational functions is preserved under convergence in the Lp

norm. The primary tool for answering this question is that of a bounded point
derivation. For a non-negative integer t , we say that Rp(X) has a bounded
point derivation of order t at x0 if there exists a constant C > 0 such that
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|f (t)(x0)| ≤ C‖f ‖p for all rational functions f with poles off X. If t = 0,
we take the 0-th order derivative to be the evaluation of the function at x0. For
this reason, a 0-th order bounded point derivation is usually called a bounded
point evaluation. Bounded point evaluations have been widely studied in both
rational approximation theory and operator theory. (See for instance [2], [5],
and [6].)

If f is a function in Rp(X) then there is a sequence {fj } of rational functions
with poles off X that converges to f in the Lp norm. If there is a bounded point
derivation at x0 then |f (t)

j (x0) − f
(t)
k (x0)| ≤ C‖fj − fk‖p, which tends to 0

as j and k tend to infinity. Thus {f (t)
j (x0)} is a Cauchy sequence and hence

converges. Hence the map f → f (t)(x0) can be extended from the space of
rational functions with poles off X to a bounded linear functional on Rp(X),
which we denote as Dt

x0
. It follows that Dt

x0
f = limj→∞ f

(t)
j (x0), where {fj }

is a sequence of rational functions which converges to f in the Lp norm. Note
that the value of Dt

x0
f does not depend on the choice of this sequence.

Thus bounded point derivations generalize the notion of a derivative to
functions in Rp(X) which may not be differentiable. In fact, it is a result of
Dolzhenko [4] that there is a nowhere differentiable function in R(X), and
hence also Rp(X), whenever X is a set with no interior. For this reason, it is
important to understand the relationship between bounded point derivations
and the usual notion of the derivative. This problem was first considered by
Wang [9] in the case of uniform rational approximation. Wang showed that the
existence of a bounded point derivation on R(X) at x0 implies that every func-
tion in R(X) has an approximate derivative at x0. An approximate derivative
is defined in the same way as the usual derivative, except that the limit is taken
over a subset with full area density at x0 rather than over all points of X. We
recall what it means for a set to have full area density at x0. Let x0 be a point
in the complex plane, let �n(x0) denote the ball centered at x0 with radius 1/n

and let m denote 2-dimensional Lebesgue measure. A set E is said to have
full area density at x0 if limn→∞ m(�n(x0) \ E)/m(�n(x0)) = 0. Wang also
proved a similar result for higher-order bounded point derivations. The goal
of this paper is to extend Wang’s results to functions in Rp(X). Our first result
is the following theorem.

Theorem 1.1. For 2 < p < ∞, suppose that there is a bounded point
derivation on Rp(X) at x0 denoted by D1

x0
. Then given a function f in Rp(X),

there exists a set E of full area density at x0 such that

lim
x→x0, x∈E

∣∣∣∣f (x) − f (x0)

x − x0
− D1

x0
f

∣∣∣∣ = 0.
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We remark that this theorem is only valid for 2 < p < ∞. Recall that when
1 ≤ p < 2, Rp(X) = Lp(X) and thus there are no bounded point derivations
on Rp(X). In fact there are not even bounded point evaluations [2, Lemma
3.5]. This still leaves open the case of p = 2. It is possible for bounded point
derivations on R2(X) to exist; however, we do not know whether Theorem 1.1
still holds for R2(X).

We will also prove the following higher-order extension of Theorem 1.1.
The quantity �t

hf (x0) is the t-th order difference quotient of f at x0 and h,
which is defined in the next section.

Theorem 1.2. Let t be a positive integer. For 2 < p < ∞ suppose that
there exists a bounded point derivation of order t on Rp(X) at x0 denoted by
Dt

x0
. Then given a function f in Rp(X) there exists a set E′ with full area

density at 0, such that

lim
h→0, h∈E′

∣∣�t
hf (x0) − Dt

x0
f

∣∣ = 0.

The outline of the rest of the paper is as follows. In the next section we
consider higher-order difference quotients and approximate derivatives. In
Section 3 we briefly review a few concepts from measure theory which are
fundamental to our proofs, and Section 4 is devoted to the construction of a set
of full area density at x0 which is needed for the proof of the main result. We
present the proofs of Theorems 1.1 and 1.2 in Sections 5 and 6 respectively.

