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BLOW-UPS AND FANO MANIFOLDS OF
LARGE PSEUDOINDEX

CARLA NOVELLI

Abstract
We describe the Kleiman-Mori cones of Fano manifolds of large pseudoindex that admit a structure
of smooth blow-up.

1. Introduction

Let X be a Fano manifold, i.e. a smooth complex projective variety whose
anticanonical bundle −KX is ample. A Fano manifold is naturally associated
with two invariants: the index, rX, defined as the largest integer dividing −KX
in the Picard group of X, and the pseudoindex, iX, defined as the minimum
anticanonical degree of rational curves on X. It is known that these invariants
satisfy the relations 1 ≤ rX ≤ iX ≤ dimX + 1, [10] and [9]. Moreover, the
index is related with both the dimension and the Picard number, ρX, ofX by a
conjecture of Mukai [14] that states: ρX(rX−1) ≤ dimX, with equality if and
only ifX = (

PrX−1
)ρX . However, when dealing with Fano manifolds of Picard

number grater than one it can happen that the index is equal to one even for
simple varieties such as Ps ×Ps+1, so it seems that in studying these varieties
the pseudoindex could be a more useful invariant than the index. In particular,
the above conjecture has been restated [5] by replacing the index with the
pseudoindex, and this generalization, under the assumption iX > dimX/3,
has been proved [18, Theorem 3], [15, Theorem 5.1]; see also [21, Theorem A]
and [20, Corollary 4.3] for iX ≥ (dimX + 2)/2. Building on this, a first step
to the actual classification of Fano manifolds with iX ≥ (dimX + 1)/3 and
ρX ≥ 3 has been treated in [16], where the complete classification of Fano
manifolds of pseudoindex iX ≥ (dimX + 2)/3 and Picard number ρX ≥ 3 is
given.

In general when the Picard number of the variety is large, namely ρX ≥ 4,
the setting is quite easy to understand; for the next case, namely ρX = 3,
these varieties are more difficult to classify. However, by looking at the proofs
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in [18] and [15], one can see thatX is rationally connected with respect to some
families of rational curves and that these families have “good” properties. So
we can make use of such families of rational curves to study the manifolds
we are interested in. Even though for iX ≥ (dimX + 2)/3 the classification
has been achieved, when iX = (dimX + 1)/3 things are quite complicated.
However, the complete classification both in the case ρX ≥ 4, and in the case
ρX = 3 with X is rationally connected with respect to three unsplit families
of rational curves, one of them having anticanonical degree greater than iX, is
settled in [16].

In this paper we reconsider Fano manifolds with iX ≥ (dimX + 1)/3 and
ρX ≥ 3. Since a natural question coming from the study of Fano manifolds is to
investigate Fano manifolds with a “special” extremal contraction, we assume
that X admits a structure of a smooth blow-up. We prove the following.

Theorem 1.1. Let X be a Fano manifold of pseudoindex iX ≥ (dimX +
1)/3 ≥ 2 and Picard number ρX ≥ 3. Assume that X has an extremal ray Rσ
associated with a smooth blow-up. Then one of the following holds:

(1) ρX = 4, dimX = 5, iX = (dimX + 1)/3 and NE(X) = 〈Rσ ,R1,

R2, R3〉, where R1, R2 and R3 are associated with contractions of fiber
type;

(2) ρX = 3 and NE(X) = 〈Rσ ,R1, R2〉, where R1 and R2 are associated
with contractions of fiber type;

(3) ρX = 3, iX = (dimX + 1)/3 and NE(X) = 〈Rσ ,R1, R2〉, where R1 is
associated with a contraction of fiber type and R2 is associated with a
smooth blow-up.

The paper is organized as follows. In Section 2 we collect basic material
concerning definitions and results on extremal contractions, on families of
rational curves and on chains of rational curves on projective manifolds.

In Section 3 we describe the Kleiman-Mori cones of Fano manifolds with
iX ≥ (dimX + 1)/3 ≥ 2 and ρX ≥ 3 that admit a structure of smooth
blow-up. We start by recalling in Remark 3.1 that if X is a Fano manifold of
pseudoindex iX ≥ (dimX+1)/3 ≥ 2 and Picard numberρX ≥ 4, then case (1)
in the statement of Theorem 1.1 is achieved by combining [16, Propositions 4.1
and 5.1]. Therefore in the rest of the section we deal with ρX = 3. We split
the proof in two main cases, according to the existence on X of an unsplit
dominating family of rational curves which is positive with respect to the
exceptional locus of the given blow-up. If X admits such a family of rational
curves, say V , we first prove in Lemma 3.2 that X cannot admit an extremal
ray associated with a small contraction and that [V ] belongs to an extremal
ray associated with a contraction of fiber type; then we use these facts to
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describe the possible Kleiman-Mori cones of X in Theorem 3.3. Otherwise if
X does not admit such a family of rational curve, we prove that X admits an
extremal ray associated with another blow-up, and we get the description of
the Kleiman-Mori cone of X in Theorem 3.7.

Finally, in Section 4 we give examples, from which we see that the result
is effective.

2. Background material

Let X be a smooth complex projective variety.

