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EQUIVALENCE IN OPERATOR ALGEBRAS

RICHARD V.KADISON! and GERT KJARGARD PEDERSEN

1. Introduction.

In [9; Def. 6.1.1] F. J. Murray and J. von Neumann introduce their
well-known notion of “equivalence’ between projections & and F in a
von Neuman algebra #. If E=V*V and F=V V* for some V in £,
they say that ¥ is equivalent to F (and write £ ~ F). Their comparison
theory for projections in #, dimension and additive trace functions, and
type classification is, then, based on this notion.

In this paper, we introduce another equivalence (cf. Definition A),
applicable to all positive operators, and use it to present an alternate
development of the comparison theory, additive trace and type classi-
fication (cf. § 2 and 3). In § 4 we show that two projections ¥ and F
in Z, are equivalent (in the sense of Murray and von Neumann) if =
SA*A,and F=3A4,A4,* with 4; in #. This identifies our equivalence
with that of Murray and von Neumann (and establishes a new property
of Murray—von Neumann equivalence).

Since our equivalence has additivity ‘“built into it”’ (it is the com-
pletely additive extension of Murray—von Neumann equivalence), an
especially smooth comparison, trace and type theory can be developed
using it. One learns, a posteriori (Theorem 4.1), that it coincides with
the Murray—-von Neumann theory. We emphasize that this approach
does mot banish the difficulties from the fundamentals of the subject;
for the identification of the two theories employs the Murray—von
Neumann additive trace. It does, however, provide a quick approach
to an operative theory intermediate between that of Murray and von
Neumann, where the additive trace appears at the end (so to speak),
and that of Dixmier [1], [2], where it is assumed at the outset.

Although the main focus of this paper is on von Neumann algebras,
the present development provides the opportunity to complete one as-
pect of the Kaplansky-Rickart program [7], [8], [12] of “‘algebraization’
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of the theory of von Neumann algebras. We define our equivalence in,
and develop the comparison, trace and type theory for, monotone closed
C*-algebras (see § 2). Basically these algebras and Kaplansky’s 4 W*-
algebras are more ‘‘algebraic’ versions of von Neumann algebras (though
they are both strictly larger classes of C*-algebras). The 4 W*-algebras
are defined in terms of their idempotents and multiplicative properties —
the monotone closed algebras in terms of additional (purely) order-
theoretic properties. Since order properties have come to dominate
detailed studies of (C*-algebras, the monotone closed algebras would
seem to be the natural (current) choice for carrier of an algebraic theory
of von Neumann algebras.

We employ the Dixmier books [1], [2], [3] as standard background
references for C*- and von Neumann algebras.

2. An equivalence relation.

Let A be a monotone closed C*-algebra, that is, a C*-algebra in which
every norm-bounded increasing net of self-adjoint elements has a least
upper bound. We assume that % has a unit, denoted by I (though its
existence is a consequence of the remarks following Proposition 2.7).

For an increasing net {4,} in A, , with Lu.b. 4 in A we write 4, 74
and —A4,\—A. For any net {4;} in %A, we write 4; > 4 if there are
four decreasing nets {4,%} in ¥, , k=0,1,2,3, such that (with ¢=(—1)})

AONAD,  TiEAW = A, SFEA® = 4.

We note that this is meant as a convenient notation; and we do not
assign any topological features to it. If, however, U is a von Neumann
algebra, then 4; > A will, of course, imply that {4,} tends strongly
to A. (It may be the case that the converse statement is valid.)

In the sequel we shall make repeated use of the polarization formula
for the product of S and 7' in U:

*) 4T*8 = 38 _ % (S+i%T)*(S+i*T) .

Lemma 2.1. If A; > A and B; - B, then A;+B; > A+B. If A; > A,
then BA; — BA for any B in U.

Proor. For the first statement, it suffices to prove that if 4,\ 4
and B;\\ B, then 4 + B is the g.Lb. of the net {4;+ B,}. But if S<4;+
By, for all j, then, for each fixed j', we have S < 4;+ B;, for j larger than
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J'- Hence S—B;<A. Since j' is arbitrary, S—A4 < B, whence 4;+ B,\,
A+B.

To prove the second statement, we notice that, from the foregoing,
it is enough to consider the case A4, 4. Looking instead at the net
{4;— A} we may assume 4 =0 (and B self-adjoint). By (*),

4BA; = 4(BAj}) A} = Si*(I+i*B)*A,(I+i*B) .

It follows that it is sufficient to prove that 4,\0 implies C* 4;C\0
for any C in A. If C is unitary, then this holds because unitary trans-
formations are order isomorphisms. In general we have C=33_,a, U,
with U, unitary and g, complex numbers. Appealing to the inequality
T*S +8*T £ 8*S 4+ T*T, we have

C*4,C = (23, U *A})(Sa, 43 Uy) < 43510y Up*4, U, .