2. Higher-order approximate derivatives

Intuitively, a higher-order approximate derivative at x0 should be defined in the
same way as a higher-order derivative except that the limit of the difference
quotient should be taken over a set with full area density at x0. However, a
function in Rp(X) may not have derivatives of any orders and thus we cannot
define an approximate higher-order derivative in terms of any of the lower
order derivatives. Hence we will use the following definition for higher-order
difference quotients.

Definition 2.1. Let t be a positive integer, let f be a function in Rp(X),
let x0 be a point in X, and choose h ∈ C so that f is defined at x0 + sh for
s = 0, 1, . . . , t . The t-th order difference quotient of f at x0 and h is denoted
by �t

hf (x0) and defined by

�t
hf (x0) = h−t

t∑
s=0

(−1)t−s

(
t

s

)
f (x0 + sh).
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For this definition to be reasonable, it should agree with the usual definition
for higher-order derivatives when f has derivatives of all orders.

Theorem 2.2. Suppose that f has derivatives of all orders on a neighbor-
hood of x0. Then for all positive integers t , f (t)(x0) = limh→0 �t

hf (x0).

Proof. The proof is by induction. Since �1
hf (x0) = 1

h
(f (x0 +h)−f (x0))

the theorem is true for t = 1. Now assume thatf (t−1)(x0) = limh→0 �t−1
h f (x0).

Then

f (t)(x0) = lim
h→0

�t−1
h f (x0 + h) − �t−1

h f (x0)

h
= lim

h→0
�1

h ◦ �t−1
h f (x0).

Thus to show that f (t)(x0) = limh→0 �t
hf (x0) it is enough to prove that

�1
h ◦ �t−1

h f (x0) = �t
hf (x0).

It follows from Definition 2.1 that

�1
h ◦ �t−1

h f (x0) = h−t

{ t−1∑
s=0

(−1)t−1−s

(
t − 1

s

)
f (x0 + (s + 1)h)

−
t−1∑
s=0

(−1)t−1−s

(
t − 1

s

)
f (x0 + sh)

}
.

A change of variable of s = s − 1 in the first sum yields

�1
h ◦ �t−1

h f (x0) = h−t

{ t∑
s=1

(−1)t−s

(
t − 1

s − 1

)
f (x0 + sh)

−
t−1∑
s=0

(−1)t−1−s

(
t − 1

s

)
f (x0 + sh)

}
.

Multiplying the second sum by (−1) changes the subtraction to addition. Then
moving the t-th term of the first sum outside the sum and doing the same to
the 0-th term of the second sum yields

�1
h ◦ �t−1

h f (x0) = h−t

{
f (x0 + th) +

t−1∑
s=1

(−1)t−s

(
t − 1

s − 1

)
f (x0 + sh)

+
t−1∑
s=1

(−1)t−s

(
t − 1

s

)
f (x0 + sh) + (−1)tf (x0)

}
.
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The two sums can be combined using the binomial identity
(
t−1
s−1

)+(
t−1
s

) = (
t

s

)
.

Hence

�1
h ◦ �t−1

h f (x0) = h−t

{
f (x0 + th)

+
t−1∑
s=1

(−1)t−s

(
t

s

)
f (x0 + sh) + (−1)tf (x0)

}
.

In addition since
(
t

0

) = 1 and
(
t

t

) = 1 the two terms outside the sum can be put
back into the sum and thus

�1
h ◦ �t−1

h f (x0) = h−t

t∑
s=0

(−1)t−s

(
t

s

)
f (x0 + sh) = �t

hf (x0).

We now define higher-order approximate derivatives using Definition 2.1.

Definition 2.3. Let t be a positive integer. A function f in Rp(X) has an
approximate derivative of order t at x0 if there exists a set E′ with full area
density at 0, and a number L such that

lim
h→0, h∈E′

∣∣∣∣�t
hf (x0) − L

∣∣∣∣ = 0.

We say that L is the approximate derivative of order t at x0.