Definition 2.1. A contraction ϕ:X → Y is a proper surjective map with
connected fibers onto a normal variety Y . If the canonical bundle KX is not
nef, then the negative part of the closure NE(X) of the cone of effective 1-
cycles into the R-vector space of 1-cycles modulo numerical equivalence is
polyhedral, by the Cone Theorem. By the Contraction Theorem, every face in
this part of the cone, called an extremal face, is associated with a contraction,
called an extremal contraction or a Fano-Mori contraction.

An extremal contraction associated with an extremal face of dimension
one, i.e. with an extremal ray, is called an elementary contraction; if dim Y <

dimX then it is said to be of fiber type, otherwise it is called birational. If the
codimension of the exceptional locus of an elementary birational contraction
is equal to one, the contraction is called divisorial, otherwise it is said to be
small. The length of an extremal ray is defined as the minimum anticanonical
degree of rational curves whose numerical equivalence class belongs to the
ray; a rational curve attaining the length of the ray is called minimal curve of
the ray.

Remark 2.2. Fibers of contractions associated with different extremal rays
can meet at most at points.

Notation. The exceptional locus of a contraction associated with an ex-
tremal ray R will be denoted by Exc(R).

Definition 2.3. A family of rational curves V onX is an irreducible com-
ponent of the scheme Ratcurvesn(X) (see [11, Definition II.2.11]).

Given a rational curve we will call a family of deformations of that curve any
irreducible component of Ratcurvesn(X) containing the point parameterizing
that curve.

We define Locus(V ) to be the set of points of X through which there is a
curve among those parameterized by V ; we say that V is a covering family if
Locus(V ) = X and that V is a dominating family if Locus(V ) = X.
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By abuse of notation, given a line bundleL ∈ Pic(X), we will denote byL·V
the intersection number L · C, with C any curve among those parameterized
by V .

We will say that V is unsplit if it is proper; clearly, an unsplit dominating
family is covering.

We denote byVx the subscheme ofV parameterizing rational curves passing
through a point x and by Locus(Vx) the set of points of X through which
there is a curve among those parameterized by Vx . If, for a general point
x ∈ Locus(V ), Vx is proper, then we will say that the family is locally unsplit;
by Mori’s Bend and Break arguments, if V is a locally unsplit family, then
−KX · V ≤ dimX + 1.

If X admits dominating families, we can choose among them one with
minimal degree with respect to a fixed ample line bundle A, and we call it a
minimal dominating family. Such a family is locally unsplit.

Definition 2.4. Let U be an open dense subset of X and π :U → Z a
proper surjective morphism to a quasi-projective variety; we say that a family
of rational curves V is a horizontal dominating family with respect to π if
Locus(V ) dominates Z and curves parameterized by V are not contracted by
π . If such families exist, we can choose among them one with minimal degree
with respect to a fixed ample line bundle and we call it a minimal horizontal
dominating family with respect to π ; such a family is locally unsplit.

Remark 2.5. By fundamental results in [13], a Fano manifold admits dom-
inating families of rational curves; also horizontal dominating families with
respect to proper morphisms defined on an open set exist, as proved in [12]. In
the case of Fano manifolds by “minimal” we will mean minimal with respect
to −KX, unless otherwise stated.

Definition 2.6. We define a Chow family of rational 1-cycles W to be
an irreducible component of Chow(X) parameterizing rational and connected
1-cycles.

We define Locus(W ) to be the set of points of X through which there is
a cycle among those parameterized by W ; notice that Locus(W ) is a closed
subset ofX ([11, II.2.3]). We say that W is a covering family if Locus(W ) = X.

IfV is a family of rational curves, the closure of the image ofV in Chow(X),
denoted by V , is called the Chow family associated with V .

Remark 2.7. If V is proper, i.e. if the family is unsplit, then V corresponds
to the normalization of the associated Chow family V .

Definition 2.8. Let V be a family of rational curves and let V be the
associated Chow family. We say that V (and also V ) is quasi-unsplit if every
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component of any reducible cycle parameterized by V has numerical class
proportional to the numerical class of a curve parameterized by V .

Definition 2.9. Let V 1, . . . , V k be families of rational curves on X and
Y ⊂ X.

We define Locus(V 1)Y to be the set of points x ∈ X such that there exists
a curve C among those parameterized by V 1 with C ∩ Y 
= ∅ and x ∈ C.
We inductively define Locus(V 1, . . . , V k)Y := Locus(V 2, . . . , V k)Locus(V 1)Y .
Notice that, by this definition, we have Locus(V )x = Locus(Vx). Analogously
we define Locus(W 1, . . . ,W k)Y for Chow families W 1, . . . ,W k of rational
1-cycles.

Notation. We denote by ρX the Picard number of X, i.e. the dimension
of the R-vector space N1(X) of 1-cycles modulo numerical equivalence. If
� is a 1-cycle, then we will denote by [�] its numerical equivalence class in
N1(X); if V is a family of rational curves, we will denote by [V ] the numerical
equivalence class of any curve among those parameterized by V .

If Y ⊂ X, we will denote by N1(Y,X) ⊆ N1(X) the vector subspace
generated by numerical classes of curves of X contained in Y ; moreover,
we will denote by NE(Y,X) ⊆ NE(X) the subcone generated by numerical
classes of curves of X contained in Y .

