EQUIVALENCE IN OPERATOR ALGEBRAS

RICHARD V. KADISON1 and GERT KJÆRGAARD PEDERSEN

1. Introduction.

In [9; Def. 6.1.1] F. J. Murray and J. von Neumann introduce their well-known notion of “equivalence” between projections E and F in a von Neuman algebra $𝒜$. If $E = V^*V$ and $F = VV^*$ for some V in $𝒜$, they say that E is equivalent to F (and write $E \sim F$). Their comparison theory for projections in $𝒜$, dimension and additive trace functions, and type classification is, then, based on this notion.

In this paper, we introduce another equivalence (cf. Definition A), applicable to all positive operators, and use it to present an alternate development of the comparison theory, additive trace and type classification (cf. § 2 and 3). In § 4 we show that two projections E and F in $𝒜$, are equivalent (in the sense of Murray and von Neumann) if $E = \sum A_i^*A_i$ and $F = \sum A_iA_i^*$, with A_i in $𝒜$. This identifies our equivalence with that of Murray and von Neumann (and establishes a new property of Murray–von Neumann equivalence).

Since our equivalence has additivity “built into it” (it is the completely additive extension of Murray–von Neumann equivalence), an especially smooth comparison, trace and type theory can be developed using it. One learns, a posteriori (Theorem 4.1), that it coincides with the Murray–von Neumann theory. We emphasize that this approach does not banish the difficulties from the fundamentals of the subject; for the identification of the two theories employs the Murray–von Neumann additive trace. It does, however, provide a quick approach to an operative theory intermediate between that of Murray and von Neumann, where the additive trace appears at the end (so to speak), and that of Dixmier [1], [2], where it is assumed at the outset.

Although the main focus of this paper is on von Neumann algebras, the present development provides the opportunity to complete one aspect of the Kaplansky–Rickart program [7], [8], [12] of “algebraization”

1 Guggenheim Fellow. Research completed with partial support of the U.S. National Science Foundation.
of the theory of von Neumann algebras. We define our equivalence in, and develop the comparison, trace and type theory for, monotone closed C^*-algebras (see § 2). Basically these algebras and Kaplansky’s AW^*-algebras are more “algebraic” versions of von Neumann algebras (though they are both strictly larger classes of C^*-algebras). The AW^*-algebras are defined in terms of their idempotents and multiplicative properties—the monotone closed algebras in terms of additional (purely) order-theoretic properties. Since order properties have come to dominate detailed studies of C^*-algebras, the monotone closed algebras would seem to be the natural (current) choice for carrier of an algebraic theory of von Neumann algebras.

We employ the Dixmier books [1], [2], [3] as standard background references for C^*- and von Neumann algebras.

2. An equivalence relation.

Let \mathcal{A} be a monotone closed C^*-algebra, that is, a C^*-algebra in which every norm-bounded increasing net of self-adjoint elements has a least upper bound. We assume that \mathcal{A} has a unit, denoted by I (though its existence is a consequence of the remarks following Proposition 2.7).

For an increasing net $\{A_j\}$ in $\mathcal{A}_{s.a.}$ with l.u.b. A in \mathcal{A} we write $A_j \nearrow A$ and $-A_j \searrow -A$. For any net $\{A_j\}$ in \mathcal{A}, we write $A_j \rightarrow A$ if there are four decreasing nets $\{A_j^{(k)}\}$ in $\mathcal{A}_{s.a.}$, $k = 0, 1, 2, 3$, such that (with $i = (-1)^t$)

$$A_j^{(k)} \searrow A^{(k)}, \quad \sum i^k A_j^{(k)} = A_j, \quad \sum i^k A^{(k)} = A.$$

We note that this is meant as a convenient notation; and we do not assign any topological features to it. If, however, \mathcal{A} is a von Neumann algebra, then $A_j \rightarrow A$ will, of course, imply that $\{A_j\}$ tends strongly to A. (It may be the case that the converse statement is valid.)

In the sequel we shall make repeated use of the polarization formula for the product of S and T in \mathcal{A}:

$$4{T^*S} = \sum_{k=0}^8 i^k (S + i^k T)^* (S + i^k T).$$ (*)

Lemma 2.1. If $A_j \rightarrow A$ and $B_j \rightarrow B$, then $A_j + B_j \rightarrow A + B$. If $A_j \rightarrow A$, then $BA_j \rightarrow BA$ for any B in \mathcal{A}.

Proof. For the first statement, it suffices to prove that if $A_j \searrow A$ and $B_j \searrow B$, then $A + B$ is the g.l.b. of the net $\{A_j + B_j\}$. But if $S \leq A_j + B_j$ for all j, then, for each fixed j', we have $S \leq A_j + B_{j'}$ for j larger than
j'. Hence $S - B_{j'} \leq A$. Since j' is arbitrary, $S - A \leq B$, whence $A_j + B_j \subseteq A + B$.

To prove the second statement, we notice that, from the foregoing, it is enough to consider the case $A_j \subseteq A$. Looking instead at the net \{A_j - A\} we may assume $A = 0$ (and B self-adjoint). By (*),

$$4BA_j = 4(BA_j^*)A_j^* = \sum i^k(I + i^k B)^*A_j^*(I + i^k B).$$

It follows that it is sufficient to prove that $A_j \subseteq 0$ implies $C^*A_j C \subseteq 0$ for any C in \mathcal{A}. If C is unitary, then this holds because unitary transformations are order isomorphisms. In general we have $C = \sum_{k=0}^{\infty} a_k U_k$ with U_k unitary and a_k complex numbers. Appealing to the inequality $T^*S + S^*T \leq S^*S + T^*T$, we have

$$C^*A_j C = (\sum a_k U_k^* A_j)(\sum a_k A_j U_k) \leq 4 \sum |a_k|^2 U_k^*A_j U_k.$$

Hence $C^*A_j C \subseteq 0$, completing the proof.

Lemma 2.2. If $A_j \to A$ and \{A_j\} is uniformly convergent to B in \mathcal{A} then $B = A$.

Proof. Since $A_j = \sum i^k A_j^{(k)}$ and $A_j^{(k)} \subseteq A^{(k)}$, we may assume, using \{A_j - A\} and the nets \{A_j^{(k)} - A^{(k)}\}, that $A^{(k)}$ and A are 0. Multiplying by a suitably small positive constant, we may also assume that $\|A_j^{(k)}\| \leq 1$ for all j and k. With ε positive and j sufficiently large, we have, using $A_j = \sum i^k A_j^{(k)}$, $T^*S + S^*T \leq S^*S + T^*T$ and Lemma 2.1,

$$B^*B \leq \varepsilon + A_j^*A_j \leq \varepsilon + 4 \sum |A_j^{(k)}|^2 \leq \varepsilon + 4 \sum |A_j^{(k)}| \leq \varepsilon.$$

It follows that $B^*B \leq \varepsilon$, hence $B = 0$ ($= A$).