Thus a t-th order approximate derivative at x0, is a t-th order difference
quotient in which the limit as h tends to 0 is taken over a set with full area
density at 0. The reason that the set E′ has full area density at 0 instead of at x0

is that the limits in the definitions of usual higher-order derivatives are taken
as h tends to 0 and therefore, the higher-order approximate derivatives must
be defined similarly.

3. Results from measure theory

In this section, we briefly review some results from measure theory to be used
in our proofs. From now on q denotes the conjugate exponent to p, that is,
q = p/(p − 1), and dA denotes 2-dimensional Lebesgue (area) measure.
Since a bounded point derivation is a bounded linear functional, there exists a
function k in Lq(X) such that the measure k dA represents the bounded point
derivation. If the representing measure for a t-th order bounded point derivation
on Rp(X) is known, then it would be useful to have a method for finding the
representing measures for bounded point derivations of lesser orders. The next
lemma, which describes such a method, is based on a theorem of Wilken [10].
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Lemma 3.1. Let 1 ≤ p < ∞. Let t be a positive integer and suppose that
there is a t-th order bounded point derivation on Rp(X) at x0 with representing
measure kt dA. For each m with 0 ≤ m ≤ t , let km = m!

t! (z−x0)
t−mkt . Then km

belongs to Lq(X) and km dA represents an m-th order bounded point derivation
on Rp(X) at x0.

Proof. Since kt belongs to Lq(X), km also belongs to Lq(X). To prove that
km represents an m-th order bounded point derivation on Rp(X) at x0, we first
suppose that f is a rational function with poles off X. Hence f (z)(z−x0)

t−m is
a rational function and integrating f (z)(z − x0)

t−m against the measure kt dA
is the same as evaluating the t-th derivative of f (z)(z − x0)

t−m at z = x0,
which can be done using the general Leibniz rule. The only term that will not
vanish is the term which puts exactly t − m derivatives on (z − x0)

t−m and m

derivatives on f (z). Hence
∫

f (z)(z − x0)
t−mkt (z) dAz =

(
t

m

)
(t − m)!f (m)(x0) = t!

m!
f (m)(x0)

and ∫
f (z)km(z) dAz = f (m)(x0).

Hence by Hölder’s inequality, |f (m)(x0)| ≤ ‖km‖q‖f ‖p. So there is a bounded
point derivation of order m at x0 and the measure km dA represents the bounded
point derivation.

Lastly, we review the definitions of the Cauchy transform and Newtonian
potential of a measure.

Definition 3.2. Let k ∈ Lq(X).

(1) The Cauchy transform of the measure k dA, which is denoted by k̂(x) is
defined by

k̂(x) =
∫

k(z)

z − x
dAz.

(2) The Newtonian potential of the measure k dA, which is denoted by k̃(x)

is defined by

k̃(x) =
∫ |k(z)|

|z − x| dAz.
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4. A set with full area density at x0

In this section a method is given to construct a set with full area density at
x0 which also possesses the properties needed for the proofs of Theorems 1.1
and 1.2. Constructing this set can be accomplished by first listing the desired
properties and then showing that the set with these desired properties has full
area density at x0.

Theorem 4.1. Suppose 1 < q < 2. Let k ∈ Lq(X), and let 0 < δ0 < 1.
Let E be the set of x in X that satisfy the following properties.

(1)
∫

X

|(x − x0)k(z)|q
|z − x|q dA < δ0,

(2) |x − x0|k̃(x) < δ0.

Then E has full area density at x0.

To prove Theorem 4.1, we will need a few lemmas. The first lemma is an
extension of a result of Browder [3, Lemma 1].

Lemma 4.2. Suppose 1 < q < 2. Let χ{x0} be the characteristic function of
the point x0 and let m denote 2-dimensional Lebesgue measure. For n positive,
let �n = {x : |x − x0| < 1/n} and let

wn(z) = 1

m(�n)

∫
�n

|x − x0|q
|z − x|q dmx. (4.1)

Then wn(z) ≤ 2/(2 − q) for all z and all n, and wn(z) converges to χ{x0}
pointwise as n → ∞.