We will make frequent use of the following dimensional estimates:

Proposition 2.10 ([11, IV.2.6]). Let V be a family of rational curves on X
and x ∈ Locus(V ) a point such that every component of Vx is proper. Then

(a) dim Locus(V )+ dim Locus(Vx) ≥ dimX −KX · V − 1;

(b) dim Locus(Vx) ≥ −KX · V − 1.

Definition 2.11. We say that k quasi-unsplit families V 1, . . . , V k of
rational curves are numerically independent if, in N1(X), we have
dim〈[V 1], . . . , [V k]〉 = k.

Lemma 2.12 (Cf. [1, Lemma 5.4]). Let Y ⊂ X be a closed subset and
V 1, . . . , V k numerically independent unsplit families of rational curves such
that 〈[V 1], . . . , [V k]〉 ∩ NE(Y,X) = 0. Then either Locus(V 1, . . . , V k)Y = ∅
or

dim Locus(V 1, . . . , V k)Y ≥ dim Y +
∑

−KX · V i − k.

Definition 2.13. Let Y ⊂ X be a closed subset, let V be a dominating
family of rational curves onX and denote by V be the associated Chow family;
define ChLocus(V )Y to be the set of points x ∈ X such that there exist cycles
�1, . . . , �m with the following properties:
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• �i belongs to the family V ;

• �i ∩ �i+1 
= ∅;

• �1 ∩ Y 
= ∅ and x ∈ �m,

i.e. ChLocus(V )Y is the set of points that can be joined to Y by a connected
chain of at most m cycles belonging to the family V .

We will use the description of the numerical expression of curves in
ChLocus(V )Z , with Z ⊂ X a closed subset and V a quasi-unsplit family
of rational curves, as stated in [19, Lemma 1.10].

Lemma 2.14 (Cf. [4, Proof of Lemma 1.4.5] and [20, Lemma 3.2 and Re-
mark 3.3]). LetZ ⊂ X be a closed subset and let V be a quasi-unsplit family of
rational curves. Then every curve contained in ChLocus(V )Z is numerically
equivalent to a linear combination with rational coefficients

λVCV + λZCZ,

withCV a curve among those parameterized byV ,CZ a curve inZ andλZ ≥ 0.

Define a relation of rational connectedness with respect to V on X in the
following way: two points x and y of X are in rc(V )-relation if there exists
a chain of cycles in V which joins x and y, i.e. if y ∈ ChLocus(V )x . In
particular, X is rc(V )-connected if we have X = ChLocus(V )x .

The family V defines a proper prerelation in the sense of [11, Defini-
tion IV.4.6]. This prerelation is associated with a fibration, which we will
call the rc(V )-fibration:

Theorem 2.15 ([11, IV.4.16], cf. [6]). LetX be a normal and proper variety
and V a proper prerelation; then there exists an open subvarietyX0 ⊂ X and
a proper morphism with connected fibers π :X0 → Z0 such that

• 〈V 〉 restricts to an equivalence relation on X0;

• π−1(z) is a 〈V 〉-equivalence class for every z ∈ Z0;

• ∀ z ∈ Z0 and ∀ x, y ∈ π−1(z), x ∈ ChLocus(V )y withm ≤ 2dimX−dimZ0 −
1.

Clearly X is rc(V )-connected if and only if dimZ0 = 0.
Given Chow families V 1, . . . ,V k of rational 1-cycles, it is possible to

define a relation of rc(V 1, . . . ,V k)-connectedness, which is associated with
a fibration, that we will call rc(V 1, . . . ,V k)-fibration. The variety X will be
called rc(V 1, . . . ,V k)-connected if the target of the fibration is a point.

Notation. In the next sections for simplicity we will write Locus(V )x to
mean Locus(V )x for a general point x ∈ Locus(V ), and Locus(V α, . . . , V β)xα
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to mean Locus(V α, . . . , V β)xα for a general point xα ∈ Locus(V α), unless
otherwise stated.

We end this section by recalling the following general construction.

Construction 2.16 ([18, Construction 1]). LetX be a Fano manifold; let
V 1 be a minimal dominating family of rational curves on X and consider the
associated Chow family V 1. IfX is not rc(V 1)-connected, let V 2 be a minimal
horizontal dominating family with respect to the rc(V 1)-fibration, π1:X ���
Z1. If X is not rc(V 1,V 2)-connected, we denote by V 3 a minimal horizontal
dominating family with respect to the rc(V 1,V 2)-fibration, π2:X ��� Z2,
and so on. Since dimZi+1 < dimZi , for some integer k we have that X is
rc(V 1, . . . ,V k)-connected.

By abuse of notation, we will write V i instead of V i if the family is unsplit.

Remark 2.17. Examples of the above construction are given in [15, Ex-
amples 4.2]. Note that at each step the dimension drops at least by
dim Locus(V i)xi .

Remark 2.18. Let X be a Fano manifold of dimension dimX ≥ 3, pseu-
doindex iX ≥ (dimX + 1)/3 and Picard number ρX ≥ 3. By looking at the
proofs of [15, Theorem 5.1] and [18, Theorem 5], we see that, if one of the
families V j as in Construction 2.16 is not unsplit, then dimX = 5, iX = 2
and X is rc(V 1, V 2,V 3)-connected.

3. Description of the Kleiman-Mori cone of X

In this section we describe the Kleiman-Mori cone of a Fano manifold X of
pseudoindex iX ≥ (dimX + 1)/3 ≥ 2 and Picard number ρX ≥ 3 admitting
an extremal ray associated with a smooth blow-up and we show Theorem 1.1.