The next statement establishes an extended version of the Polar Decomposition for a monotone closed \mathcal{A}. With A taken to be $(B^*B)^{1/2}$, one arrives (in essence) at the standard Polar Decomposition.

Proposition 2.3. If $B^*B \leq A^*A$, with B and A in \mathcal{A}, there is a C in \mathcal{A} such that $B = CA$.

Proof. Let C_n be $B(n^{-1}I + A^*A)^{-1} A^*$. From (*) we have

$$4C_n = \sum_{k=0}^{\infty} i^k(A^* + i^k B^*)^*(n^{-1}I + A^*A)^{-1}(A^* + i^k B^*)$$

with $(n^{-1}I + A^*A)^{-1} B^*$ as T and $(n^{-1}I + A^*A)^{-1} A^*$ as S.

Noting that, with $|\theta| = 1$,

\[
\|(A + \theta B)(n^{-1}I + A^*A)^{-1}(A + \theta B)^*\| \\
= \|(n^{-1}I + A^*A)^{-1}(A\theta A^*B + \theta B^*A + B^*B)(n^{-1}I + A^*A)^{-1}\| \\
\leq \|(n^{-1}I + A^*A)^{-1}(A\theta A^*A + \theta B^*B + B^*B)(n^{-1}I + A^*A)^{-1}\| \\
\leq 4\|(n^{-1}I + A^*A)^{-1}A^*A\| \leq 4
\]

(since $B^*B \leq A^*A$ and $\|H\| \leq \|K\|$ if $0 \leq H \leq K$) and that each of the four summands is increasing with n, there is a C in \mathcal{U} such that $C_n \to C$. However, $\{C_nA\}$ converges uniformly to B; for, with H_n taken as $I - (n^{-1}I + A^*A)^{-1}A^*A$,

\[
\|B - C_n A\|^2 = \|BH_n\|^2 = \|H_n B^* B H_n\| \leq \|H_n A^* A H_n\| = \|H_n (A^* A)^t\|^2 \to 0
\]
as $n \to \infty$, from spectral theory. Thus, from Lemmas 2.1 and 2.2, it follows that $B = CA$.

Definition A: For S and T in \mathcal{U} we write $S \approx T$ if there is a set of elements $\{A_t\}$ in \mathcal{U} such that

\[
S = \Sigma A_t A_t^* \quad \text{and} \quad T = \Sigma A_t A_t^*.
\]

In other words, $S \approx T$ if S and T are the l.u.b. for the nets of finite sums of $A_t^* A_t$'s and $A_t A_t^*$'s respectively.

The following result is needed for further study of the relation \approx. It is an adaptation of [10; Prop. 1.1] to the present situation.

Proposition 2.4. If $\{A_t\}$ and $\{B_j\}$ are sets in \mathcal{U} such that

\[
\Sigma A_t A_t^* = \Sigma B_j B_j^* \in \mathcal{U}^+,
\]

then there is a set $\{C_{ij}\}$ in \mathcal{U} such that

\[
A_t^* A_t = \Sigma_j C_{ij}^* C_{ij} \quad \text{and} \quad B_j B_j^* = \Sigma_i C_{ij} C_{ij}^*.
\]

Proof. Let S be $\Sigma A_t A_t^*$ ($= \Sigma B_j B_j$) and $C_{ij}^{(n)}$ be $B_j (n^{-1}I + S)^{-1} A_t$. Note that, for each T in \mathcal{U},

\[
\|B_j T A_t\|^2 = \|B_j T A_t A_t^* T^* B_j^*\| \leq \|B_j T S T^* B_j^*\| = \|B_j T S^t\|^2 \\
= \|S^t T^* B_j^* B_j T S^t\| \leq \|S^t T^* S T S^t\| = \|S^t T S^t\|^2.
\]
Thus
\[||C_{ij}^{(n)} - C_{ij}^{(m)}|| \leq ||S^k [(n^{-1}I + S)^{-1} - (m^{-1}I + S)^{-1}] S^k||.\]

The operators \((n^{-1}I + S)^{-1} S\) lie in the \(C^\ast\)-algebra (commutative) generated by \(I\) and \(S\), and are represented (through the Spectral Theorem) by functions, on the spectrum of \(S\), which are monotone increasing (with \(n\)) and tend pointwise to the function representing \(S^k\). From Dini’s Theorem \((n^{-1}I + S)^{-1} S\) tends uniformly (with \(n\)) to \(S^k\).

Hence \(\{C_{ij}^{(n)}\}\) is Cauchy convergent (in norm) to some \(C_{ij}\) in \(\mathcal{A}\). As \(A_i A_i^* \leq S\) and \(B_j B_j^* \leq S\), there are \(G_i\) and \(H_j\) in \(\mathcal{A}\) such that \(A_i = S^k G_i\) and \(B_j = H_j S^k\) (from Proposition 2.3). Then
\[C_{ij}^{(n)} = H_j (n^{-1}I + S)^{-1} S G_i, \]
which tends uniformly to \(H_j S^k G_i\). Thus \(C_{ij} = H_j A_i = B_j G_i\), and
\[A_i^* A_i = G_i^* S G_i = G_i^* (\sum B_j B_j) G_i = \sum_i C_{ij}^* C_{ij}, \]
\[B_j B_j^* = H_j S H_j^* = H_j (\sum A_i A_i^*) H_j^* = \sum_i C_{ij} C_{ij}^*. \]

The foregoing proof produces the \(C_{ij}\) for all \(C^\ast\)-algebras; so that the assertion of 2.4 is valid when, for example, the convergences are uniform. It is valid, as well, for concretely represented \(C^\ast\)-algebras when the convergence is strong and the sums lie in the algebra. For the case of monotone closed \(C^\ast\)-algebras, alone, the last paragraph of the proof would suffice.

Theorem 2.5. The relation \(\approx\) is an equivalence relation in \(\mathcal{A}^+\) which is completely additive, in the sense that \(\Sigma S_i \approx \Sigma T_i\) when these sums exist and \(S_i \approx T_i\).

Proof. The complete additivity is clear. To prove the transitivity, we assume \(S \approx T\) and \(T \approx R\), hence
\[S = \sum A_i A_i^* A_i, \quad T = \sum A_i A_i^* = \sum B_j B_j^*, \quad R = \sum B_j B_j^*. \]
Using Proposition 2.4 on the equality \(\Sigma A_i A_i^* = \Sigma B_j B_j\) we immediately get \(S \approx R\).