Proof. We first show that wn(z) converges to χ{x0} pointwise as n → ∞.
If z = x0, then the integrand is identically 1 and wn(z) = 1 for all n. Now
suppose that z �= x0. If n is sufficiently large, then |z − x0| > 1/n and thus z

need not be in �n for large n. Since the measure of �n is π/n2, we can rewrite
wn(z) as

n2

π

∫
�n

|x − x0|q
|z − x|q dmx.

In addition since x belongs to �n, |x − x0| ≤ 1/n. Therefore

wn(z) ≤ n2−q

π

∫
�n

1

|z − x|q dmx. (4.2)

If n is sufficiently large, it follows from the reverse triangle inequality that

|z − x| ≥ ∣∣|z − x0| − |x0 − x|∣∣ ≥ |z − x0| − 1

n
> 0.
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Thus |z − x|q >
(|z − x0| − 1

n

)q
> 0 and

wn(z) ≤ n2−q

π
(|z − x0| − 1

n

)q

∫
�n

dmx ≤ n−q(|z − x0| − 1
n

)q ,

which tends to 0 as n → ∞. Thus if z �= x0 then wn(z) tends to 0 pointwise
as n → ∞ and hence wn(z) converges to χ{x0} pointwise as n → ∞.

To show that wn(z) ≤ 2/(2 − q) for all z and all n, we first recall the
inequality (4.2) which was proved above. Now, the value of the integral would
be larger if the integration was performed over B(z, 1/n), the disk with radius
1/n centered at z instead of integrating over �n. Hence,

wn(z) ≤ n2−q

π

∫
B(z,1/n)

1

|z − x|q dmx.

It follows from a calculation that∫
B(z,1/n)

1

|z − x|q dmx = 2πn−(2−q)

2 − q
.

Hence wn(z) ≤ 2/(2 − q).

We note that it is in the above lemma, that our proof breaks down for the
case of p = 2. If p = 2, then q = 2, but wn(z) is no longer bounded in this
case since 1/z2 is not locally integrable.

Lemma 4.3. Suppose 1 < q < 2. Let �n = {x ∈ X : |x − x0| < 1/n}, let
k ∈ Lq(X) and let m denote 2-dimensional Lebesgue measure. Then

1

m(�n)

∫
�n

{∫
X

|x − x0|q |k(z)|q
|z − x|q dmz

}
dmx → 0 as n → ∞.

Proof. Let wn(z) be as in the previous lemma. Since wn(z) is uniformly
bounded for all n,

∫
X

wn(z)|k(z)|qdmz ≤ C
∫
X

|k(z)|qdmz and because k(z) ∈
Lq(X), it follows that this integral is bounded. Since wn(z) tends to 0 almost
everywhere as n → ∞, it follows from the dominated convergence theorem
that

∫
X

wn(z)|k(z)|q dmz → 0 as n → ∞. Recalling the definition (4.1)
of wn(z) and interchanging the order of integration yields the claimed result.

Lemma 4.4. Suppose 1 < q < 2. Choose δ > 0, let k ∈ Lq(X) and let m

denote 2-dimensional Lebesgue measure. Let

Eδ =
{
x ∈ X :

∫
X

|x − x0|q |k(z)|q
|z − x|q dmz < δ

}
.

Then Eδ has full area density at x0.
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Proof. It follows immediately from the definition of Eδ that

1

m(�n)

∫
�n\Eδ

{∫
X

|x − x0|q |k(z)|q
|z − x|q dmz

}
dmx ≥ δm(�n \ Eδ)

m(�n)
.

By Lemma 4.3 the left hand side tends to 0 as n goes to infinity. Thus
limn→∞ m(�n \ Eδ)/m(�n) = 0 and Eδ has full area density at x0.

The proof of Theorem 4.1 now follows from Lemma 4.4.

Proof of Theorem 4.1. Lemma 4.4 immediately implies that the set of x

in X where property (1) holds has full area density at x0. To show that the set
where property (2) holds also has full area density at x0 note that by Hölder’s
inequality

∫
X

|x − x0||k(z)|
|z − x| dmz ≤

{∫
X

|x − x0|q |k(z)|q
|z − x|q dmz

}1/q

· m(X)1/p.