Remark 3.1. Let X be a Fano manifold of pseudoindex iX ≥ (dimX +
1)/3 ≥ 2 and Picard number ρX ≥ 4. Then we have case (1) in the statement
of Theorem 1.1 by combining [16, Propositions 4.1 and 5.1].

Therefore we are left to deal with ρX = 3.
We start by assuming thatX admits an unsplit dominating family of rational

curves which is positive with respect to the exceptional locus of the blow-up.

Lemma 3.2. LetX be a Fano manifold of pseudoindex iX ≥ (dimX+1)/3 ≥
2 and Picard numberρX = 3. Assume thatX has an extremal rayRσ associated
with a smooth blow-up. If X admits an unsplit dominating family of rational
curves V such that Exc(Rσ ) ·V > 0, then [V ] is contained in an extremal ray
of X.
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Moreover, any other extremal ray of X is associated either with a contrac-
tion of fiber type, or with a smooth blow-up. In the last case, iX = (dimX+1)/3
and the non-trivial fibers of each blow-up are iX-dimensional.

Proof. Let R be an extremal ray of X different from Rσ and such that
[V ] /∈ R. Denote by FR any non-trivial fiber of the contraction associated
with R. Since V is a dominating family and Exc(Rσ ) · V > 0, we have

Exc(Rσ ) ∩ Locus(V )FR 
= ∅,
hence there exists a fiber Fσ of the blow-up associated with Rσ such that

Fσ ∩ Locus(V )FR 
= ∅. (3.2.1)

Now, the numerical equivalence class of any curve in Fσ belongs to Rσ , while
every curve contained in Locus(V )FR is numerically equivalent to a linear
combination of a curve among those parameterized by V and a curve in FR; it
thus follows that the intersection (3.2.1) is 0-dimensional. So we get

dimX ≥ dim Fσ+dim Locus(V )FR ≥ dim Fσ+dim FR−KX·V−1, (3.2.2)

where the last inequality follows by Lemma 2.12. By taking into account [22,
Theorem 1.1] applied to Rσ , from (3.2.2) we derive dim FR ≤ iX. So, by [22,
Theorem 1.1] applied toR, we get thatR is associated either with a contraction
of fiber type, or with a divisorial contraction.

In the last case by (3.2.2) we have dimX = 3iX − 1 and dim FR = iX =

(R), the length ofR, so the contraction associated withR is a smooth blow-up
by [2, Theorem 5.1]; moreover, both Rσ and R are associated with blow-ups
with iX-dimensional non-trivial fibers.

To prove the existence of an extremal ray containing [V ], we consider the
rc(V )-fibration π :X ��� Z. Let V σ a family of deformations of a minimal
curve in Rσ . As Exc(Rσ ) ·V > 0, the family V σ is horizontal and dominating
with respect to π . Moreover,X is not rc(V , V σ )-connected, being ρX = 3. So
[V ] and [V σ ] lie in an extremal face 〈Rσ ,R1〉 by [7, Lemma 2.4], as we have
proved above that X has no small contractions.

Now, let H be the pullback of a very ample line bundle on Z. The curves
parameterized byV are contracted byπ , soH ·V = 0; moreover,H is positive
outside the indeterminacy locus of π , so H · Rσ > 0, since V σ is horizontal
and dominating with respect to π ; finally, either [V ] ∈ R1, or the exceptional
locus of R1 is contained in the indeterminacy locus of π . However, the last
case cannot occur since R1 is not associated with a small contraction and the
indeterminacy locus of π has codimension at least 2 in X.



42 C. NOVELLI

Theorem 3.3. Let X be a Fano manifold of pseudoindex iX ≥ (dimX +
1)/3 ≥ 2 and Picard number ρX = 3. Assume that X has an extremal ray Rσ
associated with a smooth blow-up. IfX admits an unsplit dominating family of
rational curves V such that Exc(Rσ ) ·V > 0, then one of the following holds:

(1) NE(X) = 〈Rσ ,R1, R2〉, where R1 and R2 are associated with contrac-
tions of fiber type;

(2) NE(X) = 〈Rσ ,R1, R2〉, where R1 is associated with a contraction of
fiber type and R2 is associated with a smooth blow-up.

Moreover, [V ] ∈ R1.

Proof. In view of Lemma 3.2 we know that X has no small contractions
and that it admits an extremal rayR1 such that [V ] ∈ R1, so that the contraction
associated with R1 is of fiber type. Moreover, since Exc(Rσ ) ·V > 0, the rays
Rσ and R1 span an extremal face in NE(X) by [7, Lemma 2.4]. Now, let R2

be an extremal ray ofX which does not belong to 〈Rσ ,R1〉; by Lemma 3.2 the
contraction associated with R2 is either of fiber type, or a smooth blow-up.

We first assume that the contraction associated with R2 is of fiber type and
we prove that we are in case (1) of the statement.

Since X has no small contractions, by [7, Lemma 2.4] we have that R1 and
R2 are contained in an extremal face of NE(X). Now, it is enough to show that
Rσ and R2 lie in an extremal face of NE(X).