The next proposition shows that the equivalence classes satisfy a strong Riesz Decomposition property.

Proposition 2.6. If \(\{S_i\}\) and \(\{T_j\}\) are sets in \(\mathcal{A}^+\) such that \(\Sigma S_i \approx T_j\) and...
\[\sum T_j \text{ are in } \mathcal{A}^+ \text{ with } \sum S_i \approx \sum T_j, \text{ then there is a set } \{ R_{ij} \} \text{ in } \mathcal{A}^+ \text{ such that } S_i \approx \sum_j R_{ij} \text{ and } T_j = \sum_i R_{ij}. \]

Proof. By assumption we have \(\sum S_i = \sum A_k^* A_k \) and \(\sum T_j = \sum A_k A_k^* \). Using Proposition 2.4 on the first equality we get a set \(\{ B_{ik} \} \) in \(\mathcal{A} \) such that

\[
S_i = \sum_k B_{ik}^* B_{ik} \quad \text{and} \quad A_k A_k^* = \sum_i B_{ik} B_{ik}^*. \]

Since \(\sum_i B_{ik} B_{ik}^* = \sum_j S_j \), we can find a set \(\{ C_{ijk} \} \) in \(\mathcal{A} \) such that

\[
B_{ik}^* B_{ik} = \sum_j C_{ijk}^* C_{ijk} \quad \text{and} \quad T_j = \sum_i C_{ijk} C_{ijk}^*. \]

The elements \((R_{ij} =) \sum_k C_{ijk} C_{ijk}^* \) have the desired properties.

Definition B. For \(S \) and \(T \) in \(\mathcal{A}^+ \), we write \(S \preceq T \) if there is an \(R \) in \(\mathcal{A}^+ \) with \(S \approx R \preceq T \).

Note that \(\preceq \) is a partial ordering of the equivalence classes of \(\mathcal{A}^+ \); for if \(S \approx T_1 \preceq T \) and \(T \approx R_0 \preceq R \), using Proposition 2.6,

\[
T = T_1 + T_2 \approx R_0 = R_1 + R_2
\]

with \(T_1 \approx R_1 \). Thus \(S \approx R_1 \preceq R \).

Proposition 2.7. If \(S \preceq T \) and \(T \preceq S \), then \(S \approx T \).

Proof. Since \(S \preceq T \), there is a set \(\{ A_i \} \) in \(\mathcal{A} \) with \(S = \sum A_i^* A_i \) and \(\sum A_i A_i^* \preceq T \). By Proposition 2.3 each \(A_i \) has the form \(V_i S_i \) for some \(V_i \) in \(\mathcal{A} \). For any \(R \) in \(\mathcal{A}^+ \) dominated by \(S \), we define \(\varphi \) by:

\[
\varphi(R) = \sum V_i R V_i^* \quad (\leq \sum V_i S V_i^* = \sum A_i A_i^*) .
\]

Then \(\varphi \) is an order preserving affine map into the set of elements of \(\mathcal{A}^+ \) dominated by \(T \). Since \(R^i \) is \(GS_i \) for some \(G \) in \(\mathcal{A} \) (by Proposition 2.3), we have

\[
\sum R^i V_i V_i^* R^i = \sum G S_i V_i^* V_i S_i G^* = G S G^* = R ,
\]

while \(\sum V_i R^i R^i V_i^* \varphi = \varphi(R) \). Thus \(\varphi(R) \approx R \).

Since \(T \preceq S \), from the foregoing, there is an order and equivalence preserving affine map \(\varphi \) from the elements in \(\mathcal{A}^+ \) dominated by \(T \) into those dominated by \(S \). If

\[
S_0 = S, \quad S_1 = \varphi(T) , \quad S_{2n} = (\varphi \varphi)^n(S), \quad S_{2n+1} = (\varphi \varphi)^n(S_1) ,
\]
then \(\{S_n\} \) is a decreasing sequence. Hence \(S_n \searrow S_\infty \) in \(\mathcal{A}^+ \). We have

\[
S = \sum_{n=0}^{\infty} (S_{2n} - S_{2n+1}) + \sum_{n=1}^{\infty} (S_{2n-1} - S_{2n}) + S_\infty,
\]

\[
S_1 = \sum_{n=1}^{\infty} (S_{2n} - S_{2n+1}) + \sum_{n=1}^{\infty} (S_{2n-1} - S_{2n}) + S_\infty.
\]

Since \(\varphi(S_{2n} - S_{2n+1}) = S_{2n+2} - S_{2n+3} \) and \(\varphi(R) \approx R \), we conclude that \(S \approx S_1 \) (\(\approx T \)).

If \(0 \leq f_n(t) \neq 1 \) for \(0 < t \leq 1 \), \(f_n(0) = 0 \), and \(f_n \) is continuous and \(0 \leq S \leq I \) with \(S \in \mathcal{A} \), then \((f_n(S)) \) is increasing and bounded by \(I \). Thus \(f_n(S) \searrow [S] \). We refer to \([S] \) as range projection of \(S \). From the Spectral Theorem and Dini's Theorem, \(f_n(S)f_m(S) \) is increasing and tends in norm to \(f_m(S) \), as \(n \to \infty \). From Lemmas 2.1 and 2.2, \([S]f_m(S) = f_m(S) \). Thus \([S]^2 = [S] \); and \([S] \) is a projection. Similarly \([S]S = S \). If \(AS = 0 \), then \(Af_n(S) = 0 \) for all \(n \) since \(f_n(S) \) is a uniform limit of polynomials in \(S \) without constant term; so that \(A[S] = 0 \).

For arbitrary \(A \) in \(\mathcal{A} \), we take the range projection \([A]\) of \(A \) to be that of \((AA^*)^{i1}\|A\|^{-1} \). From Proposition 2.3, \(A = (AA^*)^{i1} V \), for some \(V \) in \(\mathcal{A} \); so that \([A] = A \). If \(GA = A \), for some projection \(G \) in \(\mathcal{A} \), then \((I-G)(AA^*)^{i1} = 0 \); and \((I-G)A = 0 \). Hence \([A]\) can be characterized as the smallest projection in \(\mathcal{A} \) such that \([A]A = A \); and is independent of the sequence \((f_n) \) used.

Having “range projections” in \(\mathcal{A} \), the techniques of [7], [12] produce “spectral resolutions” for self-adjoint elements of \(\mathcal{A} \). In particular, each such element is the norm limit of finite linear combinations of (mutually-orthogonal, spectral) projections in \(\mathcal{A} \).