It follows from Lemma 4.4 that the integral on the right is bounded. If m(X) =
0, then property (2) holds for any choice of δ0 > 0 and we are done. Thus we
can assume that m(X) �= 0. If the integral on the right-hand side is less than
δ0/m(X)1/p then the left-hand side will be less than δ0. This can be done by
choosing δ = δ0/m(X)1/p in Lemma 4.4. Thus property (2) also holds on a
set with full area density at x0 and thus the set E has full area density at x0.

5. The proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1 by showing that, for 2 <

p < ∞, the existence of a bounded point derivation on Rp(X) at x0 implies
that every function in Rp(X) has an approximate derivative at x0. Choose f

in Rp(X) and let g(z) = f (z) − D0
x0

f − D1
x0

f · (x − x0). Then to show that
f (z) has an approximate derivative at x0, it suffices to show that g(z) has an
approximate derivative at x0 since g(z) differs from f (z) by a polynomial. The
reason that it is more advantageous to work with g(z) rather than f (z) is that
D0

x0
(g) = D1

x0
(g) = 0.

Consider the following family of linear functionals defined for every x ∈ X:

Lx(F ) = F(x)

x − x0
− D1

x0
F.

To prove Theorem 1.1, it suffices to show that there is a set E with full area
density at x0 such that Lx(g) tends to 0 as x tends to 0 through the points of
E. Once this is shown, it follows that

lim
x→x0

g(x)

x − x0
− D1

x0
g = 0
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and since g(x0) = 0, this shows that g has an approximate derivative at x0.
Since Rp(X) has a bounded point derivation at x0, there exists a function k1

in Lq(X) such that the measure k1 dA represents the bounded point derivation.
Hence by Lemma 3.1, the function k = (z − x0)k1 belongs to Lq(X) and k dA
is a representing measure for x0. Fix 0 < δ0 < 1 and let E be the set of x in X

that satisfies the following properties:

(1)
∫

X

|(x − x0)k1|q
|z − x|q dA < δ0,

(2)
∫

X

|(x − x0)k|q
|z − x|q dA < δ0,

(3) |x − x0|k̃(x) < δ0.

It follows from Theorem 4.1 that E has full area density at x0.
To show that Lx(g) tends to 0 through E it is useful to consider how g(z) can

be approximated by rational functions with poles off X. Since f is in Rp(X),
there is a sequence {fj } of rational functions with poles off X which converges
to f (z) in the Lp norm. Let gj (z) = fj (z) − D0

x0
fj − D1

x0
fj · (x − x0). Then

{gj } is a sequence of rational functions with poles off X that possesses the
following properties:

(1) {gj } converges to g(z) in the Lp norm,

(2) for each j , D0
x0

gj = D1
x0

gj = 0,

(3) Lx(gj ) converges to 0 as x tends to x0.

The first two properties are easy to verify. The third property follows since
gj (z) is a rational function with poles off X and thus D1

x0
gj = g′

j (x0).
It now follows from the linearity of Lx and the triangle inequality that

|Lx(g)| ≤ |Lx(g − gj )| + |Lx(gj )|. Hence to show that Lx(g) tends to 0
as x tends to x0, it follows from property (3) that it is enough to show that
Lx(g − gj ) → 0 as j → ∞. By property 1 it suffices to prove that there is a
constant C which does not depend on x such that for all x in E, |Lx(g−gj )| ≤
C‖g − gj‖p. Moreover, since a bounded point derivation is already a bounded
linear functional, it is enough to show that there is a constant C which does
not depend on j such that

∣∣∣∣g(x) − gj (x)

x − x0

∣∣∣∣ ≤ C‖g − gj‖p.

This is done in Lemma 5.2.
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We will first need to construct a representing measure for x in E, which
allows

(
g(x)−gj (x)

)
/(x −x0) to be expressed by an integral, from which the

desired bound can be obtained. To do this, we borrow a technique of Bishop [1].
Bishop showed that if μ is an annihilating measure on R(X) (i.e.,

∫
f dμ = 0

for all f in R(X)) and if the Cauchy transform μ̂(x) is defined and non-zero,
then the measure defined by 1

μ̂(x)

μ(z)

z−x
is a representing measure for x. If k dA

is a representing measure for x0 on Rp(X) then (z−x0)k dA is an annihilating
measure on Rp(X) and thus Bishop’s technique can be used to construct a
representing measure for x on Rp(X).