Hence C* 4,00, completing the proof.

Lemma 2.2. If A; > A and {4;} is uniformly convergent to B in U
then B=A.

Proor. Since A4;=31*A4,® and 4,0\ A®, we may assume, using
{A;— A} and the nets {4;®— A®}, that A% and 4 are 0. Multiplying
by a suitably small positive constant, we may also assume that ||4,%]| <1
for all j and k. With e positive and j sufficiently large, we have, using
A;=3ikA®, T*8 4+ 8*T <8*S+T*T and Lemma 2.1,

B*B < e+ A*A; £ e+43, 472 < e4+43, 40 \ ¢,
It follows that B*B<¢, hence B=0 (=A4).

The next statement establishes an extended version of the Polar
Decomposition for a monotone closed A. With 4 taken to be (B*B)t,
one arrives (in essence) at the standard Polar Decomposition.

ProposrrioN 2.3. If B*B<A*A, with B and A in U, there is a C tn
A such that B=CA.

Proor. Let C, be B(n—I + A*A)-1A*. From (*) we have
4C, = 33 _ i (A* + ik B*)* (n-[+ A* 4)1(A* +i*B*)
with (n-1I+A*A4)-*B* as T and (n-I+A4*A)-tA* as S.
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Noting that, with [6]=1,
(A+6B)(n1I+A*A)-1(A+ 0B)*|

= |[(n ]+ A*A)F(A*4 + 0A*B+0B*A4 +B*B)(n- + A% A)-}|
(=21 +A* A)-4(A* A+ A* A+ (0B)* 6B+ B*B) (n-1I + A*4)-H|
4|(n I+ A*A)1A4* 4] < 4

A 1IA

(since B¥*B< A* A and |H| < ||K|| if 0< H < K) and that each of the four
summands is increasing with n, there is a C in U such that C, - C.
However, {C,A} converges uniformly to B; for, with H, taken as
I—(nI+4*4)1A*A4,

IB-C,A|? = |BH,|* = |H,B*BH,| < |H,A*AH,|
= |[|H,(4*A)}F - 0
as n — oo, from spectral theory. Thus, from Lemmas 2.1 and 2.2, it
follows that B=CA.
DEerFiNTTION A: For 8 and T in U+ we write S~7T if there is a set of
elements {4,} in U such that
S = ZA,;*A.‘ aand T = zAiA't* .

In other words, S~T if § and T are the l.u.b. for the nets of finite sums
of A;*A;’s and 4;A4,;*’s respectively.

The following result is needed for further study of the relation ~.
It is an adaptation of [10; Prop. 1.1] to the present situation.

ProrosrrioN 2.4. If {A;} and {B;} are sets in A such that

zAiA‘i* = sz*Bj € 2[‘*. Ky
then there is a set {Cy;} in U such that
Ai*A'i = chzoﬁ a;nd .BjB"* = ZiC,-jC; .

Proor. Let 8 be SA4,4.* (=3 B;*B;) and O} be B;(n-I+8)t4,.

Note that, for each 7" in ¥,

BT AP = IB,TA,A*T*B| < |[B,T ST*B*| = |IB,T 82
= ||S+T* B;* B,T 8H|| < ||ST* ST SH| = ||StT' SH2 .
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Thus
[CP—CPl = |SH[(n U +8)~F — (m~T +8)-¥]8%| .

The operators (n-1I +S)-#S lie in the C*-algebra (commutative) gener-
ated by I and 8, and are represented (through the Spectral Theorem)
by functions, on the spectrum of S, which are monotone increasing
(with n) and tend pointwise to the function representing St. From
Dini’s Theorem (n1I +8)-*8 tends uniformly (with =) to St.

Hence {C{P} is Cauchy convergent (in norm) to some C; in . As
A;A*<8 and B*B; <8, there are (; and H; in U such that 4,=8tG;
and B;=H ;8% (from Proposition 2.3). Then

C’g!) = Hyjn14+8)-18G;,
which tends uniformly to H;S8*@,. Thus Cy;=H;A4,;=B;G,, and
‘A"i*A‘i = Gi*SG't = G-i*(sz*Bj)Gi = Zj C%‘C't, y
.B’-.B’-* = H’-S.Hj* == Hj(zAiAt*)Hj* = 210,510:; .

The foregoing proof produces the C;; for all C*-algebras; so that the
assertion of 2.4 is valid when, for example, the convergences are uniform.
It is valid, as well, for concretely represented C*-algebras when the
convergence is strong and the sums lie in the algebra. For the case of

monotone closed C*-algebras, alone, the last paragraph of the proof
would suffice.