If \(E \) and \(F \) are projections in \(\mathcal{A} \), we denote \([E+F]\) by \(EvF \). Now, if \(K \) and \(H \) in \(\mathcal{A} \) are such that \(0 \leq K \leq H \), then \([H]K^4 = [H]H^4 V = H^4 V = K^4 \), from Proposition 2.3; so that \([H]K = K \). Thus \(EvF \) dominates both \(E \) and \(F \). On the other hand, if the projection \(G \) in \(\mathcal{A} \) dominates both \(E \) and \(F \), then \(G(E+F) = E+F \); so that \(EvF \leq G \). Thus \(EvF \) is the smallest projection in \(\mathcal{A} \) dominating \(E \) and \(F \). Since \(\mathcal{A} \) is monotone closed, each family \(\{E_j\} \) of projections in \(\mathcal{A} \) gives rise to a smallest projection \(\bigvee_j E_j \) dominating all \(E_j \) — the l.u.b. of the monotone net of finite unions of projections in \(\{E_j\} \).

Definition C. The central carrier \(C_A \) of an operator \(A \) in \(\mathcal{A}^+ \) is the projection \(\bigvee \{U^*[A]U \mid U \text{ unitary in } \mathcal{A}\} \).

Since the family \(\{U^*[A]U \mid U \text{ unitary in } \mathcal{A}\} \) is a family of projections invariant under the automorphisms \(G \to U^*GU \) of the lattice of projections in \(\mathcal{A} \), their l.u.b. \(C_A \) in this lattice is invariant under these
automorphisms. Thus, since the unitary operators in \mathfrak{A} generate \mathfrak{A} (linearly), C_A lies in the center \mathfrak{C} of \mathfrak{A}. As $C_A[A] = [A]$ and each central projection which dominates $[A]$ must dominate $U^*[A]U$, for every unitary U in \mathfrak{A}, C_A is the smallest central projection such that $C_A A = A$.

Lemma 2.8. If E is a projection in \mathfrak{A}, CE is the center of $E\mathfrak{A}E$ and $CE \to CC_E$ is a normal isomorphism of CE onto CC_E.

Proof. As ($*$-) isomorphisms between C^*-algebras are order isomorphisms, an isomorphism of one monotone closed algebra onto another is normal. Since $E\mathfrak{A}E$ and $\mathfrak{A}C_E$ are monotone closed, their centers are monotone closed (Lemma 2.1). It suffices to observe that CE and CC_E are the centers of $E\mathfrak{A}E$ and $\mathfrak{A}C_E$, respectively, and are isomorphic.

With C in \mathfrak{C}, if $CE = 0$, then $CU^*EU = 0$, for each unitary U in \mathfrak{A}; so that $CC_E = 0$ (of course, $CE = CC_E E = 0$, if $CC_E = 0$). Thus $CE \to CC_E$ is an isomorphism of CE onto CC_E.

To show that CE is the center of $E\mathfrak{A}E$ (and, by replacing E with C_E, that CC_E is the center of $\mathfrak{A}C_E$), we shall make use of the fact that if A and B in \mathfrak{A}^+ are such that a projection N in \mathfrak{A} dominates $[EAE]$ and $[EBE]$, then N dominates $E[A + B]E$. Multiplying by a suitable positive scalar, it will suffice to establish this when $A + B \leq I$. As

$$0 \leq (A + B)^n \leq A + B \leq I,$$

for each positive integer n, and

$$N E(A + B)EN = E(A + B)E,$$

N dominates $E(A + B)^n E$. Thus N dominates each $Ef_n(A + B)E$, as well as $E[A + B]E$, where $f_n(t)$ may be taken as $1 - (1 - t)^n$ for present purposes (cf. remarks following Proposition 2.7).

With N a projection in the center of $E\mathfrak{A}E$, $N \leq C_N E$. On the other hand, C_N is the l.u.b. of

$$\{\ldots[[U_1^*NU_1 + U_2^*NU_2] + U_3^*NU_3] + \ldots + U_n^*NU_n]\mid U_1, \ldots, U_n \text{ unitary in } \mathfrak{A}\}.$$

Successive application of the foregoing observation shows that N dominates

$$E[\ldots[[U_1^*NU_1 + U_2^*NU_2] + U_3^*NU_3] + \ldots + U_n^*NU_n]E,$$

when we note that
\[EU^*NUE = EU^*ENEUE = NEU^*EUNE \leq N , \]

for each unitary \(U \) in \(\mathfrak{U} \). Thus \(EC_N E = C_N E \leq N ; \) and \(C_N E = N \). Using spectral resolutions, each element of the center of \(E\mathfrak{U}E \) has the form \(CE \), with \(C \) in \(\mathcal{C} \), completing the proof.

With \(S \trianglelefteq T \) and \(C \) in \(\mathcal{C}^+ \), \(CS \trianglelefteq CT \); so that \(CS = 0 \) if \(CT = 0 \). A version of the Comparison Theorem (see [1; Lemme 1, p. 227]) for monotone closed algebras follows.

Proposition 2.9. With \(S \) and \(T \) in \(\mathfrak{U}^+ \), there is a central projection \(P \) such that \(PT \leq PS \) and \((I-P)S \leq (I-P)T \).

Proof. Let \(\mathcal{F} \) be the family of sets of triples \(\langle a, S_a, T_a \rangle \), where \(a \) is an ordinal, \(S_a \) and \(T_a \) are non-zero elements of \(\mathfrak{U}^+ \) such that

\[S_a \approx T_a, \quad \Sigma_a S_a \leq S, \quad \Sigma_a T_a \leq T, \]

and the ordinals \(a \) appearing in a set in \(\mathcal{F} \) form an initial segment of ordinals (if \(b \leq a \) and \(a \) appears then \(b \) appears). Note that the ordinals occurring in a set in \(\mathcal{F} \) do not exceed the cardinal of \(\mathfrak{U} \); for \(\Sigma_a S_a \leq S \) and each \(S_a \) is non-zero, so that at most a finite number of \(S_a \) are equal to a given element of \(\mathfrak{U} \).

Zorn's Lemma applies, now, to the sets in \(\mathcal{F} \), partially ordered by inclusion, to yield a maximal set (element) \(\mathcal{S}_0 (= \{ \langle a, S_a, T_a \rangle \}) \) in \(\mathcal{F} \). Let \(S_0 \) and \(T_0 \) be \(S - \Sigma S_a \) and \(T - \Sigma T_a \), respectively. Note that, with \(\|A\| \) small,

\[B^*B \leq S_0 \quad \text{and} \quad BB^* \leq T_0 , \]

where \(B = T_0^*A S_0^* \). Adjoining \(\langle a_0, B^*B, BB^* \rangle \) to \(\mathcal{S}_0 \), where \(a_0 \) is the first ordinal not occurring in the triples of \(\mathcal{S}_0 \), contradicts the maximality of \(\mathcal{S}_0 \) unless \(B = 0 \). Thus \(T_0 A S_0 = 0 \) for each \(A \) in \(\mathfrak{U} \), and \(T_0 A[S_0] = 0 \). Since \(T_0 U^*[S_0]U = 0 \), for each unitary \(U \) in \(\mathfrak{U} \), \(T_0 C S_0 = 0 \).