If Exc(Rσ ) · R2 > 0, a family of deformations V σ of a minimal curve in
Rσ is horizontal and dominating with respect to the fibration associated with a
family of deformations V R2 of a minimal curve whose numerical equivalence
class belongs to R2. Moreover,X is not rc(V R2 , V σ )-connected since ρX = 3.
So Rσ and R2 lie in an extremal face of NE(X), again by [7, Lemma 2.4].
Therefore NE(X) = 〈Rσ ,R1, R2〉.

If otherwise Exc(Rσ ) · R2 = 0, assume to get a contradiction that there
exists an extremal ray, say R3, in the half-space of NE(X) which is bounded
by 〈Rσ ,R2〉 and does not containR1. Then Exc(Rσ )·R3 < 0, so the exceptional
locus of R3 is contained in Exc(Rσ ), hence R3 is associated with a blow-up
by Lemma 3.2. Now, let Fσ , F1, F2 and F3 be the fibers of the contractions
associated with Rσ , R1, R2 and R3, respectively, which contain a point x ∈
Exc(R3). Since fibers of different extremal rays can meet at most at points, we
get

3iX − 1 ≥ dimX ≥ dim Fσ + dim F1 + dim F2 + dim F3 ≥ 4iX − 2,

where the last inequality is due to [22, Theorem 1.1] applied to each extremal
ray; it follows that iX = 1, a contradiction. Therefore NE(X) = 〈Rσ ,R1, R2〉.
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We can now assume that the contraction associated with R2 is birational
and that R1 is the only extremal ray of X whose associated contraction is of
fiber type; we prove that we are in case (2) of the statement.

Notice that by Lemma 3.2 we know that the contractions associated with
R2 and with any other extremal ray different from R1 are smooth blow-ups.

We show that R1 and R2 lie on an extremal face.
If Exc(R2)·R1 > 0, recalling thatX has no small contraction by Lemma 3.2,

by [7, Lemma 2.4] we get that R1 and R2 are contained in an extremal face of
NE(X).

So we are left to assume that Exc(R2) ·R1 = 0. Clearly we have Exc(R2) ·
R2 < 0. We can argue as in the proof of [8, Theorem 5.7], so we claim that
Exc(R2) · Rσ > 0 and that NE(Exc(R2)) = 〈Rσ ,R1, R2〉.

Let V σ a family of deformations of a minimal curve inRσ . Since Exc(Rσ ) ·
V > 0, the family V σ is horizontal and dominating with respect to the rc(V )-
fibration, so we can consider the rc(V , V σ )-fibration, whose general fiber F
has dimension ≥ 2iX − 1 by Lemma 2.12. Let V R2 a family of deformations
of a minimal curve in R2. Now, by computing the dimension of Locus(V R2)F
with Lemma 2.12, we derive Exc(R2) = Locus(V R2)F , so NE(Exc(R2)) =
〈Rσ ,R1, R2〉. Since an effective divisor cannot be non-positive on the whole
NE(X), the claim follows.

Now, assume by contradiction that R1 and R2 are not contained in an ex-
tremal face of NE(X). Then there exists an extremal ray, say R3, in the half-
space of NE(X) which is bounded by 〈R1, R2〉 and does not contain Rσ . It
follows that Exc(R2) · R3 < 0, so the exceptional locus of R3 is contained in
Exc(R2), contradicting NE(Exc(R2)) = 〈Rσ ,R1, R2〉.

Notice that the same argument as forR2 applies to every extremal ray differ-
ent form R1 and Rσ ; it follows that the only possibility for the Kleiman-Mori
cone of X is NE(X) = 〈Rσ ,R1, R2〉, so we are in case (2) of the statement.

Remark 3.4. Notice that, in view of Lemma 3.2, the second case in The-
orem 3.3 can happen only for Fano manifoldsX of Picard number ρX = 3 and
pseudoindex iX = (n+ 1)/3.

Next we assume that X does not admit any unsplit dominating family of
rational curves which is positive with respect to the exceptional locus of the
blow-up.

We will make use of the following remark.

Remark 3.5. LetX be a Fano manifold of dimension dimX ≥ 3, pseudoin-
dex iX ≥ (dimX+ 1)/3 and Picard number ρX = 3. By looking at the proofs
of [15, Theorem 5.1] and [18, Theorem 5], we see that, X is rc(V 1,V 2,V 3)-
connected with respect to three families as in Construction 2.16 which turn
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out to be unsplit, unless dimX = 5, iX = 2 and only the first two families are
unsplit, or X is rc(V 1,V 2)-connected with respect to two families and only
the first family is unsplit.

However, the description of the Kleiman-Mori cone of Fano five-folds with
pseudoindex 2 is given in [7, Theorem 1.1], so we could confine to mani-
folds of dimension at least six that we know to be rc(V 1, V 2, V 3)-connected
with respect to three unsplit families of rational curves. This will be done in
Theorem 3.7.

Lemma 3.6. LetX be a Fano manifold of pseudoindex iX ≥ (dimX+1)/3 ≥
2. Assume that X is rc(V 1, V 2, V 3)-connected with respect to three unsplit
families as in Construction 2.16 and thatX has an extremal rayRσ associated
with a smooth blow-up.