THEOREM 2.5. The relation = is an equivalence relation in A+ which is
completely additive, in the sense that 3 8;~3T; when these sums exist and
8;~T,.

Proor. The complete additivity is clear. To prove the transitivity,
we assume S~T and T~R, hence
S = ZA‘i*Ai’ T = zAiA{* = sz*Bj, R = sz.Bj* .

Using Proposition 2.4 on the equality 3 4,4,*=3 B;* B; we immediately
get S~R.

The next proposition shows that the equivalence classes satisfy a
strong Riesz Decomposition property.

ProrosrrioN 2.6. If {S;} and {T';} are sets in A+ such that 3.8; and

Math. 8cand. 27 - 14
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2T, are in A+ with 38;~3T;, then there is a set {R;} in A+ such that
SiNZj'R‘ij and Tj =Ei'R’t7"

Proor. By assumption we have 38;=34,*4, and 3ST;=3 4, 4,*.
Using Proposition 2.4 on the first equality we get a set {B;,} in ¥ such
that

8; = 5 BBy and A Ay* = 3By Bj,.

Since 3, By B, =3;T;, we can find a set {C;;} in U such that
BEBy = 3;C5Cip and  T; = 33,04,CF .

The elements (R;;=) 3,0y, C; have the desired properties.

DEermntTiON B, For § and 7 in A+, we write ST if there is an R
in A+ with S~R<T.

Note that £ is a partial ordering of the equivalence classes of A+;
for if S~T, 2T and T~R,< R, using Proposition 2.6,

T = T1+T2NR0=.R1+R2
with T, ~R;. Thus S~R,<R.

Prorosrrion 2.7. If ST and T £S, then S~T.

Proor. Since ST, there is a set {4;} in A with §=34,*4,; and
SA;A*<T. By Proposition 2.3 each 4; has the form V8% for some
V,in %A. For any R in A+ dominated by 8, we define ¢ by:

o(R) = SV, RV* (s3XV,SV*=34,4.%).

Then ¢ is an order preserving affine map into the set of elements of %A+
dominated by 7'. Since Rt is G St for some @ in U (by Proposition 2.3),
we have

SRIV*V,RY = 3QStV*V,StG* = GSG* = R,

while 3 V,R¥R¥V *=¢(R). Thus ¢(R)~R.

Since T'SS, from the foregoing, there is an order and equivalence
preserving affine map y from the elements in %+ dominated by 7' into
those dominated by 8. If

SO = 8, Sl = ’P(T) ’
SZn = (wq))"(S), Szn-l-l = ('P‘P)n(‘gl) s
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then {8, } is a decreasing sequence. Hence S, \(S,, in A+. We have

8 = zooo(Szn'—S2n+l) + Elw(SZn—l_SZn) + Soo ’
8; = 3% (8gn—San+1) + 21°(Ssp—1—S2,) + S -

Since pe(Ss, —S2nt1) =S2nte—S2ntz and ype(R)~R, we conclude that
S~8; (=T).

If 0<f,@t) 71 for 0<t<1, £,(0)=0, and f, is continuous and 0SS <71
with S in %, then (£, (8)) is increasing and bounded by I. Thus f,(S) 7[S].
We refer to [S] as range projection of S. From the Spectral Theorem and
Dini’s Theorem, f,(S)f.(S) is increasing and tends in norm to f,(S),
as n — co. From Lemmas 2.1 and 2.2, [S]f,.(S)=f.(S). Thus [S]2=[S];
and [8] is a projection. Similarly [§]8=8. If 4A8=0, then Af,(S)=0
for all » since f,(S) is a uniform limit of polynomials in § without con-
stant term; so that A[S]=0.

For arbitrary 4 in A, we take the range projection [4] of 4 to be
that of (44*)}||A||-t. From Proposition 2.3, 4=(4A4*)V, for some V
in U; so that [A]A=A4. If GA=A, for some projection @ in ¥, then
(I-@)(AA*)}E=0; and (I-G)[A4]=0. Hence [A] can be characterized
as the smallest projection in YU such that [4]4 =4 ; and is independent
of the sequence (f,) used.

Having ‘“‘range projections’ in %, the techniques of [7], [12] produce
“‘spectral resolutions” for self-adjoint elements of 9. In particular, each
such element is the norm limit of finite linear combinations of (mutually-
orthogonal, spectral) projections in 9.

If £ and F are projections in 9, we denote [E+F] by EvF. Now,
if K and H in U are such that 0K <H, then [H]Ki=[H]H}V =
HiV =K%, from Proposition 2.3; so that [H]K=K. Thus EvF domi-
nates both £ and F. On the other hand, if the projection @ in Y domi-
nates both F and F, then G(E+F)=E+F; so that EvF<@. Thus
EvF is the smallest projection in 9 dominating E and F. Since ¥ is
monotone closed, each family {E;} of projections in 9 gives rise to a
smallest projection \/,E’j dominating all E; — the l.u.b. of the mono-
tone net of finite unions of projections in {E,}.