Let \(P \) be \(C S_0 \). Then

\[0 = PT_0 = PT - \Sigma PT_a , \]

\[0 = (I-P)S_0 = (I-P)S - \Sigma (I-P)S_a , \]

\[PT = \Sigma PT_a \approx \Sigma PS_a \leq PS , \]

\[(I-P)S = \Sigma (I-P)S_a \approx \Sigma (I-P)T_a \leq (I-P)T , \]

completing the proof.

Throughout this section \mathfrak{A} is a monotone closed C^*-algebra.

Definition D. An element S in \mathfrak{A}^+ is said to be finite if $T \leq S$ and $T \approx S$ implies $T = S$. When I is finite, we say that \mathfrak{A} is finite.

Theorem 3.1. The finite elements of \mathfrak{A}^+ form a subcone invariant under equivalence. Moreover if S is finite and $T \leq S$, then T is finite.

Proof. If S is finite and $T \approx S$ then T is finite. If namely $R \leq T$ and $R \approx T$ then $R + (T - R) \approx S$. Hence by Proposition 2.6, we have $S = S_1 + S_2$ with $S_1 \approx R$, $S_2 \approx T - R$. Since $S_1 \leq S$ and $S_1 \approx S$, we conclude that $S_1 = S$ and $S_2 = 0$. Hence $T = R$.

If S is finite and $T \leq S$, then T is finite since $R \leq T$ and $R \approx T$ implies $R + (S - T) \leq S$ and $R + (S - T) \approx S$, hence $R = T$.

If S is finite, then aS is finite with $a \geq 0$; and, more generally, AS is finite for each A in \mathfrak{A}^+ commuting with S, since $\|A\|^{-1}AS \leq S$.

If S and T are both finite, then with P a central projection chosen as in Proposition 2.9, we have

$$P(S + T) \leq 2PS \quad \text{and} \quad (I - P)(S + T) \leq 2(I - P)T.$$

Since $2PS$ and $(I - P)T$ are finite, we have proved that $P(S + T)$ and $(I - P)(S + T)$ are finite. However, these elements are centrally orthogonal. Hence their sum $S + T$ is also finite.

Lemma 3.2. If R in \mathfrak{A}^+ is finite and S and T are equivalent elements majorized by R, then $R - S \approx R - T$.

Proof. By Proposition 2.9 it suffices to consider the case $R - S \approx G \leq R - T$.

Then $R = (R - S) + S \approx G + T \leq R$. Hence $G + T = R$ and $R - S \approx R - T$.

Lemma 3.3. If $S_n \rightarrow S$, $T_n \rightarrow T$ and $S_n \approx T_n$ with all S_n finite, then $S \approx T$.

Proof. With $A_n = S_n - S_{n-1}$ and $B_n = T_n - T_{n-1}$ we have $A_n + S_{n-1} \approx B_n + T_{n-1} \approx B_n + S_{n-1}$. Using $A_n + B_n + S_{n-1}$ as R in Lemma 3.2 and $A_n + S_{n-1}$, $B_n + S_{n-1}$ in place of S and T, we conclude that $A_n \approx B_n$.

It follows that $S = \sum A_n \approx \sum B_n = T$ (where $S_0 = T_0 = 0$).

Proposition 3.4. If E and F are finite projections in \mathfrak{A} then EvF is finite.
Proof. Let \(G_n \) be \((n^{-1}I + E + F)^{-1} \), so that \(G_n(E + F)/E \vee F \), from the remarks following Proposition 2.7. Then \(S_n \approx T_n \), where
\[
S_n = G_n(E + F) = (G_n^1EG_n^1 + G_n^1FG_n^1) \text{ and } T_n = EG_nE + FG_nF.
\]
The sequence \(\{T_n\} \) is increasing. Since \(G_n \) is dominated by both \((n^{-1}I + E)^{-1} \) and \((n^{-1}I + F)^{-1} \) (cf. [3; 1.6.8, p. 15]),
\[
T_n / T \leq E + F.
\]
As \(E + F \) is finite (Theorem 3.1),
\[
E \vee F \approx T \leq E + F
\]
(Lemma 3.3); so that \(E \vee F \) is finite.

Theorem 3.5. If \(\mathcal{U} \) is finite then every element in \(\mathcal{U}^+ \) is equivalent to a unique central element.

Proof. If \(C_1 \) and \(C_2 \) are in \(\mathcal{G}^+ \) with \(C_1 \lessapprox C_2 \), then with \(P \) the range projection of \((C_1 - C_2)_+ \), we have \(PC_2 \preceq PC_1 \lessapprox PC_2 \). Hence \(PC_2 = PC_1 \) and thus \(C_1 \lessapprox C_2 \). It follows, in particular, that equivalent central elements are equal (in a finite \(\mathcal{U} \) — though the same is true of central projections without a "finiteness" restriction), which proves the uniqueness part of the theorem.

For \(S \) in \(\mathcal{U}^+ \), if \(C \) in \(\mathcal{G}^+ \) is such that \(C \lessapprox S \), then \(C \lessapprox ||S||I \). Hence \(||C|| \leq ||S|| \). As in the proof of Proposition 2.9, there is a set \(\{C_a\} \) in \(\mathcal{G}^+ \) such that \(\sum C_a \lessapprox S \), and such that if \(C + \sum C_a \lessapprox S \) with \(C \) in \(\mathcal{G}^+ \), then \(C = 0 \). Thus, with \(\sum C_a \lessapprox S - S_0 \) we can't have \(\varepsilon P \lessapprox PS_0 \) for a positive \(\varepsilon \) and a non-zero central projection \(P \). By comparison (Proposition 2.9), \(S_0 \lessapprox \varepsilon I \) (for each positive \(\varepsilon \)). We can therefore find \(S_n \) in \(\mathcal{U}^+ \) such that \(S_0 \lessapprox S_n \) and \(S_n \leq 2^{-n}I \). But this gives
\[
\sum S_n \approx \sum S_{2^n} \leq \sum S_n.
\]
Hence \(S_n = 0 \) for all \(n \), and so \(S_0 = 0 \), completing the proof.

The following theorems are best expressed in terms of a larger algebra which we shall describe below.