If X does not admit any unsplit dominating family of rational curves V
such that Exc(Rσ ) · V > 0, then V 2 is not dominating, X is rc(V 1, V 2, V σ )-
connected, with V σ a family of deformations of a minimal curve in Rσ ,
〈[V 1], [V 2]〉 is extremal and −KX · V 1 = −KX · V 2 = −KX · V σ = iX =
(dimX + 1)/3.

Proof. By construction V 1 is dominating, so Exc(Rσ ) ·V 1 = 0. Therefore
Exc(Rσ ) does not dominate the target of the rc(V 1)-fibration π1:X ��� Z1. It
follows that Exc(Rσ ) does not contain Locus(V 2), hence Exc(Rσ ) · V 2 ≥ 0.

Let H1 be the pullback of a very ample line bundle on Z1. The curves
parameterized by V 1 are contracted by π1, so H1 · V 1 = 0; moreover, H1 is
positive outside the indeterminacy locus of π1, so H1 · V 2 > 0, since V 2 is
horizontal with respect to π1, and H1 ·Rσ > 0, since the indeterminacy locus
of π1 has codimension at least 2 in X while Exc(Rσ ) is a divisor.

Now denote by V σ a family of deformations of a minimal rational curve in
Rσ . We claim that [V 1], [V 2] and [V σ ] are numerically independent. Assume
to get a contradiction that [V σ ] ∈ 〈[V 1], [V 2]〉, so that there exist a, b ∈ R
such that [V σ ] = a[V 1] + b[V 2]. Now, by intersecting with Exc(Rσ ) we
obtain b < 0, while we have b > 0 by intersecting with H1, so we reach a
contradiction.

In particular, it follows that the curves of Rσ are not contracted by the
rc(V 1, V 2)-fibration π2:X ��� Z2.

Now we show that V 2 is not a dominating family. Assume to get a con-
tradiction that V 2 is a dominating family. We can consider Locus(V a, V b)Fσ ,
{a, b} = {1, 2} for a general non-trivial fiber Fσ of the contraction associ-
ated with Rσ . Notice that, since Exc(Rσ ) · V 1 = Exc(Rσ ) · V 2 = 0, any
curve in Locus(V a, V b)Fσ has negative intersection with respect to Exc(Rσ ),
so Locus(V a, V b)Fσ ⊆ Exc(Rσ ). So by computing its dimension with Lem-
ma 2.12, we get Locus(V a, V b)Fσ = Exc(Rσ ).
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By repeated applications of Lemma 2.14 the numerical equivalence class of
any curve in Exc(Rσ ) can be written as a linear combination with nonnegative
coefficients of [V 1], [V 2] and [V σ ], hence NE(Exc(Rσ ))= 〈[V 1], [V 2], [V σ ]〉.

Therefore the contraction associated with an extremal ray which is positive
with respect to Exc(Rσ ) is a P1-bundle by [17, Corollary 2.15], hence a family
of deformations of a minimal curve in this ray is dominating, unsplit and has
positive intersection with respect to Exc(Rσ ), a contradiction.

Therefore V 2 is not a dominating family. So, for a general point x2 ∈
Locus(V 2), we have dim Locus(V 2, V 1)x2 ≥ 2iX − 1, hence dimZ2 ≤ iX.
Therefore a general non-trivial fiber Fσ of the blow-up associated with Rσ
dominates Z2 and iX = (dimX + 1)/3. It follows that X is rc(V 1, V 2, V σ )-
connected and X = Locus(V 2, V 1)Fσ , so 〈[V 1], [V 2]〉 is extremal by [16,
Lemma 3.5]. Moreover, −KX · V 1 = −KX · V 2 = −KX · V σ = iX.

Theorem 3.7. Let X be a Fano manifold of pseudoindex iX ≥ (dimX +
1)/3 > 2 and Picard number ρX = 3. Assume that X has an extremal ray Rσ
associated with a smooth blow-up. IfX does not admit any unsplit dominating
family of rational curvesV such that Exc(Rσ )·V > 0, then iX = (dimX+1)/3
and NE(X) = 〈Rσ ,R1, R2〉, where Rσ and R2 are associated with smooth
blow-ups with nontrivial iX-dimensional fibers and R1 is associated with a
contraction of fiber type. Moreover, Exc(R2) · R1 > 0.

Proof. In view of Remark 3.5 we know thatX is rc(V 1, V 2, V 3)-connected
with respect to three unsplit families as in Construction 2.16, so by Lemma 3.6
X is rc(V 1, V 2, V σ )-connected, where V σ is a family of deformations of a
minimal curve in Rσ .

Let R be an extremal ray which is positive on Exc(Rσ ) and let FR be any
nontrivial fiber of the contraction associated with R. Then R /∈ 〈[V 1], Rσ 〉
and there exists a nontrivial fiber FRσ of the contraction associated with Rσ
which intersectsFR . It follows thatFR∩Locus(V 1)FRσ 
= ∅. On the other hand
this intersection cannot have positive dimension since the numerical equival-
ence class of any curve in FR belongs to R, while every curve contained in
Locus(V 1)FRσ is numerically equivalent to a linear combination of a curve
among those parameterized by V 1 and a curve in FRσ . It follows that

dim FR ≤ dimX − dim Locus(V 1)FRσ ≤ iX (3.7.1)

where the last inequality follows by Lemma 2.12. Notice that R cannot be
associated with a contraction of fiber type, otherwise Exc(Rσ ) · R would be
zero. By taking into account [22, Theorem 1.1] applied to Rσ , we derive
dim FR = iX and iX = (dimX + 1)/3. So, by [22, Theorem 1.1] applied
to R, we get that R is associated with a divisorial contraction. In particular,
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dim FR = iX = 
(R), so the contraction associated with R is a smooth blow-
up by [2, Theorem 5.1].