DermNtTioN C. The central carrier C, of an operator 4 in %A+ is the
projection \/ {U*[4]U | U unitary in %}.

Since the family {U*[A]U | U unitary in %} is a family of projec-
tions invariant under the automorphisms G — U*GU of the lattice of
projections in 9, their Lu.b. €4 in this lattice is invariant under these
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automorphisms. Thus, since the unitary operators in % generate A
(linearly), C 4 lies in the center € of A. As C,[A]=[A] and each central
projection which dominates [4] must dominate U*[A]U, for every
unitary U in %, C, is the smallest central projection such that C 4 = 4.

Lemma 2.8. If E is a projection in U, €F 1is the center of EAE and
CE — CCyg is a normal isomorphism of €E onto €Cyg.

ProoF. As (*-) isomorphisms between C*-algebras are order isomor-
phisms, an isomorphism of one monotone closed algebra onto another
is normal. Since EAE and ACy are monotone closed, their centers are
monotone closed (Lemma 2.1). It suffices to observe that ¥F and ¥Cy
are the centers of EAE and ACy respectively, and are isomorphic.

With C in €, if CE=0, then CU*E U =0, for each unitary U in ¥;
so that CCgz=0 (of course, CE=CCxrE=0, if CCp=0). Thus CE -
CCyg is an isomorphism of €F onto €Cy.

To show that € is the center of EUE (and, by replacing & with Cf,
that €Cy is the center of ACy), we shall make use of the fact that if 4
and B in A+ are such that a projection N in U dominates [EAE] and
[EBE], then N dominates E[4 + B]E. Multiplying by a suitable positive
scalar, it will suffice to establish this when 4+ B<1. As

0<(A4+Br<A4+B=1,
for each positive integer n, and
NE(A+B)EN = E(A+B)E ,

N dominates E(A+B)*E. Thus N dominates each Ef, (4+B)E, as
well as E[A + B]E, where f,(t) may be taken as 1—(1—¢)" for present
purposes (cf. remarks following Proposition 2.7).

With N a projection in the center of EAE, N <CyE. On the other
hand, Cy is the L.u.b. of

{[..-[[U*NU+U*NU]+Ug*NUg]+...+U*NU,] | U,,...,U,
unitary in %} .

Successive application of the foregoing observation shows that N domi-
nates

E[...[[UFNU+U*NU+ U NU]+... +U,*NU,]E,

when we note that
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EU*NUE = EU*ENEUE = NEU*EUEN £ N,

for each unitary U in . Thus ECyE=CyE<N; and CyE=N. Using
spectral resolutions, each element of the center of ZUZ has the form
CE, with C in €, completing the proof.

With ST and C in ¥+, CS LOT'; so that CS=0 if T =0. A version
of the Comparison Theorem (see [1; Lemme 1, p. 227]) for monotone
closed algebras follows.

Prorosirion 2.9. With S and T in U+, there is a central projection P
such that PT L PS and (I-P)SL(I—P)T.

Proor. Let &% be the family of sets of triples {a, S,,T,), where a is
an ordinal, 8, and 7', are non-zero elements of A+ such that

S, ~T, 3I,8,=8, 3XT,=T,

and the ordinals @ appearing in a set in % form an initial segment of
ordinals (if <@ and a appears then b appears). Note that the ordinals
occurring in a set in & do not exceed the cardinal of ¥; for 3,8,<8
and each 8§, is non-zero, so that at most a finite number of S, are equal
to a given element of .

Zorn’s Lemma applies, now, to the sets in &, partially ordered by
inclusion, to yield a maximal set (element) ¥ (={{a,8,,T,)}) in Z.
Let S, and Ty be §—3X 8, and T'—-3T,, respectively. Note that, with
4] small,

B*B <8, and BB*=T,,

where B=T}AS}t. Adjoining {a,, B*B,BB*) to &,, where a, is the
first ordinal not occurring in the triples of %, contradicts the maximality
of &, unless B=0. Thus 7,48,=0 for each 4 in A, and 7T, A[S,]=0.
Since T U*[S,]U=0, for each unitary U in A, T(Cg,=0.
Let P be Cg,. Then
0=Pl'y=Pr-3pPT,,
0 = (I-P)8, = (I-P)S—3(I-P)S,,
PT =3PT,~ 3PS, = PS,
I-P)S =3(I-P)S, ~3(I-P)T, = I-P)T,

completing the proof.
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3. Equivalence in semi-finite algebras.
Throughout this section ¥ is a monotone closed C*-algebra.

DrrintTION D. An element § in A+ is said to be finite if T<8 and
T ~§8 implies T'=8. When I is finite, we say that % is finite.