Let \(\overline{\mathcal{U}} \) be the set of formal sums of the form \(\overline{A} = \sum P_n A_n \), where \(A_n \in \mathcal{U} \) and \(\{P_n\} \) is a sequence of projections in \(\mathcal{G} \) with \(\Sigma P_n = I \). We identify elements \(\overline{A} = \sum A_n P_n \) and \(\overline{B} = \sum B_m Q_m \) for which \(P_n Q_m A_n = P_n Q_m B_m \) for all \(n \) and \(m \). For any finite number of elements from \(\overline{\mathcal{U}} \),
we can then always arrange a representation with the same central projections. With the obvious definitions
\[\mathcal{A} + \mathcal{B} = \Sigma P_n(A_n + B_n) \quad \text{and} \quad \mathcal{A}\mathcal{B} = \Sigma P_n A_n B_n, \]
we see that \(\mathcal{A} \) becomes an algebra — the algebra of centrally unbounded elements on \(\mathcal{A} \).

We define
\[\mathcal{A} \geq 0 \quad \text{if} \quad P_n A_n \geq 0 \quad \text{for all} \quad n; \]
\[\mathcal{A} \approx \mathcal{B} \quad \text{if} \quad P_n A_n \approx P_n B_n \quad \text{for all} \quad n; \]
and we say that \(\mathcal{A} \) is finite if all \(P_n A_n \) are finite.

Definition E. A monotone closed \(C^* \)-algebra \(\mathcal{A} \) is semi-finite if each non-zero element of \(\mathcal{A}^+ \) dominates some non-zero finite element. It is of type III if it has no non-zero finite elements.

Theorem 3.6. Each monotone closed \(C^* \)-algebra \(\mathcal{A} \) contains a central projection \(P \) such that \(P\mathcal{A} \) is semi-finite and \((I - P)\mathcal{A} \) is of type III. There is a finite projection \(E \) with central carrier \(P \).

Proof. Since \(U^*[A]U = [U^* A U] \) for unitary \(U \) in \(\mathcal{A} \), the union \(P \) of the range projections of finite elements is central. If \(A \) in \(P\mathcal{A}^+ \) is non-zero, \(A[B] \neq 0 \) for some finite \(B \), since \(0 \neq A = AP \). Thus
\[0 \neq A^* B A^* \leq \|B\| A; \]
and
\[A^* B A^* \approx B^* A B^* \leq \|A\| B. \]

From Theorem 3.1, \(A^* B A^* \) is finite, and \(P\mathcal{A} \) is semi-finite. By construction of \(P \), \((I - P)\mathcal{A} \) contains no non-zero finite elements; that is, \((I - P)\mathcal{A} \) is of type III.

For the second assertion let \(\{E_j\} \) be a family of finite projections in \(P\mathcal{A} \) maximal with the property that \(\{C_{E_j}\} \) is an orthogonal family. Then \(P - \Sigma C_{E_j} (=Q) \) dominates no finite projection other than \(0 \). Using spectral projections and Theorem 3.1, \(Q \) dominates no non-zero finite element. Since \(P\mathcal{A} \) is semi-finite, \(Q = 0 \). Thus \(C_{E} = P \), where \(E = \Sigma E_j \); and \(E \) is finite (for if \(F \leq E \) and \(F \approx E \), then \(C_{E_j} F \leq E_j \) and \(C_{E_j} F \approx E_j; \) so that \(C_{E_j} F = E_j \) and \(F = E \).

If \(\mathcal{A} \) is semi-finite and \(C_{E} = I \) with \(E \) a finite projection in \(\mathcal{A} \) (as above), \(C \mapsto CE \) is a normal isomorphism of the center \(\mathcal{C} \) of \(\mathcal{A} \) onto the center \(\mathcal{C}_{E} \) of \(E\mathcal{A}E \).
Theorem 3.7. If \mathcal{A} is semi-finite and E is a finite projection with central carrier I, then any finite element in \mathcal{A}^+ is equivalent to a unique element in \mathcal{C}_E^+.

Proof. If $\bar{S} = \sum P_n S_n$ and $P_n S_n \approx \bar{C}_n E$ for all n, then $\bar{C} = \sum P_n \bar{C}_n \in \mathcal{C}_E^+$ and $\bar{S} \approx \bar{C} E$. It follows that it is enough to prove the theorem for any finite S in \mathcal{A}^+.

For each n there is (by Proposition 2.9) a maximal central projection Q_n such that $Q_n S \approx S_n \leq n Q_n E$. The sequence $\{Q_n\}$ is increasing hence $Q_n \nearrow Q$. For each $\varepsilon > 0$ we have $(I - Q)E \leq \varepsilon (I - Q)S$. Arguing as in the proof of Theorem 3.5, $(I - Q)E = 0$, since S is finite. Thus Q/I. Now $S_n \leq n Q_n E$; and, since $E\mathcal{A}E$ is finite, we have $S_n \approx C_n E$, from Theorem 3.5. Letting P_n be $Q_n - Q_{n-1}$, we have $\bar{C} (= \sum P_n C_n)$ in \mathcal{C}_E^+ and $S \approx \bar{C} E$.

Definition F. A center-valued trace on \mathcal{A} is a completely additive map Φ from the finite elements in \mathcal{A}^+ onto \mathcal{C}_E^+, for which $\Phi(\bar{S}) = \Phi(\bar{T})$ iff $\bar{S} \sim \bar{T}$ and such that $\Phi(\bar{C} \bar{S}) = \bar{C} \Phi(\bar{S})$ for each finite \bar{S} in \mathcal{A}^+ and each \bar{C} in \mathcal{C}_E^+.

Theorem 3.8. Each monotone closed, semi-finite C^*-algebra \mathcal{A} admits a center-valued trace Φ. Every other center-valued trace on \mathcal{A} is of the form $\bar{S} \rightarrow \Phi(\bar{C} \bar{S})$ with \bar{C} invertible in \mathcal{C}_E^+. If \mathcal{A} is finite, then there is a unique normalized ($\Phi(I) = I$) center-valued trace on \mathcal{A}.

Proof. Let E be a finite projection in \mathcal{A} with central carrier I. Employing Theorem 3.7, define $\Phi(\bar{S})$ to be \bar{C}, for each finite \bar{S} in \mathcal{A}^+, where $\bar{C} \in \mathcal{C}_E^+$ and $\bar{S} \approx \bar{C} E$. Since \mathcal{C}_E and \mathcal{C} are normally isomorphic (Lemma 2.8), Φ is a center-valued trace on \mathcal{A}.