Note that, in view of (3.7.1), this implies dim FRσ = iX.
Now, if Exc(R) ·V 1 = 0, then Exc(R) ·V 2 < 0, sinceX is rc(V 1, V 2, V σ )-

connected and Exc(R) · V σ > 0. On the other hand, we can argue as in the
first lines of the proof of Lemma 3.6 by replacing Rσ with R; then we get
Exc(R) · V 2 ≥ 0. So we have a contradiction.

Therefore Exc(R) · V 1 > 0, so we can conclude by Lemma 3.2 and The-
orem 3.3.

4. Examples

LetX be a Fano manifold of pseudoindex iX ≥ (dimX+1)/3 ≥ 2 and Picard
number ρX = 3. We know from [22, Theorem 1.1] that, if X has an extremal
ray associated with a smooth blow-up, the dimension of the non-trivial fibers
is greater than or equal to the pseudoindex of X.

We start this section with an example of X of pseudoindex iX > (dimX+
1)/3 admitting an extremal ray associated with a smooth blow-up.

Example 4.1. Consider X = PiX−1 × BlPiX−2 P2iX−1. This is a Fano man-
ifold of pseudoindex iX = (dimX + 2)/3 ≥ 2, Picard number ρX = 3 that
admits a blow-up structure.

Remark 4.2. Notice that, in view of [16, Theorem], the variety in Ex-
ample 4.1 is the only Fano manifold of pseudoindex greater than (dimX+1)/3,
Picard number ρX = 3 that admits a blow-up structure.

Now we give an example of X admitting an extremal ray associated with
a smooth blow-up whose non-trivial fibers have dimension greater than the
pseudoindex of X.

Example 4.3. ConsiderX = PiX−1 ×BlPiX−2 P2iX . This is a Fano manifold
of pseudoindex iX = (dimX + 1)/3 > 2, Picard number ρX = 3 that admits
a blow-up structure with fibers of dimension equal to iX + 1.

We remark that the variety in Example 4.3 is the only Fano manifold of
dimension 3iX − 1, Picard number ρX = 3 admitting an extremal ray asso-
ciated with a smooth blow-up whose fibers have dimension greater than the
pseudoindex of X. This is proved in the following

Proposition 4.4. LetX be a Fano manifold of pseudoindex iX ≥ (dimX+
1)/3 > 2 and Picard number ρX = 3. Assume that X has an extremal ray Rσ
associated with a smooth blow-up. Then the non-trivial fibers of the contraction
associated with Rσ are iX-dimensional unless X = PiX−1 × BlPiX−2 P2iX .
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Proof. By [22, Theorem 1.1] we know that the dimension of each non-
trivial fiber of the contraction associated with Rσ has dimension greater than
or equal to iX. Assume that these fibers have dimension greater than iX. By
Theorem 1.1 we know that NE(X) = 〈Rσ ,R1, R2〉, where R1 is associated
with a contraction of fiber type and R2 is associated either with a contraction
of fiber type or with a smooth blow-up. However, the last case is ruled out by
taking into account Lemma 3.2 and Theorem 3.7.

With no loss of generality we can now assume that Exc(Rσ ) · R1 > 0 and
we can argue as in the proof of Lemma 3.2. Denote by F2 any fiber of the
contraction associated withR2 and denote by V 1 a family of deformations of a
minimal curve in R1. Since V 1 is a dominating family and Exc(Rσ ) · V 1 > 0,
we have

Exc(Rσ ) ∩ Locus(V 1)F2 
= ∅,
hence there exists a fiber Fσ of the blow-up associated with Rσ such that

Fσ ∩ Locus(V 1)F2 
= ∅. (4.4.1)

Now, the numerical equivalence class of any curve in Fσ belongs to Rσ , while
every curve contained in Locus(V 1)F2 is numerically equivalent to a linear
combination of a curve among those parameterized by V 1 and a curve in F2;
it thus follows that the intersection (4.4.1) is 0-dimensional. So we get

dimX ≥ dim Fσ + dim Locus(V 1)F2

≥ dim Fσ + dim F2 −KX · V 1 − 1,
(4.4.2)

where the last inequality follows by Lemma 2.12. By taking into account [22,
Theorem 1.1] applied to Rσ , from (4.4.2) we derive dim F2 ≤ iX − 1. So,
by [22, Theorem 1.1] applied to R2, we get that dim F2 = iX − 1. Therefore
a general fiber of the contraction associated with R2 dominates the target of
the rc(V 1, V σ )-fibration, hence X is rc(V 1, V σ , V 2)-connected, where V 2 is
a family of deformations of a minimal curve of the contraction associated with
R2. Notice that −KX · V 1 = −KX · V 2 = iX and −KX · V σ = iX + 1, so we
get X = PiX−1 × BlPiX−2 P2iX by [16, Proposition 5.2].

Next we consider Fano manifolds with two blow-ups structures.