Lemma 5.1. Let k be a function in Lq(X) such that k dA is a representing
measure for x0. Choose x in X and suppose that |x − x0|k̃ < δ < 1, and

that z �→ (x−x0)k(z)

z−x
belongs to Lq(X). Let c = (z − x0)k(x) and let kx(z) =

1
c

(z−x0)k(z)

z−x
. Then there exists a bounded point evaluation on Rp(X) at x and

kx dA is a representing measure for x.

Proof. Before we begin the proof, we note a few things. First

c = (z − x0)k(x) =
∫

(z − x0)k

z − x
dAz = 1 +

∫
(x − x0)k

z − x
dAz

= 1 + (x − x0)k̂(x).

Thus 1−|x−x0|k̃(x) ≤ |c| ≤ 1+|x−x0|k̃(x) and hence, 1−δ ≤ |c| ≤ 1+δ.
Since δ < 1, kx is well defined. Second, kx can also be written as follows:

kx(z) = (z − x0)k(z)

(z − x)
(
1 + (x − x0)k̂(x)

) .

Finally, (z−x0)k(z)

z−x
= 1 + (x−x0)k(z)

z−x
and hence kx belongs to Lq(X).

If F is a rational function with poles off X, [F(z)−F(x)](z−x0)

z−x
is also a ra-

tional function with poles off X. Since k dA is a representing measure for x0,∫ [F(z)−F(x)](z−x0)

z−x
k(z) dAz = 0 and hence

∫
F(z)(z − x0)

z − x
k(z) dAz −

∫
F(x)(z − x0)

z − x
k(z) dAz = 0.

Since z − x0 = z − x + x − x0, it follows that
∫

F(x)(z − x0)

z − x
k(z) dAz =

∫
F(x)k(z) dAz +

∫
F(x)(x − x0)k(z)

z − x
dAz

= F(x)
(
1 + (x − x0)k̂(x)

)
.
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Hence
F(x) =

∫
F(z)(z − x0)k(z)

(z − x)
(
1 + (x − x0)k̂(x)

) dAz.

So F(x) = ∫
F(z)kx(z) dA whenever F is a rational function with poles off

X. Thus by Hölder’s inequality |F(x)| ≤ ‖kx‖q‖F‖p and since kx is an Lq

function, it follows that x admits a bounded point evaluation on Rp(X) and
that kx dA is a representing measure for x.

Lemma 5.2. Suppose that x belongs to E and let j be a positive integer.
Then there exists a constant C which does not depend on x or j such that

|g(x) − gj (x)|
|x − x0| ≤ C‖g − gj‖p.

Proof. If x belongs to E, then the hypotheses of Lemma 5.1 are satisfied
and kx dA is a representing measure for x. Thus

|g(x) − gj (x)| = 1

|c|
∣∣∣∣
∫

[g(z) − gj (z)]

(
z − x0

z − x

)
k(z) dAz

∣∣∣∣.
Since D0

x0
[g(z) − gj (z)] = 0, it follows that

∫
[g(z) − gj (z)]k(z) dAz = 0.

Then since z−x0
z−x

= 1 + x−x0
z−x

we obtain that

|g(x) − gj (x)| = |x − x0|
|c|

∣∣∣∣
∫

[g(z) − gj (z)]
k(z)

z − x
dAz

∣∣∣∣. (5.1)

Next, observe that

1

z − x
= 1

z − x0
+ x − x0

(z − x)(z − x0)
.

Applying this observation to (5.1) yields

|g(x) − gj (x)| = |x − x0|
|c|

∣∣∣∣
∫

[g(z) − gj (z)]
k(z)

z − x0
dAz

+
∫

[g(z) − gj (z)]
(x − x0)k(z)

(z − x)(z − x0)
dAz

∣∣∣∣.
The first integral is the same as the bounded point derivation at x0 applied to
g(z) − gj (z) which is 0, and hence

|g(x) − gj (x)| = |x − x0|
|c|

∣∣∣∣
∫

[g(z) − gj (z)]
(x − x0)k1(z)

(z − x)
dAz

∣∣∣∣.
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Finally by Hölder’s inequality,

|x − x0|
|c|

∣∣∣∣
∫

[g(z) − gj (z)]
(x − x0)k1(z)

(z − x)
dAz

∣∣∣∣
≤ |x − x0|

|c| ‖g − gj‖p

∥∥∥∥ (x − x0)k1

(z − x)

∥∥∥∥
q

.

and since it follows from property (1) of E that
∥∥ (x−x0)k1

(z−x)

∥∥
q

≤ δ0, there is a
constant C that does not depend on x or j such that

|g(x) − gj (x)| ≤ C|x − x0| · ‖g − gj‖p.