If Ψ is another center-valued trace, then $\bar{C} = \Psi(E)$ has no central zero-divisors; for if $C \bar{C} = 0$, then $\Psi(CE) = 0$, so that $CE = 0$ and $C = 0$. For each n, let Q_n be the maximal central projection such that $Q_n \leq n Q_n \bar{C}$. Then $\{Q_n\}$ is increasing. Since \bar{C} has no zero-divisors, $Q_n \nearrow I$. Since each $Q_n \bar{C}$ is invertible in $Q_n \mathcal{C}$, \bar{C} is invertible in \mathcal{C}, with

$$\bar{C}^{-1} = \sum (Q_n - Q_{n-1})(Q_n \bar{C})^{-1}.$$

For each finite \bar{S} in \mathcal{A}^+ we have $\bar{S} \approx \Phi(\bar{S}) E$. Hence

$$\Psi(\bar{S}) = \Psi(\Phi(\bar{S}) E) = \Phi(\bar{S}) \Psi(E) = \Phi(\bar{C} \bar{S}).$$

If \mathcal{A} is finite, then the construction of Φ with $E = I$ yields the normalized center-valued trace, completing the proof.
Theorem 3.9. If the center \mathcal{C} of a monotone closed semi-finite C^*-algebra \mathfrak{A} is a von Neumann algebra, then \mathfrak{A} itself is a von Neumann algebra.

Proof. From [5; Theorem 1] it suffices to exhibit a separating family of normal functionals on \mathfrak{A}. By hypothesis, there is a separating family \mathcal{F} of functionals on \mathcal{C}. For each non-zero S in \mathfrak{A}^+, there is a finite projection E in \mathfrak{A} such that $ES = 0$. Without loss of generality, we may assume that E has central carrier I. Let Φ be the center-valued trace on \mathfrak{A} for which $\Phi(E) = I$ (Theorem 3.8). Then

$$||S||I = ||S||\Phi(E) \geq \Phi(ESE) = 0$$

and $\Phi(ESE) \in \mathcal{C}^+$. By assumption there is an ω in \mathcal{F} such that $\omega(\Phi(ESE)) \neq 0$. We define a normal functional φ on \mathfrak{A} by letting $\varphi(T) = \omega(\Phi(ESE))$. Since $\varphi(S) = 0$, the theorem follows.

See [4] for the corresponding result in finite AW^* algebras.

Corollary 3.10. If a monotone closed, semi-finite C^*-algebra is a factor, then it is a von Neumann algebra.

4. Equivalence of equivalences.

The equivalence relation \approx introduced in § 2 (cf. Definition A) coincides with the Murray-von Neumann equivalence relation \sim [9; Def. 6.1.1] when restricted to the set of projections in a von Neumann algebra. This fact is the substance of the theorem which follows. Throughout the proof of that theorem, the use of terms such as "finite" and "infinite" will refer to their meanings in the theory of von Neumann algebras (as opposed to their definitions in terms of \approx). The theorem will establish that the two senses of these terms are the same when applied to von Neumann algebras.

Theorem 4.1. If $\{A_i \mid i \in \mathcal{I}\}$ is a family of operators in the von Neumann algebra \mathfrak{B} and $E = \sum A_i^*A_i$, $F = \sum A_iA_i^*$ with E and F projections, then $E \sim F$.

Proof. If P is a central projection in \mathfrak{B}, then $PE = \sum (PA_i)^*PA_i$ and $PF = \sum PA_i(PA_i)^*$. Thus PE and PF are related in $\mathfrak{B}P$ as are E and F in \mathfrak{B}. If we show that $PE \sim PF$ for each central projection P belonging to a family with union I, then $E \sim F$. Using cyclic central projections in place of P, we may assume that the center of \mathfrak{B} is count-
ably decomposable. With \(C_E \) the central carrier of \(E \) in \(\mathcal{R} \), \((I-C_E)E \), and hence, \((I-C_E)A_i = 0 \) for all \(i \). Thus \((I-C_E)F = 0 \); and \(C_E = C_F \). Restricting to this common central carrier, we may assume that \(C_E = C_F = I \). We may also deal separately with the cases where \(E \) is finite and where \(PE \) is infinite for each non-zero central projection \(P \) (contained in \(C_E \), that is, where \(E \) is “purely infinite”).

Suppose, first, that \(E \) is finite. Since \(C_E = I \), \(\mathcal{R} \) is semi-finite [1; Prop. 8, p. 97; Prop. 8, p. 245] and admits a normal, faithful, semi-finite trace \(\varphi \) [1; Prop. 9, p. 98]. Let \(\mathcal{M} \) be the two-sided ideal in \(\mathcal{R} \) on the positive elements of which \(\varphi \) is finite [1; Prop. 1, p. 80]. If \(PE \) is in \(\mathcal{M} \) for some central projection \(P \), then \((PA_i)^*PA_i \) is in \(\mathcal{M} \), for each \(i \), since \(0 \leq (PA_i)^*PA_i \leq PE \) and \(PE(\varphi^*PA_i)^*PA_i = (PA_i)^*PA_i \). As \(PE \) and \(PF \) are the least upper bounds of the increasing nets of finite sums of \((PA_i)^*(PA_i) \) and \(PA_i(PA_i)^* \), respectively, \(\varphi \) is finitely additive and normal, and

\[
\varphi((PA_i)^*PA_i) = \varphi(PA_i(PA_i)^*)
\]

[1; Cor. 1, p. 81], we conclude that \(\varphi(PE) = \varphi(PF) \). Since \(P_0E \) and \(P_0F \) satisfy the same hypothesis, \(\varphi(P_0E) = \varphi(P_0F) \) for each central sub-projection \(P_0 \) of \(P \). Choosing \(P_0 \) such that, say, \(P_0E \leq P_0F \), we have that \(P_0E \sim F_0 \) for some subprojection \(F_0 \) of \(P_0F \). Thus \(\varphi(P_0E) = \varphi(F_0) \); and \(\varphi(P_0F - F_0) = 0 \). Since \(\varphi \) is faithful, \(PF_0 = F_0 \); so that \(P_0E \sim P_0F \).

It follows from the Comparison Theorem [1; Theorem 1, p. 228] that \(PE \sim PF \).