THEOREM 3.1. The finite elements of N+ form a subcone invariant under
equivalence. Moreover if S is finite and T &S, then T is finite.

Proor. If § is finite and 7'~8 then 7 is finite. If namely R <7 and
R~T then R+ (T — R)~8. Hence by Proposition 2.6, we have S=; + 8,
with S;~R, S;~T—R. Since §,<8 and S,~8, we conclude that
8,;=8 and 8,=0. Hence T'=R.

If S is finite and 7'< 8, then T is finite since R <7 and R~T implies
R+(8—-T)<8 and R+ (S—T)~S, hence R=T.

If § is finite, then a8 is finite with ¢ > 0; and, more generally, A8 is
finite for each 4 in A+ commuting with 8, since | 4|24 8 =<8.

If 8 and T are both finite, then with P a central projection chosen as
in Proposition 2.9, we have

P(S+T) 5 2PS and (I-P)S+T) 5 2(-P)T.

Since 2PS and 2(I —P)T are finite, we have proved that P(S+7) and
(I—P)(S+T) are finite. However, these elements are centrally orthog-
onal. Hence their sum S+ 7 is also finite.

Lemma 3.2. If R in A+ is finite and S and T are equivalent elements
magjorized by R, then R—S~R-T.

Proor. By Proposition 2.9 it suffices to consider the case R—S=~
G=R-T.
Then R=(R—-S)+S~G+T<R. Hence G+T=R and R—S~R-T.

Lemma 3.3. If S, /S, T, /T and 8, ~T,, with all S,, finite, then S~T.

Proor. With 4,,=8,,—-8,,_; and B,=T,—-T,_, we have 4,+8, ;~
B,+T, ~B,+8,_;. Using 4,+B,+8,_; as R in Lemma 3.2 and
A,+8,_4, B,+8,_; in place of S and 7T, we conclude that 4,~B,.
It follows that S=34,~3B,=T (where §,=T,=0).

Prorosrrion 3.4. If E and F are finite projections in U then EvF is
finate.
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Proor. Let G, be (0~ +E + F)-1, so that G, (E+F) "EvF, from the
remarks following Proposition 2.7. Then 8,~T,, where

8, = Q. (E+F) (=G EQ}+Q FG}) and T,=EG,E+FG.F.

The sequence {7',} is increasing. Since &, is dominated by both
(n~I+ E)-! and (n-I+ F)-1 (cf. [3; 1.6.8, p. 15]),

T,/T < E+F.
As E+7F is finite (Theorem 3.1),
EvF~T<E+F

(Lemma 3.3); so that Ev.F is finite.

THEOREM 3.5. If U is finite then every element in A+ i8 equivalent to a
unique central element.

Proor. If C, and C, are in ¥+ with C, £C,, then with P the range
projection of (Cy—C,),, we have PC,<PC,LPC,. Hence PC,=PC,
and thus C; £C,. It follows, in particular, that equivalent central ele-
ments are equal (in a finite % — though the same is true of central
projections without a ‘““finiteness’ restriction), which proves the unique-
ness part of the theorem.

For 8 in A+, if C in €+ is such that C LS, then C ||S|II. Hence ||C|| S
[IS|l. As in the proof of Proposition 2.9, there is a set {C,} in €+ such
that 3C,<S, and such that if C+3C,<S with C in €+, then C=0.
Thus, with 3C,~8—8, we can’t have ¢P L PS, for a positive ¢ and a
non-zero central projection P. By comparison (Proposition 2.9), S, 5l
(for each positive ). We can therefore find 8, in %+ such that S,~8,
and §,<2-"I. But this gives

ESn ~ 28211. é ESn *
Hence 8,,=0 for all n, and so S;=0, completing the proof.

The following theorems are best expressed in terms of a larger algebra
which we shall describe below.

Let % be the set of formal sums of the form A=3P,4,, where
A, €% and {P,} is a sequence of projections in ¥ with I P,=1. We
identify elements A=3A4,P, and B=3B,Q, for which P,Q,4,=
P,Q,.B,, for all n and m. For any finite number of elements from ¥,
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we can then always arrange a representation with the same central
projections. With the obvious definitions

A+B =3P, (A,+B,) and AB=3P,A,B,,

we see that I becomes an algebra — the algebra of centrally unbounded
elements on 9.
We define
Az0 if P,A,20foralln;

A~B if P,A,~P,B, forall n;

and we say that A4 is finite if all P, 4, are finite.

DerintTION E. A monotone closed C*-algebra U is semi-finite if each
non-zero element of Y+ dominates some non-zero finite element. It is
of type III if it has no non-zero finite elements.

THEOREM 3.6. Each monotone closed C*-algebra W contains a central
projection P such that P is semi-finite and (I — P)U i3 of type I11. There
18 a finite projection E with central carrier P.