6. Higher-order bounded point derivations

The goal of this section is to prove Theorem 1.2 by modifying the proof of
Theorem 1.1. Choose f in Rp(X) and let g(z) = f (z) − D0

x0
f − D1

x0
f ·

(z − x0) − · · · − 1
t!D

t
x0

f · (z − x0)
t . As before, to show that f (z) has a t-th

order approximate derivative at x0 it suffices to show that g(z) has a t-th order
approximate derivative at x0. Also note that Dm

x0
g = 0 for 0 ≤ m ≤ t .

Consider the following family of linear functionals defined for every h in
C: Lh(F ) = �t

hF (x0) − Dt
x0

F . To prove Theorem 1.2, it suffices to show
that there is a set E′ with full area density at 0 such that Lh(g) tends to 0
as h tends to 0 through the points of E′. Once this is shown, it follows that
limh→0, h∈E′

∣∣�t
hg(x0) − Dt

x0
g
∣∣ = 0 and thus g has a t-th order approximate

derivative at x0.
Since there is a t-th order bounded point derivation on Rp(X) at x0, there

exists a function kt in Lq(X) such that the measure kt dA represents this t-th
order bounded point derivation. Hence by Lemma 3.1, the function k = (z−x0)kt

t!
belongs to Lq(X) and k dA is a representing measure for x0. Fix 0 < δ0 < 1
and let E be the set of x in X that satisfies the following properties:

(1)
∫

X

|(x − x0)kt |q
|z − x|q dA < δ0,

(2)
∫

X

|(x − x0)k|q
|z − x|q dA < δ0,

(3) |x − x0|k̃(x) < δ0.

It follows from Theorem 4.1 that E has full area density at x0. Now, for
1 ≤ s ≤ t , let Es = {h ∈ C : x0 + sh ∈ E} and let E′ = ⋂t

s=1 Es .
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Then for each s, Es has full area density at 0 and hence E′ also has full area
density at 0.

As in the previous section, to show that Lh(g) tends to 0 through E′ it is
useful to consider how g(z) can be approximated by rational functions with
poles off X. Since f belongs to Rp(X), there is a sequence {fj } of rational
functions with poles off X which converges to f (z) in the Lp norm. Let
gj (z) = fj (z) − D0

x0
fj − D1

x0
fj · (x − x0) − . . . − 1

t!D
t
x0

fj · (x − x0)
t . Then

{gj } is a sequence of rational functions with poles off X that possesses the
following properties:

(1) {gj } converges to g(z) in the Lp norm,

(2) for each j , Dm
x0

gj = 0 for 0 ≤ m ≤ t ,

(3) Lh(gj ) converges to 0 as h tends to 0.

The first two properties are easy to verify. The third property follows since
gj (z) is a rational function with poles off X and thus Dt

x0
gj = g

(t)
j (x0).

It now follows from the linearity of Lh and the triangle inequality that
|Lh(g)| ≤ |Lh(g − gj )| + |Lh(gj )|. Hence to show that Lh(g) tends to 0
as h tends to 0, it follows from property (3) that it is enough to show that
Lh(g − gj ) → 0 as j → ∞. By property (1) it suffices to prove that there is a
constant C which does not depend on h such that for all h in E′, |Lh(g−gj )| ≤
C‖g − gj‖p. Moreover, since a bounded point derivation is already a bounded
linear functional, it is enough to show that there is a constant C which does
not depend on j such that |�t

h(g(x0) − gj (x0))| ≤ C‖g − gj‖p. Furthermore,
since the difference quotient is a finite linear combination of terms of the form
g(x0 + sh) − gj (x0 + sh), it is enough to show that for each s between 0 and
t , |g(x0 + sh) − gj (x0 + sh)| ≤ C‖g − gj‖p. This is done in Lemma 6.2;
however, we will also need the following factorization lemma.