To complete the proof that \(E \sim F \), under the assumption that \(E \) is finite, we produce a family of central projections \(\{P_j\} \) such that \(P_jE \) is in \(\mathcal{M} \) for all \(j \), and such that \(\Sigma P_j = I \). From the foregoing, then, \(P_jE \sim P_jF \); so that \(E \sim F \). Toward this end, let \(\{P_j\} \) be a maximal orthogonal family of projections such that \(P_jE \in \mathcal{M} \). If \(I - \Sigma P_j (= P) \) is non-zero, then \(PE \) is non-zero as \(C_E = I \). Since \(E \) is finite we see from [1; Cor. 1, p. 318] that \(E \mathcal{R}E \) is a finite algebra [1; Def. 1, p. 241]. The restriction of \(\varphi \) to \(E \mathcal{R}E \) being semi-finite, there is \{1; Prop. 10, p. 99\} a non-zero element \(T \) in the center of \(E \mathcal{R}E \) such that \(T \leq PE \) and \(T \in \mathcal{M} \). With \(\mathcal{C} \) the center of \(\mathcal{R} \), \(CE \) is the center of \(E \mathcal{R}E \). Hence a multiple of \(T \) majorizes a non-zero spectral projection of \(T \), of the form \(QE \) with \(Q \) in \(\mathcal{C} \). But \(QE \) in \(\mathcal{M} \) contradicts the maximality of \(\{P_j\} \). It follows that \(\Sigma P_j = I \); and \(\{P_j\} \) has the desired properties.

We suppose, now, that \(E \) is purely infinite. Then \(F \) is purely infinite, for if \(PF \) is finite, \(PE \) is finite, from the foregoing. If \(E \) (or \(F \)) is countably decomposable, then, since \(C_E = C_F \), we have \(E \sim F \) [6; Cor. 5, p.
320]. In the general case we must, however, appeal to a finer classification of infinite projections.

Assume that E and F are not equivalent. Since E and F satisfy the same hypotheses, we may suppose, without loss of generality, that $Q_0 E < Q_0 F$ for each non-zero central subprojection Q_0 of some non-zero central projection Q (employing the Comparison Theorem). Restricting attention to \mathcal{Q}, we may assume that $P E < P F$ for each non-zero central projection P.

With C the center of \mathcal{R}, CE is the center of $E \mathcal{R} E$. Since $C E = I$, the mapping $C \to CE$ of C onto CE is an isomorphism. From [6; Lemma 4.1.3], there is a (unique) family $\{P_a E\}$ of central projections in $E \mathcal{R} E$ such that either $P_a = 0$ or $E \mathcal{R} E P_a$ has coupling character a, and $\sum P_a = I$. Restricting attention to $\mathcal{R} P_e$, for some non-zero P_e, we may assume that $E \mathcal{R} E$ has coupling character e. Since cyclic projections in $E \mathcal{R} E$ (cyclic under $\mathcal{R} E$) are cyclic subprojections of E, E is the sum of a family $\{M_j\}$ of equivalent, orthogonal, cyclic projections. The family $\{M_j\}$ has cardinality e, and no such family with smaller cardinality has sum E. As E is purely infinite, a maximal cyclic projection in $E \mathcal{R} E$ is maximal cyclic in \mathcal{R} [6; Remarks on p. 340, Lemmas 3.3.3–3.3.6]; so that the projections M_j may be chosen maximal cyclic in \mathcal{R} [6; Lemma 4.1.4]. Applying these considerations to $F \mathcal{R} F$ and restricting to one of the central projections in \mathcal{R} arising from the coupling character decomposition of $F \mathcal{R} F$ (as we did with P_e), we may assume that F is the sum of an orthogonal family $\{N_k\}$ of maximal cyclic projections. Since maximal cyclic projections are equivalent [6; p. 340], equivalence of projections is additive on orthogonal families [1; p. 225, last paragraph], and $E < F$, we have that $e < f$, where f is the cardinality of $\{N_k\}$.

Suppose $E = \sqrt{G_h}$, where G_h is a cyclic projection in \mathcal{R} with generating vector x_h. If $A_t x_h = 0$, then $A_t A' x_h = 0$, for each A' in \mathcal{R}'; so that $A_t G_h = 0$. Since

$$0 + A_t = A_t E = A_t (\sqrt{G_h})$$

(recall, $0 \leq A_t^* A_t \leq E$; so that A_t^* has range projection E_t majorized by E, from which, $E A_t^* = A_t^*$), $A_t G_h = 0$ for some h. However, the set \mathcal{S}_h of such i is countable; since

$$\|Ex_h\|^2 = (Ex_h, x_h) = \sum_i \|A_i x_h\|^2.$$

Since $\mathcal{S} = \sqrt{\mathcal{S}_h}$ and each \mathcal{S}_h is countable, $b \leq a \aleph_0$, where \mathcal{S} has cardinality b and $\{G_h\}$ has cardinality a. If $\aleph_0 \leq a$, then $b \leq a$.

Applying this conclusion to the case where $\{A_t\}$ is an orthogonal
family of projections (so that $\sum A_i^* A_i$ is a projection, and, in particular, converges) and $a = \kappa_0$, we see that $b \leq \kappa_0$. We conclude that a projection which is a countable union of cyclic projections is countably decomposable.

Replacing $\{G_i\}$ by $\{M_j\}$, above, we see that $b \leq e \kappa_0$. If x_j is a generating vector for M_j, then $E_i x_j$ generates a subprojection E_{ij} of E_i. If x is a vector in the range of E_i for which $E_{ij} x = 0$ for all j; then $0 = (A' E_i x_j, x) = (E_i A' x_j, x)$, for each A' in \mathcal{A}'. Thus $M_j x = 0$, for all j; and

$$x = E_i x = E x = \sum M_j x = 0.$$

It follows that each E_i is the union of e cyclic projections E_{ij} (some, possibly, 0). Since $0 \leq A_i A_i^* \leq F$, the range projection F_i of A_i is a subprojection of F. From [1; Prop. 2, p. 226], $E_i \sim F_i$; so that each F_i is the union of e cyclic projections. Now, $E = \bigvee E_i$ and $F = \bigvee F_i$, since $E = \sum A_i^* A_i$ and $F = \sum A_i A_i^*$. Thus F is the union of e cyclic projections. As $F = \sum N_k$ and $\{N_k\}$ has cardinality f, replacing $\{A_i\}$ by $\{N_k\}$, above, we have that $f \leq b e \kappa_0$. Moreover $b \leq e \kappa_0$, as noted; so that $f \leq e^2 \kappa_0^2$. If e is finite and $f \leq \kappa_0$, F is a countable union of cyclic projections, and F as well as E are countably decomposable. Since $C_E = C_F = I$ and both E and F are purely infinite and countably decomposable, $E \sim F$, from [6; Lemma 3.3.3]. If e is infinite, $e^2 \kappa_0^2 = e$; and $f \leq e$. In either case, e finite or infinite, we contradict our initial arrangement $E < F$; and $E \sim F$ completing the proof of Theorem 4.1.

REFERENCES

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA, U.S.A.

AND

UNIVERSITY OF COPENHAGEN
COPENHAGEN, DENMARK