Proor. Since U*[A]U=[U*A U] for unitary U in 9, the union P of
the range projections of finite elements is central. If 4 in P9+ is non-
zero, A[B]#0 for some finite B, since 0+4 =AP. Thus

0+ A*BAY < ||B||4;
and
AtBAY ~ BtABt £ ||A||B.

From Theorem 3.1, At B At is finite, and P is semi-finite. By construc-
tion of P, (I — P)¥ contains no non-zero finite elements; that is, (I — P)%A
is of type III.

For the second assertion let {£;} be a family of finite projections in
PY maximal with the property that {C’E’.} is an orthogonal family.
Then P—ZOEf (=Q) dominates no finite projection other than O.
Using spectral projections and Theorem 3.1, @ dominates no non-zero
finite element. Since P is semi-finite, @=0. Thus Cy=P, where
E=3E;; and E is finite (for if F<Z and F~F, then C’EiFéE, and
Cg F~Ey; so that Cg F=E; and F=E).

If U is semi-finite and Cp =1 with E a finite projection in YU (as above),
C - CE is a normal isomorphism of the center € of % onto the center
€y of EAE.
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Taeorem 3.7. If U is semi-finite and E is a finite projection with
central carrier I, then any finite element in Y+ is equivalent to a unique
element in @yt.

Proor. If §=3P, S, and P, 8,~C,E for all n, then C=3P,C,c%+
and S~CE. It follows that it is enough to prove the theorem for any
finite S in A+,

For each n there is (by Proposition 2.9) a maximal central projection
Q, such that Q,S~8,<n@,E. The sequence {@,} is increasing hence
@./@Q. For each £¢>0 we have (I -Q)E $e(I—@Q)8S. Arguing as in the
proof of Theorem 3.5, (I —Q)E =0, since S is finite. Thus @=I1. Now
8,=nQ,E; and, since EUAE is finite, we have 8, ~C,E, from Theorem
3.5. Letting P, be Q,—Q,_,, we have C (=3 P,C,) in €+ and S~CE.

DEriNiTiON F. A center-valued trace on U is a completely additive
map @ from the finite elements in I+ onto &+, for which &(S)=d(T)
iff SA&T and such that @&(CS)=C®(S) for each finite § in I+ and each
C in @+

THEOREM 3.8. Each monotone closed, semi-finite C*-algebra W admits a
center-valued trace @. Every other center-valued trace on U is of the form
S — &(C8) with C invertible in G+. If A is finite, then there is a unique
normalized (D(I)=1I) center-valued trace on .

Proor. Let E be a finite projection in 9 with central carrier I. Em-
ploying Theorem 3.7, define @(S) to be C, for each finite S in A+, where
C e %+ and S~CE. Since €5 and ¥ are normally isomorphic (Lemma
2.8), @ is a center-valued trace on .

If ¥ is another center-valued trace, then C'=¥(E) has no central
zero-divisors; for if CC=0, then ¥Y(CE)=0, so that CE=0 and C=0.
For each n, let @, be the maximal central projection such that @, =<
nQ,C. Then {@,} is increasing. Since C has no zero-divisors, @, 7I.
Since each @,,C is invertible in @,%, C is invertible in &, with

C-1= Z(Qn_Qn—l)(Qna)_l .
For each finite S in A+ we have S~®P(S)E. Hence
W(S) = Y(DE)E) = O(F) P(E) = H(CF) .

If A is finite, then the construction of @ with £ =1 yields the normal-
ized center-valued trace, completing the proof.
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THEOREM 3.9. If the center € of a monotone closed semi-finite C*-algebra
A i3 @ von Neumann algebra, then U itself is a von Neumann algebra.

Proor. From [5; Theorem 1] it suffices to exhibit a separating family
of normal functionals on Y. By hypothesis, there is a separating family
& of functionals on . For each non-zero S in A+, there is a finite pro-
jection E in Y such that ES+0. Without loss of generality, we may
assume that E has central carrier I. Let @ be the center-valued trace
on A for which @(E)=1I (Theorem 3.8). Then

ST = ||S|P(E) = O(ESE) + 0

and P(ESE)e¢+. By assumption there is an » in & such that
o(D(ESE))+0. We define a normal functional ¢ on U by letting ¢(T)
be o(D(ETE)). Since ¢(S)=+0, the theorem follows.

See [4] for the corresponding result in finite 4 W* algebras.

CorOLLARY 3.10. If a monotone closed, semi-finite C*-algebra is a fac-
tor, then it is a von Neumann algebra.