Lemma 6.1. Let t be a positive integer. Then

1

z − x
=

t∑
m=1

(x − x0)
m−1

(z − x0)m
+ (x − x0)

t

(z − x)(z − x0)t
.

Proof. The proof is by induction. For the base case, note that

1

z − x
= 1

z − x0
+ x − x0

(z − x)(z − x0)
. (6.1)

Now assume that we have shown that

1

z − x
=

t−1∑
m=1

(x − x0)
m−1

(z − x0)m
+ (x − x0)

t−1

(z − x)(z − x0)t−1
.
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Then

1

z − x
=

t−1∑
m=1

(x − x0)
m−1

(z − x0)m
+ 1

z − x
· (x − x0)

t−1

(z − x0)t−1
.

and applying (6.1) to the 1
z−x

term in the sum proves the lemma.

Lemma 6.2. Suppose that h belongs to E′ and let j be a positive integer.
Let 0 ≤ s ≤ t . Then there exists a constant C which does not depend on h or
j such that

|g(x0 + sh) − gj (x0 + sh)|
|h|t ≤ C‖g − gJ ‖p.

Proof. Let x = x0 + sh. Then x belongs to E and the hypotheses of
Lemma 5.1 are satisfied, so kx dA is a representing measure for x. Thus

|g(x) − gj (x)| = 1

|c|
∣∣∣∣
∫

[g(z) − gj (z)]

(
z − x0

z − x

)
k(z) dAz

∣∣∣∣.

Since D0
x0

[g(z) − gj (z)] = 0, it follows that
∫

[g(z) − gj (z)]k(z) dAz = 0.
Then since z−x0

z−x
= 1 + x−x0

z−x
, we obtain that

|g(x) − gj (x)| = |x − x0|
|c|

∣∣∣∣
∫

[g(z) − gj (z)]
k(z)

z − x
dAz

∣∣∣∣. (6.2)

Applying Lemma 6.1 to the k(z)/(z−x)-term in the right-most integral in (6.2)
shows that

|g(x) − gj (x)| = |x − x0|
|c|

∣∣∣∣
t∑

m=1

∫
[g(z) − gj (z)]

(x − x0)
m−1k(z)

(z − x0)m
dAz

+
∫

[g(z) − gj (z)]
(x − x0)

t k(z)

(z − x)(z − x0)t
dAz

∣∣∣∣.

We can factor out the powers of x − x0 from each integral since integration is
with respect to z. Thus each integral in the sum is of the form∫

[g(z) − gj (z)]
k(z)

(z−x0)m
dA where 1 ≤ m ≤ t . This integral simplifies to∫

[g(z)−gj (z)] 1
t! (z−x0)

t−mkt (z) dAz and by Lemma 3.1, the integral reduces
to a constant times the m-th order bounded point derivation of g(z) − gj (z),
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which is 0 for 1 ≤ m ≤ t . Hence

|g(x) − gj (x)| = |x − x0|
|c|t!

∣∣∣∣
∫

[g(z) − gj (z)]
(x − x0)

t kt (z)

(z − x)
dAz

∣∣∣∣
which simplifies to

= |x − x0|t
|c|t!

∣∣∣∣
∫

[g(z) − gj (z)]
(x − x0)kt (z)

(z − x)
dAz

∣∣∣∣
and, by Hölder’s inequality,

≤ |x − x0|t
|c|t! ‖g − gj‖p

∥∥∥∥ (x − x0)kt

(z − x)

∥∥∥∥
q

.

Since it follows from property (1) of E that
∥∥ (x−x0)k

(z−x)(z−x0)t

∥∥
q

≤ δ0, there is a
constant C that does not depend on h or j such that

|g(x) − gj (x)| ≤ C|x − x0|t‖g − gj‖p.

Since x = x0 + sh, it follows that |g(x0 + sh)−gj (x0 + sh)| ≤ C|s|t |h|t‖g −
gj‖p and thus

|g(x0 + sh) − gj (x0 + sh)|
|h|t ≤ C‖g − gj‖p.
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