Example 4.5. Consider X = BlP2iX−2(BlPiX−2 P3iX−1). This is a Fano man-
ifold of pseudoindex iX = (dimX + 1)/3 > 2, Picard number ρX = 3 that
admits two blow-up structures.

Moreover, we show that

Proposition 4.6. LetX be a Fano manifold of pseudoindex iX = (dimX+
1)/3 > 2 and Picard number ρX = 3. Assume thatX admits two extremal rays
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associated with smooth blow-ups onto Fano manifolds. Then X =
BlP2iX−2(BlPiX−2 P3iX−1).

Proof. In view of Theorem 1.1, we know that NE(X) = 〈R,Rσ ,Rσ ′ 〉,
where Rσ and Rσ ′ are associated with smooth blow-ups and R is associated
with a contraction of fiber type. Moreover, the intersection of the exceptional
loci of the two blow-ups is not empty. In fact, if Exc(Rσ ) · R = 0 (resp.,
Exc(Rσ ′) ·R = 0) then Exc(Rσ ) ·Rσ ′ > 0 (resp., Exc(Rσ ′) ·Rσ > 0) since an
effective divisor is positive on an extremal ray, while if Exc(Rσ ) · R > 0 and
Exc(Rσ ′) ·R > 0 then Exc(Rσ ) ·Rσ ′ > 0 in view of the proof of Theorem 3.3.

Moreover, in view of Theorem 3.7, with no loss of generality we can assume
that Exc(Rσ ) · R > 0.

Denote by V R , resp. V σ , resp. V σ
′
, a family of deformations of a minimal

curve inR, resp.Rσ , resp.Rσ ′ . Then V σ is horizontal and dominating with re-
spect to the rc(V R)-fibration andV σ

′
is horizontal and dominating with respect

to the rc(V R, V σ )-fibration. By computing the dimensions with Lemma 2.12,
we derive dim Locus(V R)Fσ = 2iX − 1, where Fσ is any non-trivial fiber of
the contraction associated with Rσ .

Let � be the contraction associated with the extremal face 〈R,Rσ 〉 and
denote by F a general fiber of �. We have the following diagram:

X
σ

X

ψ
�

Y

where σ is the blow-up associated with Rσ . Then F contains Locus(V R)Fσ ,
so it has positive intersection with a nontrivial fiber of Rσ ′ . It follows that
dim F = 2iX−1, so F is a Fano manifold of pseudoindex equal to iX with two
extremal rays, one of which is associated with a blow-up with iX-dimensional
nontrivial fibers. Therefore F = BlPiX−2 P2iX−1 by [3, Theorem 1.1]. Then ψ
is a contraction of fiber type with P2iX−1 as general fiber. Therefore X′ =
BlPiX−2 P3iX−1 by [3, Theorem 5.1], so X = BlP2iX−2(BlPiX−2 P3iX−1).

Remark 4.7. For examples of Fano manifolds of pseudoindex iX =
(dimX + 1)/3 = 2 (hence Fano manifolds of dimension 5) we refer to the
classification table in [17, Appendix] and to the examples in [7, Section 3].

Next we consider Fano manifolds with two elementary contractions of fiber
type, one of them being associated with an extremal ray of length greater than
iX.

Example 4.8. Consider X1 = PiX−1 × BlPiX−1 P2iX and X2 = PiX ×
BlPiX−2 P2iX−1. These are Fano manifolds of pseudoindex iX = (dimX +
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1)/3 ≥ 2, Picard number ρX = 3 that admits a blow-up structure with fibers
of dimension equal to iX and two elementary contractions of fiber type, one of
which being associated with an extremal ray of length greater than iX.

Remark 4.9. Notice that, in view of [16, Propositions 5.2 and 5.4], the
varieties in Example 4.8 are the only Fano manifolds of pseudoindex equal to
(dimX + 1)/3 ≥ 2, Picard number ρX = 3 that admit a blow-up structure
with fibers of dimension equal to iX and two elementary contractions of fiber
type, one of them being associated with an extremal ray of length greater than
iX.

Notice also that, if the extremal ray of length greater than iX isRσ , we have
X = PiX−1 × BlPiX−2 P2iX by Proposition 4.4.

An example in which all the extremal rays of X have length equal to iX is
the following:

Example 4.10. Consider X = QiX × BlPiX−2 P2iX−1. These is a Fano man-
ifolds of pseudoindex iX = (dimX + 1)/3 ≥ 2, Picard number ρX = 3 that
admits a blow-up structure with fibers of dimension equal to iX and two ele-
mentary contractions of fiber type, all of them being associated with extremal
rays of length equal to iX.

Finally, we consider a Fano manifoldX admitting an extremal ray associated
with a smooth blow-up and Picard number ρX ≥ 4.

Example 4.11. ConsiderX = P1 ×P1 ×Blp(P3). This is a Fano manifold
of pseudoindex iX = (dimX + 1)/3 = 2, Picard number ρX = 4 that admits
an extremal ray associated with a blow-up and 3 extremal rays associated with
contractions of fiber type.

Remark 4.12. Notice that, in view of [16, Propositions 4.1 and 5.1], the
variety in Example 4.11 is the only Fano manifold of pseudoindex greater than
or equal to (dimX + 1)/3 ≥ 2, Picard number ρX ≥ 4 that admits a blow-up
structure.
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