4. Equivalence of equivalences.

The equivalence relation s introduced in § 2 (cf. Definition A) coin-
cides with the Murray-von Neumann equivalence relation ~ [9; Def.
6.1.1] when restricted to the set of projections in a von Neumann alge-
bra. This fact is the substance of the theorem which follows. Through-
out the proof of that theorem, the use of terms such as “finite”” and
“infinite”” will refer to their meanings in the theory of von Neumann
algebras (as opposed to their definitions in terms of as). The theorem
will establish that the two senses of these terms are the same when applied
to von Neumann algebras.

TaeEOREM 4.1. If {4, | i in £} is a family of operators in the von Neu-
mann algebra # and E=3A*A,;, F=3YA,A* with E and F projections,
then E~F.

Proor. If P is a central projection in %, then PE=3(PA,)*PA,
and PF=3PA,(PA,)*. Thus PE and PF are related in #ZP as are E
and F in &#. If we show that PE ~ PF for each central projection P
belonging to a family with union I, then E~F. Using cyclic central
projections in place of P, we may assume that the center of £ is count-
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ably decomposable. With Cy the central carrier of E in %, (I —Cg)E,
and hence, (I —Cg)4; is 0 for all s. Thus (I —-Cg)F=0; and Czr=Cp.
Restricting to this common central carrier, we may assume that Cp=
Cp=I1. We may also deal separately with the cases where E is finite
and where PF is infinite for each non-zero central projection P (con-
tained in C'g, that is, where F is “purely infinite”).

Suppose, first, that F is finite. Since Cp=1I, # is semi-finite [1;
Prop. 8, p. 97; Prop. 8, p. 245] and admits a normal, faithful, semi-finite
trace ¢ [1; Prop. 9, p. 98]. Let .# be the two-sided ideal in # on the
positive elements of which ¢ is finite [1; Prop. 1, p. 80]. If PE is in .#
for some central projection P, then (PA4;)*P 4, is in #, for each ¢, since
0= (PA,)*PA,<PE and PE(PA,)*PA;=(PA,)*PA,. As PE and PF
are the least upper bounds of the increasing nets of finite sums of
(PA,)*(PA;) and PA,(PA,)*, respectively, ¢ is finitely additive and
normal, and

<P((PAi)*PAi) = ‘P(PAt(PAi)*)

[1; Cor. 1, p. 81], we conclude that ¢(PE)=¢(PF). Since PyE and
P, F satisfy the same hypothesis, p(P,E)=¢(P,F) for each central sub-
projection P, of P. Choosing P, such that, say, P,E-<P,F, we have
that Py E ~ F, for some subprojection F, of PyF. Thus ¢(PyE)=¢(F,);
and (P, F—Fy)=0. Since ¢ is faithful, PF =1F; so that PjE~P,F.
It follows from the Comparison Theorem [1; Theorem 1, p. 228] that
PE~PF.

To complete the proof that E ~F, under the assumption that Z is
finite, we produce a family of central projections {P;} such that P;E
is in 4 for all j, and such that ¥ P;=1. From the foregoing, then,
P,E~P;F; so that E~F. Toward this end, let {P;} be a maximal
orthogonal family of projections such that P;E e #. If I-3P; (=P)
is non-zero, then PE is non-zero as Cp=1. Since ¥ is finite we see from
[1; Cor. 1, p. 318] that EZE is a finite algebra [1; Def. 1, p. 241]. The
restriction of ¢ to EZE being semi-finite, there is [1; Prop. 10, p. 99]
a non-zero element 7 in the center of EZE such that T<PE and T € A.
With € the center of #, €E is the center of EZE. Hence a multiple of T'
majorizes a non-zero spectral projection of 7', of the form QF with @
in ¢. But QF in # contradicts the maximality of {P;}. It follows that
>P;=1I; and {P;} has the desired properties.

We suppose, now, that E is purely infinite. Then F is purely infinite,
for if PF is finite, PE is finite, from the foregoing. If E (or F) is count-
ably decomposable, then, since Cz=Cjy, we have E~F [6; Cor. 5, p.
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320]. In the general case we must, however, appeal to a finer classifica-
tion of infinite projections.

Assume that £ and F are not equivalent. Since E and F satisfy the
same hypotheses, we may suppose, without loss of generality, that
QoE <Q,F for each non-zero central subprojection @, of some non-zero
central projection ¢ (employing the Comparison Theorem). Restricting
attention to #¢, we may assume that PE <PF for each non-zero cen-
tral projection P.

With € the center of #,%E is the center of EZE. Since Cx=1, the
mapping C - CE of € onto ¥F is an isomorphism. From [6; Lemma
4.1.3], there is a (unique) family {P,E} of central projections in EZE
such that either P,=0 or EZEP, has coupling character ¢, and 3 P,=1.
Restricting attention to #P,, for some non-zero P,, we may assume
that EZE has coupling character e. Since cyclic projections in EZE
(cyclic under #'E) are cyclic subprojections of Z, K is the sum of a
family {M,} of equivalent, orthogonal, cyclic projections. The family
{M,} has cardinality e, and no such family with smaller cardinality has
sum E. As F is purely infinite, a maximal cyclic projection in EZE is
maximal cyclic in # [6; Remarks on p. 340, Lemmas 3.3.3-3.3.6]; so
that the projections M; may be chosen maximal cyclic in £ [6; Lemma
4.1.4]. Applying these considerations to FZF and restricting to one of
the central projections in £ arising from the coupling character decom-
position of FZF (as we did with P,), we may assume that F is the sum
of an orthogonal family {N,} of maximal cyclic projections. Since
maximal cyclic projections are equivalent [6; p. 340], equivalence of
projections is additive on orthogonal families [1; p.225, last paragraph],
and E<F, we have that e <f, where f is the cardinality of {N,}.

Suppose £ = \/G’h, where @G, is a cyclic projection in #Z with generating
vector z,. If A;x,=0, then 4;4'x,=0, for each 4’ in #’'; so that
A;G,=0. Since

0+ A, = 4,E =4,V6,)

(recall, 0<A4,*4;<E; so that A4,* has range projection E; majorized
by E, from which, BA*=A4;*), 4,6, 0 for some h. However, the set
#, of such ¢ is countable; since

| Bpl? = (Bay,2n) = ZillAenl® -
Since # =\/.#, and each .#, is countable, b<a X,, where # has cardi-

nality b and {@,} has cardinality a. If X,<a, then b<a.
Applying this conclusion to the case where {4,} is an orthogonal
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family of projections (so that 3 A4,* A, is a projection, and, in particular,
converges) and a=R,, we see that b <R,. We conclude that a projection
which is a countable union of cyclic projections is countably decompos-
able.

Replacing {G},} by {M,}, above, we see that b <e R,. If x; is a generat-
ing vector for M;, then Exx; generates a subprojection E;; of E;. If x
is a vector in the range of E; for which E;x=0 for all j; then 0=
(A’ E;x;,x)=(E;A'x;,x), for each A’ in #'. Thus M;x=0, for all j; and

*=FKx=Exr=3IMx=0.

It follows that each E,; is the union of e cyclic projections E,; (some,
possibly, 0). Since 0= 4,4,*<F, the range projection F; of 4, is a sub-
projection of F. From [1; Prop. 2, p. 226], E;~F;; so that each F; is
the union of e cyclic projections. Now, E=\/E; and F=\/F,, since
E=3A*A;and F=3A,;A4;*. Thus F is the union of b e cyclic projec-
tions. As F=3N, and {N,} has cardinality f, replacing {4;} by {NV.},
above, we have that f<be®,. Moreover b<e R, as noted; so that
fse2r2 If eis finite and f<X,, F is a countable union of cyclic pro-
jections, and F as well as E are countably decomposable. Since Oy =
Cr=1I and both E and F are purely infinite and countably decompos-
able, E ~ F, from [6; Lemma 3.3.3]. If ¢ is infinite, €2 X 2=e¢; and f=<e.
In either case, e finite or infinite, we contradict our initial arrangement
E<F; and E~F completing the proof of Theorem 4.1.

REFERENCES

1. J.Dixmier, Les algébres d’opérateurs dans Uespace hilbertien (Cahiers Scientifiques 25),
Gauthier—Villars, Paris, 1957.
2. J.Dixmier, Les algébres d’operateurs dans Uespace hilbertien (Cahiers Scientifiques 25),
2e édition, Gauthier-Villars, Paris, 1969.
3. J.Dixmier, Les O*-algébres et leurs représentations (Cahiers Scientifiques 29), Gauthier—
Villars, Paris, 1964.
. J. Feldman, Embedding of AW*-algebras, Duke Math. J. 23 (1956), 303-308.
. R. V. Kadison, Operator algebras with a faithful, weakly-closed repr tation, Ann. of
Math. 64 (1956), 175-181.
6. R. V. Kadison, Unitary tnvariants for representations of operator algebras, Ann. of
Math. 66 (1957), 304-379.
. 1. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.
. I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.
. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936),
116-229.
10. G. Kjergard Pedersen, Measure theory for C*-algebras III, Math. Scand. 25 (1969),
71-93.

o

© w3



222 EQUIVALENCE IN OPERATOR ALGEBRAS

11. G. Kjergird Pedersen and N. H. Petersen, Ideals tn a C*-algebra, Math. Scand.
27 (1970), 193-204.

12. C. E. Rickart, Banach algebras with an adjoint operation, Ann. of Math. 47 (1946),
528-549.

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA, U.8.A.

AND

UNIVERSITY OF COPENHAGEN
COPENHAGEN, DENMARK



